Skip to content
Snippets Groups Projects
sequencer.c 105 KiB
Newer Older
/*
 * Copyright Altera Corporation (C) 2012-2015
 *
 * SPDX-License-Identifier:    BSD-3-Clause
 */

#include <common.h>
#include <asm/io.h>
#include <asm/arch/sdram.h>
#include "sequencer.h"
static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
	(struct socfpga_sdr_rw_load_manager *)
		(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
	(struct socfpga_sdr_rw_load_jump_manager *)
		(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
static struct socfpga_sdr_reg_file *sdr_reg_file =
	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
	(struct socfpga_sdr_scc_mgr *)
		(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
	(struct socfpga_phy_mgr_cfg *)
		(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
static struct socfpga_data_mgr *data_mgr =
	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
static struct socfpga_sdr_ctrl *sdr_ctrl =
	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;

const struct socfpga_sdram_rw_mgr_config *rwcfg;
const struct socfpga_sdram_io_config *iocfg;
const struct socfpga_sdram_misc_config *misccfg;
#define DELTA_D		1

/*
 * In order to reduce ROM size, most of the selectable calibration steps are
 * decided at compile time based on the user's calibration mode selection,
 * as captured by the STATIC_CALIB_STEPS selection below.
 *
 * However, to support simulation-time selection of fast simulation mode, where
 * we skip everything except the bare minimum, we need a few of the steps to
 * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
 * check, which is based on the rtl-supplied value, or we dynamically compute
 * the value to use based on the dynamically-chosen calibration mode
 */

#define DLEVEL 0
#define STATIC_IN_RTL_SIM 0
#define STATIC_SKIP_DELAY_LOOPS 0

#define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
	STATIC_SKIP_DELAY_LOOPS)

/* calibration steps requested by the rtl */
static u16 dyn_calib_steps;

/*
 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
 * instead of static, we use boolean logic to select between
 * non-skip and skip values
 *
 * The mask is set to include all bits when not-skipping, but is
 * zero when skipping
 */

static u16 skip_delay_mask;	/* mask off bits when skipping/not-skipping */

#define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
	((non_skip_value) & skip_delay_mask)

static struct gbl_type *gbl;
static struct param_type *param;
static void set_failing_group_stage(u32 group, u32 stage,
	u32 substage)
{
	/*
	 * Only set the global stage if there was not been any other
	 * failing group
	 */
	if (gbl->error_stage == CAL_STAGE_NIL)	{
		gbl->error_substage = substage;
		gbl->error_stage = stage;
		gbl->error_group = group;
	}
}

static void reg_file_set_group(u16 set_group)
	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
static void reg_file_set_stage(u8 set_stage)
	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
static void reg_file_set_sub_stage(u8 set_sub_stage)
	set_sub_stage &= 0xff;
	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
/**
 * phy_mgr_initialize() - Initialize PHY Manager
 *
 * Initialize PHY Manager.
 */
static void phy_mgr_initialize(void)
	debug("%s:%d\n", __func__, __LINE__);
	/* Calibration has control over path to memory */
	/*
	 * In Hard PHY this is a 2-bit control:
	 * 0: AFI Mux Select
	 * 1: DDIO Mux Select
	 */
	writel(0x3, &phy_mgr_cfg->mux_sel);

	/* USER memory clock is not stable we begin initialization  */
	writel(0, &phy_mgr_cfg->reset_mem_stbl);

	/* USER calibration status all set to zero */
	writel(0, &phy_mgr_cfg->cal_status);
	writel(0, &phy_mgr_cfg->cal_debug_info);
	/* Init params only if we do NOT skip calibration. */
	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
		return;

	ratio = rwcfg->mem_dq_per_read_dqs /
		rwcfg->mem_virtual_groups_per_read_dqs;
	param->read_correct_mask_vg = (1 << ratio) - 1;
	param->write_correct_mask_vg = (1 << ratio) - 1;
	param->read_correct_mask = (1 << rwcfg->mem_dq_per_read_dqs) - 1;
	param->write_correct_mask = (1 << rwcfg->mem_dq_per_write_dqs) - 1;
/**
 * set_rank_and_odt_mask() - Set Rank and ODT mask
 * @rank:	Rank mask
 * @odt_mode:	ODT mode, OFF or READ_WRITE
 *
 * Set Rank and ODT mask (On-Die Termination).
 */
static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
	u32 odt_mask_0 = 0;
	u32 odt_mask_1 = 0;
	u32 cs_and_odt_mask;
	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
		odt_mask_0 = 0x0;
		odt_mask_1 = 0x0;
	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
		switch (rwcfg->mem_number_of_ranks) {
		case 1:	/* 1 Rank */
			/* Read: ODT = 0 ; Write: ODT = 1 */
			odt_mask_0 = 0x0;
			odt_mask_1 = 0x1;
			break;
		case 2:	/* 2 Ranks */
			if (rwcfg->mem_number_of_cs_per_dimm == 1) {
				/*
				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
				 *   OR
				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
				 *
				 * Since MEM_NUMBER_OF_RANKS is 2, they
				 * are both single rank with 2 CS each
				 * (special for RDIMM).
				 *
				 * Read: Turn on ODT on the opposite rank
				 * Write: Turn on ODT on all ranks
				 */
				odt_mask_0 = 0x3 & ~(1 << rank);
				odt_mask_1 = 0x3;
			} else {
				/*
				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
				 *
				 * Read: Turn on ODT off on all ranks
				 * Write: Turn on ODT on active rank
				 */
				odt_mask_0 = 0x0;
				odt_mask_1 = 0x3 & (1 << rank);
			}
			break;
		case 4:	/* 4 Ranks */
			/* Read:
			 * ----------+-----------------------+
			 *           |         ODT           |
			 * Read From +-----------------------+
			 *   Rank    |  3  |  2  |  1  |  0  |
			 * ----------+-----+-----+-----+-----+
			 *     0     |  0  |  1  |  0  |  0  |
			 *     1     |  1  |  0  |  0  |  0  |
			 *     2     |  0  |  0  |  0  |  1  |
			 *     3     |  0  |  0  |  1  |  0  |
			 * ----------+-----+-----+-----+-----+
			 *
			 * Write:
			 * ----------+-----------------------+
			 *           |         ODT           |
			 * Write To  +-----------------------+
			 *   Rank    |  3  |  2  |  1  |  0  |
			 * ----------+-----+-----+-----+-----+
			 *     0     |  0  |  1  |  0  |  1  |
			 *     1     |  1  |  0  |  1  |  0  |
			 *     2     |  0  |  1  |  0  |  1  |
			 *     3     |  1  |  0  |  1  |  0  |
			 * ----------+-----+-----+-----+-----+
			 */
			switch (rank) {
			case 0:
				odt_mask_0 = 0x4;
				odt_mask_1 = 0x5;
				break;
			case 1:
				odt_mask_0 = 0x8;
				odt_mask_1 = 0xA;
				break;
			case 2:
				odt_mask_0 = 0x1;
				odt_mask_1 = 0x5;
				break;
			case 3:
				odt_mask_0 = 0x2;
				odt_mask_1 = 0xA;
				break;
			}
	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
			  ((0xFF & odt_mask_0) << 8) |
			  ((0xFF & odt_mask_1) << 16);
	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
/**
 * scc_mgr_set() - Set SCC Manager register
 * @off:	Base offset in SCC Manager space
 * @grp:	Read/Write group
 * @val:	Value to be set
 *
 * This function sets the SCC Manager (Scan Chain Control Manager) register.
 */
static void scc_mgr_set(u32 off, u32 grp, u32 val)
	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
}
/**
 * scc_mgr_initialize() - Initialize SCC Manager registers
 *
 * Initialize SCC Manager registers.
 */
static void scc_mgr_initialize(void)
{
	 * Clear register file for HPS. 16 (2^4) is the size of the
	 * full register file in the scc mgr:
	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
	 *                             MEM_IF_READ_DQS_WIDTH - 1);
	for (i = 0; i < 16; i++) {
		debug_cond(DLEVEL >= 1, "%s:%d: Clearing SCC RFILE index %u\n",
			   __func__, __LINE__, i);
		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, i, 0);
static void scc_mgr_set_dqdqs_output_phase(u32 write_group, u32 phase)
	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
static void scc_mgr_set_dqs_bus_in_delay(u32 read_group, u32 delay)
	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
static void scc_mgr_set_dqs_en_phase(u32 read_group, u32 phase)
	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
static void scc_mgr_set_dqs_en_delay(u32 read_group, u32 delay)
	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
static void scc_mgr_set_dq_in_delay(u32 dq_in_group, u32 delay)
{
	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
}

