Skip to content
Snippets Groups Projects
sequencer.c 120 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Copyright Altera Corporation (C) 2012-2015
     *
     * SPDX-License-Identifier:    BSD-3-Clause
     */
    
    #include <common.h>
    #include <asm/io.h>
    #include <asm/arch/sdram.h>
    #include "sequencer.h"
    #include "sequencer_auto.h"
    #include "sequencer_auto_ac_init.h"
    #include "sequencer_auto_inst_init.h"
    #include "sequencer_defines.h"
    
    static void scc_mgr_load_dqs_for_write_group(uint32_t write_group);
    
    static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
    	(struct socfpga_sdr_rw_load_manager *)(BASE_RW_MGR + 0x800);
    
    static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
    	(struct socfpga_sdr_rw_load_jump_manager *)(BASE_RW_MGR + 0xC00);
    
    static struct socfpga_sdr_reg_file *sdr_reg_file =
    	(struct socfpga_sdr_reg_file *)(BASE_REG_FILE);
    
    static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
    	(struct socfpga_sdr_scc_mgr *)(BASE_SCC_MGR + 0x0E00);
    
    static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
    	(struct socfpga_phy_mgr_cmd *)(BASE_PHY_MGR);
    
    static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
    	(struct socfpga_phy_mgr_cfg *)(BASE_PHY_MGR + 0x4000);
    
    static struct socfpga_data_mgr *data_mgr =
    	(struct socfpga_data_mgr *)(BASE_DATA_MGR);
    
    #define DELTA_D		1
    #define MGR_SELECT_MASK		0xf8000
    
    /*
     * In order to reduce ROM size, most of the selectable calibration steps are
     * decided at compile time based on the user's calibration mode selection,
     * as captured by the STATIC_CALIB_STEPS selection below.
     *
     * However, to support simulation-time selection of fast simulation mode, where
     * we skip everything except the bare minimum, we need a few of the steps to
     * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
     * check, which is based on the rtl-supplied value, or we dynamically compute
     * the value to use based on the dynamically-chosen calibration mode
     */
    
    #define DLEVEL 0
    #define STATIC_IN_RTL_SIM 0
    #define STATIC_SKIP_DELAY_LOOPS 0
    
    #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
    	STATIC_SKIP_DELAY_LOOPS)
    
    /* calibration steps requested by the rtl */
    uint16_t dyn_calib_steps;
    
    /*
     * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
     * instead of static, we use boolean logic to select between
     * non-skip and skip values
     *
     * The mask is set to include all bits when not-skipping, but is
     * zero when skipping
     */
    
    uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
    
    #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
    	((non_skip_value) & skip_delay_mask)
    
    struct gbl_type *gbl;
    struct param_type *param;
    uint32_t curr_shadow_reg;
    
    static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
    	uint32_t write_group, uint32_t use_dm,
    	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
    
    static u32 sdr_get_addr(u32 *base)
    {
    	u32 addr = (u32)base & MGR_SELECT_MASK;
    
    	switch (addr) {
    	case BASE_PHY_MGR:
    		addr = (((u32)base >> 8) & (1 << 6)) | ((u32)base & 0x3f) |
    			SDR_PHYGRP_PHYMGRGRP_ADDRESS;
    		break;
    	case BASE_RW_MGR:
    		addr = ((u32)base & 0x1fff) | SDR_PHYGRP_RWMGRGRP_ADDRESS;
    		break;
    	case BASE_DATA_MGR:
    		addr = ((u32)base & 0x7ff) | SDR_PHYGRP_DATAMGRGRP_ADDRESS;
    		break;
    	case BASE_SCC_MGR:
    		addr = ((u32)base & 0xfff) | SDR_PHYGRP_SCCGRP_ADDRESS;
    		break;
    	case BASE_REG_FILE:
    		addr = ((u32)base & 0x7ff) | SDR_PHYGRP_REGFILEGRP_ADDRESS;
    		break;
    	case BASE_MMR:
    		addr = ((u32)base & 0xfff) | SDR_CTRLGRP_ADDRESS;
    		break;
    	default:
    		return -1;
    	}
    