static void scc_mgr_set_dqs_io_in_delay(u32 delay)
	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
static void scc_mgr_set_dm_in_delay(u32 dm, u32 delay)
	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET,
		    rwcfg->mem_dq_per_write_dqs + 1 + dm,
		    delay);
static void scc_mgr_set_dq_out1_delay(u32 dq_in_group, u32 delay)
	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
static void scc_mgr_set_dqs_out1_delay(u32 delay)
	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
static void scc_mgr_set_dm_out1_delay(u32 dm, u32 delay)
	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
		    rwcfg->mem_dq_per_write_dqs + 1 + dm,
}

/* load up dqs config settings */
static void scc_mgr_load_dqs(u32 dqs)
{
	writel(dqs, &sdr_scc_mgr->dqs_ena);
}

/* load up dqs io config settings */
static void scc_mgr_load_dqs_io(void)
{
	writel(0, &sdr_scc_mgr->dqs_io_ena);
}

/* load up dq config settings */
static void scc_mgr_load_dq(u32 dq_in_group)
{
	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
}

/* load up dm config settings */
static void scc_mgr_load_dm(u32 dm)
{
	writel(dm, &sdr_scc_mgr->dm_ena);
/**
 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
 * @off:	Base offset in SCC Manager space
 * @grp:	Read/Write group
 * @val:	Value to be set
 * @update:	If non-zero, trigger SCC Manager update for all ranks
 *
 * This function sets the SCC Manager (Scan Chain Control Manager) register
 * and optionally triggers the SCC update for all ranks.
 */
static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
				  const int update)
	for (r = 0; r < rwcfg->mem_number_of_ranks;
	     r += NUM_RANKS_PER_SHADOW_REG) {
		scc_mgr_set(off, grp, val);

		if (update || (r == 0)) {
			writel(grp, &sdr_scc_mgr->dqs_ena);
			writel(0, &sdr_scc_mgr->update);
static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
{
	/*
	 * USER although the h/w doesn't support different phases per
	 * shadow register, for simplicity our scc manager modeling
	 * keeps different phase settings per shadow reg, and it's
	 * important for us to keep them in sync to match h/w.
	 * for efficiency, the scan chain update should occur only
	 * once to sr0.
	 */
	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
			      read_group, phase, 0);
}

static void scc_mgr_set_dqdqs_output_phase_all_ranks(u32 write_group,
						     u32 phase)
	/*
	 * USER although the h/w doesn't support different phases per
	 * shadow register, for simplicity our scc manager modeling
	 * keeps different phase settings per shadow reg, and it's
	 * important for us to keep them in sync to match h/w.
	 * for efficiency, the scan chain update should occur only
	 * once to sr0.
	 */
	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
			      write_group, phase, 0);
static void scc_mgr_set_dqs_en_delay_all_ranks(u32 read_group,
					       u32 delay)
{
	/*
	 * In shadow register mode, the T11 settings are stored in
	 * registers in the core, which are updated by the DQS_ENA
	 * signals. Not issuing the SCC_MGR_UPD command allows us to
	 * save lots of rank switching overhead, by calling
	 * select_shadow_regs_for_update with update_scan_chains
	 * set to 0.
	 */
	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
			      read_group, delay, 1);
/**
 * scc_mgr_set_oct_out1_delay() - Set OCT output delay
 * @write_group:	Write group
 * @delay:		Delay value
 *
 * This function sets the OCT output delay in SCC manager.
 */
static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
	const int ratio = rwcfg->mem_if_read_dqs_width /
			  rwcfg->mem_if_write_dqs_width;
	const int base = write_group * ratio;
	int i;
	/*
	 * Load the setting in the SCC manager
	 * Although OCT affects only write data, the OCT delay is controlled
	 * by the DQS logic block which is instantiated once per read group.
	 * For protocols where a write group consists of multiple read groups,
	 * the setting must be set multiple times.
	 */
	for (i = 0; i < ratio; i++)
		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
/**
 * scc_mgr_set_hhp_extras() - Set HHP extras.
 *
 * Load the fixed setting in the SCC manager HHP extras.
 */
static void scc_mgr_set_hhp_extras(void)
{
	/*
	 * Load the fixed setting in the SCC manager
	 * bits: 0:0 = 1'b1	- DQS bypass
	 * bits: 1:1 = 1'b1	- DQ bypass
	 * bits: 4:2 = 3'b001	- rfifo_mode
	 * bits: 6:5 = 2'b01	- rfifo clock_select
	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
			  (1 << 2) | (1 << 1) | (1 << 0);
	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
			 SCC_MGR_HHP_GLOBALS_OFFSET |
			 SCC_MGR_HHP_EXTRAS_OFFSET;

	debug_cond(DLEVEL >= 1, "%s:%d Setting HHP Extras\n",
		   __func__, __LINE__);
	writel(value, addr);
	debug_cond(DLEVEL >= 1, "%s:%d Done Setting HHP Extras\n",
		   __func__, __LINE__);
/**
 * scc_mgr_zero_all() - Zero all DQS config
 *
 * Zero all DQS config.
 */
static void scc_mgr_zero_all(void)
{

	/*
	 * USER Zero all DQS config settings, across all groups and all
	 * shadow registers
	 */
	for (r = 0; r < rwcfg->mem_number_of_ranks;
	     r += NUM_RANKS_PER_SHADOW_REG) {
		for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
			/*
			 * The phases actually don't exist on a per-rank basis,
			 * but there's no harm updating them several times, so
			 * let's keep the code simple.
			 */
			scc_mgr_set_dqs_bus_in_delay(i, iocfg->dqs_in_reserve);
			scc_mgr_set_dqs_en_phase(i, 0);
			scc_mgr_set_dqs_en_delay(i, 0);
		}

		for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
			scc_mgr_set_dqdqs_output_phase(i, 0);
			/* Arria V/Cyclone V don't have out2. */
			scc_mgr_set_oct_out1_delay(i, iocfg->dqs_out_reserve);
	/* Multicast to all DQS group enables. */
	writel(0xff, &sdr_scc_mgr->dqs_ena);
	writel(0, &sdr_scc_mgr->update);
/**
 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
 * @write_group:	Write group
 *
 * Set bypass mode and trigger SCC update.
 */
static void scc_set_bypass_mode(const u32 write_group)
	/* Multicast to all DQ enables. */
	writel(0xff, &sdr_scc_mgr->dq_ena);
	writel(0xff, &sdr_scc_mgr->dm_ena);
	/* Update current DQS IO enable. */
	writel(0, &sdr_scc_mgr->dqs_io_ena);
	/* Update the DQS logic. */
	writel(write_group, &sdr_scc_mgr->dqs_ena);
	/* Hit update. */
	writel(0, &sdr_scc_mgr->update);
/**
 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
 * @write_group:	Write group
 *
 * Load DQS settings for Write Group, do not trigger SCC update.
 */
static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
	const int ratio = rwcfg->mem_if_read_dqs_width /
			  rwcfg->mem_if_write_dqs_width;
	const int base = write_group * ratio;
	int i;
	 * Load the setting in the SCC manager
	 * Although OCT affects only write data, the OCT delay is controlled
	 * by the DQS logic block which is instantiated once per read group.
	 * For protocols where a write group consists of multiple read groups,
	 * the setting must be set multiple times.
	for (i = 0; i < ratio; i++)
		writel(base + i, &sdr_scc_mgr->dqs_ena);
/**
 * scc_mgr_zero_group() - Zero all configs for a group
 *
 * Zero DQ, DM, DQS and OCT configs for a group.
 */
static void scc_mgr_zero_group(const u32 write_group, const int out_only)
	for (r = 0; r < rwcfg->mem_number_of_ranks;
	     r += NUM_RANKS_PER_SHADOW_REG) {
		/* Zero all DQ config settings. */
		for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
			scc_mgr_set_dq_out1_delay(i, 0);
				scc_mgr_set_dq_in_delay(i, 0);
		/* Multicast to all DQ enables. */
		writel(0xff, &sdr_scc_mgr->dq_ena);
		/* Zero all DM config settings. */
		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
			if (!out_only)
				scc_mgr_set_dm_in_delay(i, 0);
			scc_mgr_set_dm_out1_delay(i, 0);
		/* Multicast to all DM enables. */
		writel(0xff, &sdr_scc_mgr->dm_ena);
		/* Zero all DQS IO settings. */
			scc_mgr_set_dqs_io_in_delay(0);

		/* Arria V/Cyclone V don't have out2. */
		scc_mgr_set_dqs_out1_delay(iocfg->dqs_out_reserve);
		scc_mgr_set_oct_out1_delay(write_group, iocfg->dqs_out_reserve);
		scc_mgr_load_dqs_for_write_group(write_group);

		/* Multicast to all DQS IO enables (only 1 in total). */
		writel(0, &sdr_scc_mgr->dqs_io_ena);
		/* Hit update to zero everything. */
		writel(0, &sdr_scc_mgr->update);
	}
}

/*
 * apply and load a particular input delay for the DQ pins in a group
 * group_bgn is the index of the first dq pin (in the write group)
 */
static void scc_mgr_apply_group_dq_in_delay(u32 group_bgn, u32 delay)
	for (i = 0, p = group_bgn; i < rwcfg->mem_dq_per_read_dqs; i++, p++) {
		scc_mgr_set_dq_in_delay(p, delay);
/**
 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
 * @delay:		Delay value
 *
 * Apply and load a particular output delay for the DQ pins in a group.
 */
static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
	for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
		scc_mgr_set_dq_out1_delay(i, delay);
		scc_mgr_load_dq(i);
	}
}

/* apply and load a particular output delay for the DM pins in a group */
static void scc_mgr_apply_group_dm_out1_delay(u32 delay1)

	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
		scc_mgr_set_dm_out1_delay(i, delay1);
		scc_mgr_load_dm(i);
	}
}


/* apply and load delay on both DQS and OCT out1 */
static void scc_mgr_apply_group_dqs_io_and_oct_out1(u32 write_group,
						    u32 delay)
	scc_mgr_set_dqs_out1_delay(delay);
	scc_mgr_load_dqs_io();

	scc_mgr_set_oct_out1_delay(write_group, delay);
	scc_mgr_load_dqs_for_write_group(write_group);
}

/**
 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
 * @write_group:	Write group
 * @delay:		Delay value
 *
 * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
 */
static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
						  const u32 delay)
{
	u32 i, new_delay;
	for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++)
	/* DM shift */
	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
	/* DQS shift */
	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
	if (new_delay > iocfg->io_out2_delay_max) {
		debug_cond(DLEVEL >= 1,
			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
			   __func__, __LINE__, write_group, delay, new_delay,
			   iocfg->io_out2_delay_max,
			   new_delay - iocfg->io_out2_delay_max);
		new_delay -= iocfg->io_out2_delay_max;
		scc_mgr_set_dqs_out1_delay(new_delay);
	/* OCT shift */
	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
	if (new_delay > iocfg->io_out2_delay_max) {
		debug_cond(DLEVEL >= 1,
			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
			   __func__, __LINE__, write_group, delay,
			   new_delay, iocfg->io_out2_delay_max,
			   new_delay - iocfg->io_out2_delay_max);
		new_delay -= iocfg->io_out2_delay_max;
		scc_mgr_set_oct_out1_delay(write_group, new_delay);
	}

	scc_mgr_load_dqs_for_write_group(write_group);
}

/**
 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
 * @write_group:	Write group
 * @delay:		Delay value
 *
 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
static void
scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
						const u32 delay)
	for (r = 0; r < rwcfg->mem_number_of_ranks;
		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
		writel(0, &sdr_scc_mgr->update);
/**
 * set_jump_as_return() - Return instruction optimization
 *
 * Optimization used to recover some slots in ddr3 inst_rom could be
 * applied to other protocols if we wanted to
 */
static void set_jump_as_return(void)
{
	/*
	 * To save space, we replace return with jump to special shared
	 * RETURN instruction so we set the counter to large value so that
	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
	writel(rwcfg->rreturn, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
/**
 * delay_for_n_mem_clocks() - Delay for N memory clocks
 * @clocks:	Length of the delay
 *
 * Delay for N memory clocks.
static void delay_for_n_mem_clocks(const u32 clocks)
	u16 c_loop;
	u8 inner;
	u8 outer;

	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);

	/* Scale (rounding up) to get afi clocks. */
	afi_clocks = DIV_ROUND_UP(clocks, misccfg->afi_rate_ratio);
	if (afi_clocks)	/* Temporary underflow protection */
		afi_clocks--;
	 * Note, we don't bother accounting for being off a little
	 * bit because of a few extra instructions in outer loops.
	 * Note, the loops have a test at the end, and do the test
	 * before the decrement, and so always perform the loop
	 * 1 time more than the counter value
	 */
	c_loop = afi_clocks >> 16;
	outer = c_loop ? 0xff : (afi_clocks >> 8);
	inner = outer ? 0xff : afi_clocks;

	/*
	 * rom instructions are structured as follows:
	 *
	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
	 *                return
	 *
	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
	 * TARGET_B is set to IDLE_LOOP2 as well
	 *
	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
	 *
	 * a little confusing, but it helps save precious space in the inst_rom
	 * and sequencer rom and keeps the delays more accurate and reduces
	 * overhead
	 */
	if (afi_clocks < 0x100) {
		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
		       &sdr_rw_load_mgr_regs->load_cntr1);
		writel(rwcfg->idle_loop1,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
		writel(rwcfg->idle_loop1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
		       &sdr_rw_load_mgr_regs->load_cntr0);
		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
		       &sdr_rw_load_mgr_regs->load_cntr1);
		writel(rwcfg->idle_loop2,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
		writel(rwcfg->idle_loop2,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
			writel(rwcfg->idle_loop2,
			       SDR_PHYGRP_RWMGRGRP_ADDRESS |
			       RW_MGR_RUN_SINGLE_GROUP_OFFSET);
		} while (c_loop-- != 0);
	}
	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
}

/**
 * rw_mgr_mem_init_load_regs() - Load instruction registers
 * @cntr0:	Counter 0 value
 * @cntr1:	Counter 1 value
 * @cntr2:	Counter 2 value
 * @jump:	Jump instruction value
 *
 * Load instruction registers.
 */
static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
{
	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;

	/* Load counters */
	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
	       &sdr_rw_load_mgr_regs->load_cntr0);
	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
	       &sdr_rw_load_mgr_regs->load_cntr1);
	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
	       &sdr_rw_load_mgr_regs->load_cntr2);

	/* Load jump address */
	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);

	/* Execute count instruction */
	writel(jump, grpaddr);
}

/**
 * rw_mgr_mem_load_user() - Load user calibration values
 * @fin1:	Final instruction 1
 * @fin2:	Final instruction 2
 * @precharge:	If 1, precharge the banks at the end
 *
 * Load user calibration values and optionally precharge the banks.
 */
static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
				 const int precharge)
	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
	u32 r;

	for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
		/* set rank */
		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);

		/* precharge all banks ... */
		if (precharge)
			writel(rwcfg->precharge_all, grpaddr);
		/*
		 * USER Use Mirror-ed commands for odd ranks if address
		 * mirrorring is on
		 */
		if ((rwcfg->mem_address_mirroring >> r) & 0x1) {
			set_jump_as_return();
			writel(rwcfg->mrs2_mirr, grpaddr);
			delay_for_n_mem_clocks(4);
			set_jump_as_return();
			writel(rwcfg->mrs3_mirr, grpaddr);
			delay_for_n_mem_clocks(4);
			set_jump_as_return();
			writel(rwcfg->mrs1_mirr, grpaddr);
			delay_for_n_mem_clocks(4);
			set_jump_as_return();
			writel(fin1, grpaddr);
		} else {
			set_jump_as_return();
			writel(rwcfg->mrs2, grpaddr);
			delay_for_n_mem_clocks(4);
			set_jump_as_return();
			writel(rwcfg->mrs3, grpaddr);
			delay_for_n_mem_clocks(4);
			set_jump_as_return();
			writel(rwcfg->mrs1, grpaddr);
			set_jump_as_return();
			writel(fin2, grpaddr);
		}

		if (precharge)
			continue;

		set_jump_as_return();
		writel(rwcfg->zqcl, grpaddr);

		/* tZQinit = tDLLK = 512 ck cycles */
		delay_for_n_mem_clocks(512);
	}
}

/**
 * rw_mgr_mem_initialize() - Initialize RW Manager
 *
 * Initialize RW Manager.
 */
static void rw_mgr_mem_initialize(void)
{
	debug("%s:%d\n", __func__, __LINE__);

	/* The reset / cke part of initialization is broadcasted to all ranks */
	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);

	/*
	 * Here's how you load register for a loop
	 * Counters are located @ 0x800
	 * Jump address are located @ 0xC00
	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
	 * I know this ain't pretty, but Avalon bus throws away the 2 least
	 * significant bits
	 */

	/* Start with memory RESET activated */

	/* tINIT = 200us */

	/*
	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
	 * If a and b are the number of iteration in 2 nested loops
	 * it takes the following number of cycles to complete the operation:
	 * number_of_cycles = ((2 + n) * a + 2) * b
	 * where n is the number of instruction in the inner loop
	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
	 * b = 6A
	 */
	rw_mgr_mem_init_load_regs(misccfg->tinit_cntr0_val,
				  misccfg->tinit_cntr1_val,
				  misccfg->tinit_cntr2_val,
				  rwcfg->init_reset_0_cke_0);
	/* Indicate that memory is stable. */
	writel(1, &phy_mgr_cfg->reset_mem_stbl);

	/*
	 * transition the RESET to high
	 * Wait for 500us
	 */

	/*
	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
	 * If a and b are the number of iteration in 2 nested loops
	 * it takes the following number of cycles to complete the operation
	 * number_of_cycles = ((2 + n) * a + 2) * b
	 * where n is the number of instruction in the inner loop
	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
	 * b = FF
	 */
	rw_mgr_mem_init_load_regs(misccfg->treset_cntr0_val,
				  misccfg->treset_cntr1_val,
				  misccfg->treset_cntr2_val,
				  rwcfg->init_reset_1_cke_0);
	/* Bring up clock enable. */

	/* tXRP < 250 ck cycles */
	delay_for_n_mem_clocks(250);

	rw_mgr_mem_load_user(rwcfg->mrs0_dll_reset_mirr, rwcfg->mrs0_dll_reset,
/**
 * rw_mgr_mem_handoff() - Hand off the memory to user
 *
 * At the end of calibration we have to program the user settings in
 * and hand off the memory to the user.
 */
static void rw_mgr_mem_handoff(void)
{
	rw_mgr_mem_load_user(rwcfg->mrs0_user_mirr, rwcfg->mrs0_user, 1);
	 * Need to wait tMOD (12CK or 15ns) time before issuing other
	 * commands, but we will have plenty of NIOS cycles before actual
	 * handoff so its okay.
/**
 * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
 * @group:	Write Group
 * @use_dm:	Use DM
 *
 * Issue write test command. Two variants are provided, one that just tests
 * a write pattern and another that tests datamask functionality.
static void rw_mgr_mem_calibrate_write_test_issue(u32 group,
						  u32 test_dm)
	const u32 quick_write_mode =
		(STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
		misccfg->enable_super_quick_calibration;
	u32 mcc_instruction;
	u32 rw_wl_nop_cycles;

	/*
	 * Set counter and jump addresses for the right
	 * number of NOP cycles.
	 * The number of supported NOP cycles can range from -1 to infinity
	 * Three different cases are handled:
	 *
	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
	 *    mechanism will be used to insert the right number of NOPs
	 *
	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
	 *    issuing the write command will jump straight to the
	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
	 *    data (for RLD), skipping
	 *    the NOP micro-instruction all together
	 *
	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
	 *    turned on in the same micro-instruction that issues the write
	 *    command. Then we need
	 *    to directly jump to the micro-instruction that sends out the data
	 *
	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
	 *       (2 and 3). One jump-counter (0) is used to perform multiple
	 *       write-read operations.
	 *       one counter left to issue this command in "multiple-group" mode
	 */

	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;

	if (rw_wl_nop_cycles == -1) {
		/*
		 * CNTR 2 - We want to execute the special write operation that
		 * turns on DQS right away and then skip directly to the
		 * instruction that sends out the data. We set the counter to a
		 * large number so that the jump is always taken.
		 */
		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);

		/* CNTR 3 - Not used */
		if (test_dm) {
			mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0_wl_1;
			writel(rwcfg->lfsr_wr_rd_dm_bank_0_data,
			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
			writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
		} else {
			mcc_instruction = rwcfg->lfsr_wr_rd_bank_0_wl_1;
			writel(rwcfg->lfsr_wr_rd_bank_0_data,
			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
			writel(rwcfg->lfsr_wr_rd_bank_0_nop,
			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
		}
	} else if (rw_wl_nop_cycles == 0) {
		/*
		 * CNTR 2 - We want to skip the NOP operation and go straight
		 * to the DQS enable instruction. We set the counter to a large
		 * number so that the jump is always taken.
		 */
		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);

		/* CNTR 3 - Not used */
		if (test_dm) {
			mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
			writel(rwcfg->lfsr_wr_rd_dm_bank_0_dqs,
			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
		} else {
			mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
			writel(rwcfg->lfsr_wr_rd_bank_0_dqs,
			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
		}
	} else {
		/*
		 * CNTR 2 - In this case we want to execute the next instruction
		 * and NOT take the jump. So we set the counter to 0. The jump
		 * address doesn't count.
		 */
		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);

		/*
		 * CNTR 3 - Set the nop counter to the number of cycles we
		 * need to loop for, minus 1.
		 */
		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
		if (test_dm) {
			mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
			writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
			mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
			writel(rwcfg->lfsr_wr_rd_bank_0_nop,
			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
		}
	}

	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
		  RW_MGR_RESET_READ_DATAPATH_OFFSET);

	if (quick_write_mode)
		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
	else
		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);

	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);

	/*
	 * CNTR 1 - This is used to ensure enough time elapses
	 * for read data to come back.
	 */
	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);

	if (test_dm) {
		writel(rwcfg->lfsr_wr_rd_dm_bank_0_wait,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
		writel(rwcfg->lfsr_wr_rd_bank_0_wait,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
	writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
				RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
				(group << 2));
/**
 * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
 * @rank_bgn:		Rank number
 * @write_group:	Write Group
 * @use_dm:		Use DM
 * @all_correct:	All bits must be correct in the mask
 * @bit_chk:		Resulting bit mask after the test
 * @all_ranks:		Test all ranks
 *
 * Test writes, can check for a single bit pass or multiple bit pass.
 */
static int
rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
				const u32 use_dm, const u32 all_correct,
				u32 *bit_chk, const u32 all_ranks)
	const u32 rank_end = all_ranks ?
				rwcfg->mem_number_of_ranks :
				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
	const u32 shift_ratio = rwcfg->mem_dq_per_write_dqs /
				rwcfg->mem_virtual_groups_per_write_dqs;
	const u32 correct_mask_vg = param->write_correct_mask_vg;

	u32 tmp_bit_chk, base_rw_mgr;
	int vg, r;

	*bit_chk = param->write_correct_mask;

	for (r = rank_bgn; r < rank_end; r++) {
		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);

		tmp_bit_chk = 0;
		for (vg = rwcfg->mem_virtual_groups_per_write_dqs - 1;
		     vg >= 0; vg--) {
			/* Reset the FIFOs to get pointers to known state. */
			writel(0, &phy_mgr_cmd->fifo_reset);

			rw_mgr_mem_calibrate_write_test_issue(
				write_group *
				rwcfg->mem_virtual_groups_per_write_dqs + vg,
			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
			tmp_bit_chk <<= shift_ratio;
			tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
		debug_cond(DLEVEL >= 2,
			   "write_test(%u,%u,ALL) : %u == %u => %i\n",
			   write_group, use_dm, *bit_chk,
			   param->write_correct_mask,
			   *bit_chk == param->write_correct_mask);
		return *bit_chk == param->write_correct_mask;
	} else {
		debug_cond(DLEVEL >= 2,
			   "write_test(%u,%u,ONE) : %u != %i => %i\n",
			   write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
/**
 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
 * @rank_bgn:	Rank number
 * @group:	Read/Write Group
 * @all_ranks:	Test all ranks
 *
 * Performs a guaranteed read on the patterns we are going to use during a
 * read test to ensure memory works.
static int
rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
					const u32 all_ranks)
	const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
			 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
	const u32 addr_offset =
			 (group * rwcfg->mem_virtual_groups_per_read_dqs) << 2;
	const u32 rank_end = all_ranks ?
				rwcfg->mem_number_of_ranks :
				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
	const u32 shift_ratio = rwcfg->mem_dq_per_read_dqs /
				rwcfg->mem_virtual_groups_per_read_dqs;
	const u32 correct_mask_vg = param->read_correct_mask_vg;
	u32 tmp_bit_chk, base_rw_mgr, bit_chk;
	int vg, r;
	int ret = 0;

	bit_chk = param->read_correct_mask;

	for (r = rank_bgn; r < rank_end; r++) {
		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);

		/* Load up a constant bursts of read commands */
		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
		writel(rwcfg->guaranteed_read,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
		writel(rwcfg->guaranteed_read_cont,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
		for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1;
		     vg >= 0; vg--) {
			/* Reset the FIFOs to get pointers to known state. */
			writel(0, &phy_mgr_cmd->fifo_reset);
			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
			writel(rwcfg->guaranteed_read,
			       addr + addr_offset + (vg << 2));
			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
			tmp_bit_chk <<= shift_ratio;
			tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
	writel(rwcfg->clear_dqs_enable, addr + (group << 2));

	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);

	if (bit_chk != param->read_correct_mask)
		ret = -EIO;

	debug_cond(DLEVEL >= 1,
		   "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
		   __func__, __LINE__, group, bit_chk,
		   param->read_correct_mask, ret);

	return ret;
/**
 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
 * @rank_bgn:	Rank number
 * @all_ranks:	Test all ranks
 *
 * Load up the patterns we are going to use during a read test.
 */
static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
						    const int all_ranks)
	const u32 rank_end = all_ranks ?
			rwcfg->mem_number_of_ranks :
			(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
	u32 r;

	debug("%s:%d\n", __func__, __LINE__);
	for (r = rank_bgn; r < rank_end; r++) {
		/* set rank */
		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);

		/* Load up a constant bursts */
		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
		writel(rwcfg->guaranteed_write_wait0,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
		writel(rwcfg->guaranteed_write_wait1,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
		writel(rwcfg->guaranteed_write_wait2,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
		writel(rwcfg->guaranteed_write_wait3,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
		writel(rwcfg->guaranteed_write, SDR_PHYGRP_RWMGRGRP_ADDRESS |
						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
	}

	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
}

/**
 * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
 * @rank_bgn:		Rank number
 * @group:		Read/Write group
 * @num_tries:		Number of retries of the test
 * @all_correct:	All bits must be correct in the mask
 * @bit_chk:		Resulting bit mask after the test
 * @all_groups:		Test all R/W groups
 * @all_ranks:		Test all ranks
 *
 * Try a read and see if it returns correct data back. Test has dummy reads
 * inserted into the mix used to align DQS enable. Test has more thorough
 * checks than the regular read test.
static int
rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
			       const u32 num_tries, const u32 all_correct,
			       u32 *bit_chk,
			       const u32 all_groups, const u32 all_ranks)
	const u32 rank_end = all_ranks ? rwcfg->mem_number_of_ranks :
		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
	const u32 quick_read_mode =
		((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
		 misccfg->enable_super_quick_calibration);
	u32 correct_mask_vg = param->read_correct_mask_vg;
	u32 tmp_bit_chk;
	u32 base_rw_mgr;
	u32 addr;
	*bit_chk = param->read_correct_mask;

	for (r = rank_bgn; r < rank_end; r++) {
		/* set rank */
		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);

		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
		writel(rwcfg->read_b2b_wait1,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
		writel(rwcfg->read_b2b_wait2,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
			/* need at least two (1+1) reads to capture failures */
		else if (all_groups)
			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
			writel(rwcfg->mem_if_read_dqs_width *
			       rwcfg->mem_virtual_groups_per_read_dqs - 1,
			       &sdr_rw_load_mgr_regs->load_cntr3);
			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
		       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
		for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1; vg >= 0;
			/* Reset the FIFOs to get pointers to known state. */
			writel(0, &phy_mgr_cmd->fifo_reset);
			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
			if (all_groups) {
				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
				       RW_MGR_RUN_ALL_GROUPS_OFFSET;
			} else {
				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
				       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
			}
			writel(rwcfg->read_b2b, addr +
			       ((group *
				 rwcfg->mem_virtual_groups_per_read_dqs +
				 vg) << 2));
			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
			tmp_bit_chk <<= rwcfg->mem_dq_per_read_dqs /
					rwcfg->mem_virtual_groups_per_read_dqs;
			tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
	writel(rwcfg->clear_dqs_enable, addr + (group << 2));
	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);

		ret = (*bit_chk == param->read_correct_mask);
		debug_cond(DLEVEL >= 2,
			   "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
			   __func__, __LINE__, group, all_groups, *bit_chk,
			   param->read_correct_mask, ret);
		debug_cond(DLEVEL >= 2,
			   "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
			   __func__, __LINE__, group, all_groups, *bit_chk,
			   0, ret);
/**
 * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
 * @grp:		Read/Write group
 * @num_tries:		Number of retries of the test
 * @all_correct:	All bits must be correct in the mask
 * @all_groups:		Test all R/W groups
 *
 * Perform a READ test across all memory ranks.
 */
static int
rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
					 const u32 all_correct,
					 const u32 all_groups)
	u32 bit_chk;
	return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
					      &bit_chk, all_groups, 1);
/**
 * rw_mgr_incr_vfifo() - Increase VFIFO value
 * @grp:	Read/Write group
 *
 * Increase VFIFO value.
 */
static void rw_mgr_incr_vfifo(const u32 grp)
	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
/**
 * rw_mgr_decr_vfifo() - Decrease VFIFO value
 * @grp:	Read/Write group
 *
 * Decrease VFIFO value.
 */
static void rw_mgr_decr_vfifo(const u32 grp)
	for (i = 0; i < misccfg->read_valid_fifo_size - 1; i++)
		rw_mgr_incr_vfifo(grp);
/**
 * find_vfifo_failing_read() - Push VFIFO to get a failing read
 * @grp:	Read/Write group
 *
 * Push VFIFO until a failing read happens.
 */
static int find_vfifo_failing_read(const u32 grp)
	for (v = 0; v < misccfg->read_valid_fifo_size; v++) {
		debug_cond(DLEVEL >= 2, "%s:%d: vfifo %u\n",
			   __func__, __LINE__, v);
		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
			fail_cnt++;

			if (fail_cnt == 2)
		/* Fiddle with FIFO. */
		rw_mgr_incr_vfifo(grp);
	/* No failing read found! Something must have gone wrong. */
	debug_cond(DLEVEL >= 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
/**
 * sdr_find_phase_delay() - Find DQS enable phase or delay
 * @working:	If 1, look for working phase/delay, if 0, look for non-working
 * @delay:	If 1, look for delay, if 0, look for phase
 * @grp:	Read/Write group
 * @work:	Working window position
 * @work_inc:	Working window increment
 * @pd:		DQS Phase/Delay Iterator
 *
 * Find working or non-working DQS enable phase setting.
 */
static int sdr_find_phase_delay(int working, int delay, const u32 grp,
				u32 *work, const u32 work_inc, u32 *pd)
{
	const u32 max = delay ? iocfg->dqs_en_delay_max :
				iocfg->dqs_en_phase_max;

	for (; *pd <= max; (*pd)++) {
		if (delay)
			scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
		else
			scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);

		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
		if (!working)
			ret = !ret;

		if (ret)
			return 0;

		if (work)
			*work += work_inc;
	}

	return -EINVAL;
}
/**
 * sdr_find_phase() - Find DQS enable phase
 * @working:	If 1, look for working phase, if 0, look for non-working phase
 * @grp:	Read/Write group
 * @work:	Working window position
 * @i:		Iterator
 * @p:		DQS Phase Iterator
 *
 * Find working or non-working DQS enable phase setting.
 */
static int sdr_find_phase(int working, const u32 grp, u32 *work,
			  u32 *i, u32 *p)
	const u32 end = misccfg->read_valid_fifo_size + (working ? 0 : 1);
	for (; *i < end; (*i)++) {
		if (working)
			*p = 0;

		ret = sdr_find_phase_delay(working, 0, grp, work,
					   iocfg->delay_per_opa_tap, p);
		if (*p > iocfg->dqs_en_phase_max) {
			/* Fiddle with FIFO. */
			rw_mgr_incr_vfifo(grp);
			if (!working)
				*p = 0;
/**
 * sdr_working_phase() - Find working DQS enable phase
 * @grp:	Read/Write group
 * @work_bgn:	Working window start position
 * @d:		dtaps output value
 * @p:		DQS Phase Iterator
 * @i:		Iterator
 *
 * Find working DQS enable phase setting.
 */
static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
			     u32 *p, u32 *i)
	const u32 dtaps_per_ptap = iocfg->delay_per_opa_tap /
				   iocfg->delay_per_dqs_en_dchain_tap;
	int ret;

	*work_bgn = 0;

	for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
		*i = 0;
		scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
		ret = sdr_find_phase(1, grp, work_bgn, i, p);
		if (!ret)
			return 0;
		*work_bgn += iocfg->delay_per_dqs_en_dchain_tap;
	/* Cannot find working solution */
	debug_cond(DLEVEL >= 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
		   __func__, __LINE__);
	return -EINVAL;
/**
 * sdr_backup_phase() - Find DQS enable backup phase
 * @grp:	Read/Write group
 * @work_bgn:	Working window start position
 * @p:		DQS Phase Iterator
 *
 * Find DQS enable backup phase setting.
 */
static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)

	/* Special case code for backing up a phase */
	if (*p == 0) {
		*p = iocfg->dqs_en_phase_max;
		rw_mgr_decr_vfifo(grp);
	tmp_delay = *work_bgn - iocfg->delay_per_opa_tap;
	scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
	for (d = 0; d <= iocfg->dqs_en_delay_max && tmp_delay < *work_bgn;
	     d++) {
		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
			*work_bgn = tmp_delay;
			break;
		}
		tmp_delay += iocfg->delay_per_dqs_en_dchain_tap;
	/* Restore VFIFO to old state before we decremented it (if needed). */
	if (*p > iocfg->dqs_en_phase_max) {
		rw_mgr_incr_vfifo(grp);
	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
/**
 * sdr_nonworking_phase() - Find non-working DQS enable phase
 * @grp:	Read/Write group
 * @work_end:	Working window end position
 * @p:		DQS Phase Iterator
 * @i:		Iterator
 *
 * Find non-working DQS enable phase setting.
 */
static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
	*work_end += iocfg->delay_per_opa_tap;
	if (*p > iocfg->dqs_en_phase_max) {
		/* Fiddle with FIFO. */
		rw_mgr_incr_vfifo(grp);
	ret = sdr_find_phase(0, grp, work_end, i, p);
	if (ret) {
		/* Cannot see edge of failing read. */
		debug_cond(DLEVEL >= 2, "%s:%d: end: failed\n",
			   __func__, __LINE__);
/**
 * sdr_find_window_center() - Find center of the working DQS window.
 * @grp:	Read/Write group
 * @work_bgn:	First working settings
 * @work_end:	Last working settings
 *
 * Find center of the working DQS enable window.
 */
static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
				  const u32 work_end)
	work_mid = (work_bgn + work_end) / 2;
	debug_cond(DLEVEL >= 2, "work_bgn=%d work_end=%d work_mid=%d\n",
		   work_bgn, work_end, work_mid);
	/* Get the middle delay to be less than a VFIFO delay */
	tmp_delay = (iocfg->dqs_en_phase_max + 1) * iocfg->delay_per_opa_tap;
	debug_cond(DLEVEL >= 2, "vfifo ptap delay %d\n", tmp_delay);
	work_mid %= tmp_delay;
	debug_cond(DLEVEL >= 2, "new work_mid %d\n", work_mid);
	tmp_delay = rounddown(work_mid, iocfg->delay_per_opa_tap);
	if (tmp_delay > iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap)
		tmp_delay = iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap;
	p = tmp_delay / iocfg->delay_per_opa_tap;
	debug_cond(DLEVEL >= 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
	d = DIV_ROUND_UP(work_mid - tmp_delay,
			 iocfg->delay_per_dqs_en_dchain_tap);
	if (d > iocfg->dqs_en_delay_max)
		d = iocfg->dqs_en_delay_max;
	tmp_delay += d * iocfg->delay_per_dqs_en_dchain_tap;
	debug_cond(DLEVEL >= 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
	scc_mgr_set_dqs_en_delay_all_ranks(grp, d);

	/*
	 * push vfifo until we can successfully calibrate. We can do this
	 * because the largest possible margin in 1 VFIFO cycle.
	 */
	for (i = 0; i < misccfg->read_valid_fifo_size; i++) {
		debug_cond(DLEVEL >= 2, "find_dqs_en_phase: center\n");
		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
			debug_cond(DLEVEL >= 2,
				   "%s:%d center: found: ptap=%u dtap=%u\n",
				   __func__, __LINE__, p, d);
		/* Fiddle with FIFO. */
		rw_mgr_incr_vfifo(grp);
	debug_cond(DLEVEL >= 2, "%s:%d center: failed.\n",
		   __func__, __LINE__);
	return -EINVAL;
/**
 * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
 * @grp:	Read/Write Group
 *
 * Find a good DQS enable to use.
 */
static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
	u32 d, p, i;
	u32 dtaps_per_ptap;
	u32 work_bgn, work_end;
	u32 found_passing_read, found_failing_read = 0, initial_failing_dtap;

	debug("%s:%d %u\n", __func__, __LINE__, grp);

	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);

	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);

	/* Step 0: Determine number of delay taps for each phase tap. */
	dtaps_per_ptap = iocfg->delay_per_opa_tap /
			 iocfg->delay_per_dqs_en_dchain_tap;
	/* Step 1: First push vfifo until we get a failing read. */
	find_vfifo_failing_read(grp);
	/* Step 2: Find first working phase, increment in ptaps. */
	ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
	if (ret)
		return ret;
	 * If d is 0 then the working window covers a phase tap and we can
	 * follow the old procedure. Otherwise, we've found the beginning
	 * and we need to increment the dtaps until we find the end.
	 */
	if (d == 0) {
		/*
		 * Step 3a: If we have room, back off by one and
		 *          increment in dtaps.
		 */
		sdr_backup_phase(grp, &work_bgn, &p);
		/*
		 * Step 4a: go forward from working phase to non working
		 * phase, increment in ptaps.
		 */
		ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
		if (ret)
			return ret;
		/* Step 5a: Back off one from last, increment in dtaps. */

		/* Special case code for backing up a phase */
		if (p == 0) {
			p = iocfg->dqs_en_phase_max;
			rw_mgr_decr_vfifo(grp);
		work_end -= iocfg->delay_per_opa_tap;
		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);

		d = 0;

		debug_cond(DLEVEL >= 2, "%s:%d p: ptap=%u\n",
	/* The dtap increment to find the failing edge is done here. */
	sdr_find_phase_delay(0, 1, grp, &work_end,
			     iocfg->delay_per_dqs_en_dchain_tap, &d);

	/* Go back to working dtap */
	if (d != 0)
		work_end -= iocfg->delay_per_dqs_en_dchain_tap;
	debug_cond(DLEVEL >= 2,
		   "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
		   __func__, __LINE__, p, d - 1, work_end);

	if (work_end < work_bgn) {
		/* nil range */
		debug_cond(DLEVEL >= 2, "%s:%d end-2: failed\n",
	debug_cond(DLEVEL >= 2, "%s:%d found range [%u,%u]\n",
		   __func__, __LINE__, work_bgn, work_end);

	/*
	 * We need to calculate the number of dtaps that equal a ptap.
	 * To do that we'll back up a ptap and re-find the edge of the
	 * window using dtaps
	debug_cond(DLEVEL >= 2, "%s:%d calculate dtaps_per_ptap for tracking\n",

	/* Special case code for backing up a phase */
	if (p == 0) {
		p = iocfg->dqs_en_phase_max;
		rw_mgr_decr_vfifo(grp);
		debug_cond(DLEVEL >= 2, "%s:%d backedup cycle/phase: p=%u\n",
		debug_cond(DLEVEL >= 2, "%s:%d backedup phase only: p=%u",
	}

	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);

	/*
	 * Increase dtap until we first see a passing read (in case the
	 * window is smaller than a ptap), and then a failing read to
	 * mark the edge of the window again.
	debug_cond(DLEVEL >= 2, "%s:%d find passing read\n",
	found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
	if (found_passing_read) {
		debug_cond(DLEVEL >= 2, "%s:%d find failing read\n",
		d++;
		found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
							   &d);
		debug_cond(DLEVEL >= 1,
			   "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
			   __func__, __LINE__);
	}

	/*
	 * The dynamically calculated dtaps_per_ptap is only valid if we
	 * found a passing/failing read. If we didn't, it means d hit the max
	 * (iocfg->dqs_en_delay_max). Otherwise, dtaps_per_ptap retains its
	 * statically calculated value.
	 */
	if (found_passing_read && found_failing_read)
		dtaps_per_ptap = d - initial_failing_dtap;

	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
	debug_cond(DLEVEL >= 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
		   __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
	/* Step 6: Find the centre of the window. */
	ret = sdr_find_window_center(grp, work_bgn, work_end);
/**
 * search_stop_check() - Check if the detected edge is valid
 * @write:		Perform read (Stage 2) or write (Stage 3) calibration
 * @d:			DQS delay
 * @rank_bgn:		Rank number
 * @write_group:	Write Group
 * @read_group:		Read Group
 * @bit_chk:		Resulting bit mask after the test
 * @sticky_bit_chk:	Resulting sticky bit mask after the test
 * @use_read_test:	Perform read test
 *
 * Test if the found edge is valid.
 */
static u32 search_stop_check(const int write, const int d, const int rank_bgn,
			     const u32 write_group, const u32 read_group,
			     u32 *bit_chk, u32 *sticky_bit_chk,
			     const u32 use_read_test)
{
	const u32 ratio = rwcfg->mem_if_read_dqs_width /
			  rwcfg->mem_if_write_dqs_width;
	const u32 correct_mask = write ? param->write_correct_mask :
					 param->read_correct_mask;
	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
				    rwcfg->mem_dq_per_read_dqs;
	u32 ret;
	/*
	 * Stop searching when the read test doesn't pass AND when
	 * we've seen a passing read on every bit.
	 */
	if (write) {			/* WRITE-ONLY */
		ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
							 0, PASS_ONE_BIT,
							 bit_chk, 0);
	} else if (use_read_test) {	/* READ-ONLY */
		ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
							NUM_READ_PB_TESTS,
							PASS_ONE_BIT, bit_chk,
							0, 0);
	} else {			/* READ-ONLY */
		rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
						PASS_ONE_BIT, bit_chk, 0);
		*bit_chk = *bit_chk >> (per_dqs *
			(read_group - (write_group * ratio)));
		ret = (*bit_chk == 0);
	}
	*sticky_bit_chk = *sticky_bit_chk | *bit_chk;
	ret = ret && (*sticky_bit_chk == correct_mask);
	debug_cond(DLEVEL >= 2,
		   "%s:%d center(left): dtap=%u => %u == %u && %u",
		   __func__, __LINE__, d,
		   *sticky_bit_chk, correct_mask, ret);
	return ret;
}

/**
 * search_left_edge() - Find left edge of DQ/DQS working phase
 * @write:		Perform read (Stage 2) or write (Stage 3) calibration
 * @rank_bgn:		Rank number
 * @write_group:	Write Group
 * @read_group:		Read Group
 * @test_bgn:		Rank number to begin the test
 * @sticky_bit_chk:	Resulting sticky bit mask after the test
 * @left_edge:		Left edge of the DQ/DQS phase
 * @right_edge:		Right edge of the DQ/DQS phase
 * @use_read_test:	Perform read test
 *
 * Find left edge of DQ/DQS working phase.
 */
static void search_left_edge(const int write, const int rank_bgn,
	const u32 write_group, const u32 read_group, const u32 test_bgn,
	int *left_edge, int *right_edge, const u32 use_read_test)
{
	const u32 delay_max = write ? iocfg->io_out1_delay_max :
				      iocfg->io_in_delay_max;
	const u32 dqs_max = write ? iocfg->io_out1_delay_max :
				    iocfg->dqs_in_delay_max;
	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
				    rwcfg->mem_dq_per_read_dqs;
	int i, d;

	for (d = 0; d <= dqs_max; d++) {
		if (write)
			scc_mgr_apply_group_dq_out1_delay(d);
		else
			scc_mgr_apply_group_dq_in_delay(test_bgn, d);

		writel(0, &sdr_scc_mgr->update);

		stop = search_stop_check(write, d, rank_bgn, write_group,
					 read_group, &bit_chk, sticky_bit_chk,
		if (stop == 1)
			break;

		/* stop != 1 */
		for (i = 0; i < per_dqs; i++) {
				/*
				 * Remember a passing test as
				 * the left_edge.
				 */
				left_edge[i] = d;
			} else {
				/*
				 * If a left edge has not been seen
				 * yet, then a future passing test
				 * will mark this edge as the right
				 * edge.
				 */
				if (left_edge[i] == delay_max + 1)
					right_edge[i] = -(d + 1);
			}
		}
	}

	/* Reset DQ delay chains to 0 */
	if (write)
		scc_mgr_apply_group_dq_out1_delay(0);
	else
		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);

	*sticky_bit_chk = 0;
	for (i = per_dqs - 1; i >= 0; i--) {
		debug_cond(DLEVEL >= 2,
			   "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
			   __func__, __LINE__, i, left_edge[i],
			   i, right_edge[i]);

		/*
		 * Check for cases where we haven't found the left edge,
		 * which makes our assignment of the the right edge invalid.
		 * Reset it to the illegal value.
		 */
		if ((left_edge[i] == delay_max + 1) &&
		    (right_edge[i] != delay_max + 1)) {
			right_edge[i] = delay_max + 1;
			debug_cond(DLEVEL >= 2,
				   "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
				   __func__, __LINE__, i, right_edge[i]);
		}

		/*
		 * Reset sticky bit
		 * READ: except for bits where we have seen both
		 *       the left and right edge.
		 * WRITE: except for bits where we have seen the
		 *        left edge.
		 */
		*sticky_bit_chk <<= 1;
		if (write) {
			if (left_edge[i] != delay_max + 1)
				*sticky_bit_chk |= 1;
		} else {
			if ((left_edge[i] != delay_max + 1) &&
			    (right_edge[i] != delay_max + 1))
				*sticky_bit_chk |= 1;
		}
	}
}

/**
 * search_right_edge() - Find right edge of DQ/DQS working phase
 * @write:		Perform read (Stage 2) or write (Stage 3) calibration
 * @rank_bgn:		Rank number
 * @write_group:	Write Group
 * @read_group:		Read Group
 * @start_dqs:		DQS start phase
 * @start_dqs_en:	DQS enable start phase
 * @sticky_bit_chk:	Resulting sticky bit mask after the test
 * @left_edge:		Left edge of the DQ/DQS phase
 * @right_edge:		Right edge of the DQ/DQS phase
 * @use_read_test:	Perform read test
 *
 * Find right edge of DQ/DQS working phase.
 */
static int search_right_edge(const int write, const int rank_bgn,
	const u32 write_group, const u32 read_group,
	const int start_dqs, const int start_dqs_en,
	int *left_edge, int *right_edge, const u32 use_read_test)
{
	const u32 delay_max = write ? iocfg->io_out1_delay_max :
				      iocfg->io_in_delay_max;
	const u32 dqs_max = write ? iocfg->io_out1_delay_max :
				    iocfg->dqs_in_delay_max;
	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
				    rwcfg->mem_dq_per_read_dqs;
	int i, d;

	for (d = 0; d <= dqs_max - start_dqs; d++) {
		if (write) {	/* WRITE-ONLY */
			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
								d + start_dqs);
		} else {	/* READ-ONLY */
			scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
			if (iocfg->shift_dqs_en_when_shift_dqs) {
				u32 delay = d + start_dqs_en;
				if (delay > iocfg->dqs_en_delay_max)
					delay = iocfg->dqs_en_delay_max;
				scc_mgr_set_dqs_en_delay(read_group, delay);
			}
			scc_mgr_load_dqs(read_group);
		}

		writel(0, &sdr_scc_mgr->update);

		stop = search_stop_check(write, d, rank_bgn, write_group,
					 read_group, &bit_chk, sticky_bit_chk,
		if (stop == 1) {
			if (write && (d == 0)) {	/* WRITE-ONLY */
				for (i = 0; i < rwcfg->mem_dq_per_write_dqs;
				     i++) {
					/*
					 * d = 0 failed, but it passed when
					 * testing the left edge, so it must be
					 * marginal, set it to -1
					 */
					if (right_edge[i] == delay_max + 1 &&
					    left_edge[i] != delay_max + 1)
						right_edge[i] = -1;
				}
			}
			break;
		}

		/* stop != 1 */
		for (i = 0; i < per_dqs; i++) {
				/*
				 * Remember a passing test as
				 * the right_edge.
				 */
Loading
Loading full blame...