    	return addr;
    }
    
    static void set_failing_group_stage(uint32_t group, uint32_t stage,
    	uint32_t substage)
    {
    	/*
    	 * Only set the global stage if there was not been any other
    	 * failing group
    	 */
    	if (gbl->error_stage == CAL_STAGE_NIL)	{
    		gbl->error_substage = substage;
    		gbl->error_stage = stage;
    		gbl->error_group = group;
    	}
    }
    
    static void reg_file_set_group(uint32_t set_group)
    {
    	u32 addr = sdr_get_addr(&sdr_reg_file->cur_stage);
    
    	/* Read the current group and stage */
    	uint32_t cur_stage_group = readl(SOCFPGA_SDR_ADDRESS + addr);
    
    	/* Clear the group */
    	cur_stage_group &= 0x0000FFFF;
    
    	/* Set the group */
    	cur_stage_group |= (set_group << 16);
    
    	/* Write the data back */
    	writel(cur_stage_group, SOCFPGA_SDR_ADDRESS + addr);
    }
    
    static void reg_file_set_stage(uint32_t set_stage)
    {
    	u32 addr = sdr_get_addr(&sdr_reg_file->cur_stage);
    	/* Read the current group and stage */
    	uint32_t cur_stage_group = readl(SOCFPGA_SDR_ADDRESS + addr);
    
    	/* Clear the stage and substage */
    	cur_stage_group &= 0xFFFF0000;
    
    	/* Set the stage */
    	cur_stage_group |= (set_stage & 0x000000FF);
    
    	/* Write the data back */
    	writel(cur_stage_group, SOCFPGA_SDR_ADDRESS + addr);
    }
    
    static void reg_file_set_sub_stage(uint32_t set_sub_stage)
    {
    	u32 addr = sdr_get_addr(&sdr_reg_file->cur_stage);
    	/* Read the current group and stage */
    	uint32_t cur_stage_group = readl(SOCFPGA_SDR_ADDRESS + addr);
    
    	/* Clear the substage */
    	cur_stage_group &= 0xFFFF00FF;
    
    	/* Set the sub stage */
    	cur_stage_group |= ((set_sub_stage << 8) & 0x0000FF00);
    
    	/* Write the data back */
    	writel(cur_stage_group, SOCFPGA_SDR_ADDRESS + addr);
    }
    
    static void initialize(void)
    {
    	u32 addr = sdr_get_addr(&phy_mgr_cfg->mux_sel);
    
    	debug("%s:%d\n", __func__, __LINE__);
    	/* USER calibration has control over path to memory */
    	/*
    	 * In Hard PHY this is a 2-bit control:
    	 * 0: AFI Mux Select
    	 * 1: DDIO Mux Select
    	 */
    	writel(0x3, SOCFPGA_SDR_ADDRESS + addr);
    
    	/* USER memory clock is not stable we begin initialization  */
    	addr = sdr_get_addr(&phy_mgr_cfg->reset_mem_stbl);
    	writel(0, SOCFPGA_SDR_ADDRESS + addr);
    
    	/* USER calibration status all set to zero */
    	addr = sdr_get_addr(&phy_mgr_cfg->cal_status);
    	writel(0, SOCFPGA_SDR_ADDRESS + addr);
    
    	addr = sdr_get_addr(&phy_mgr_cfg->cal_debug_info);
    	writel(0, SOCFPGA_SDR_ADDRESS + addr);
    
    	if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
    		param->read_correct_mask_vg  = ((uint32_t)1 <<
    			(RW_MGR_MEM_DQ_PER_READ_DQS /
    			RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
    		param->write_correct_mask_vg = ((uint32_t)1 <<
    			(RW_MGR_MEM_DQ_PER_READ_DQS /
    			RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
    		param->read_correct_mask     = ((uint32_t)1 <<
    			RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
    		param->write_correct_mask    = ((uint32_t)1 <<
    			RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
    		param->dm_correct_mask       = ((uint32_t)1 <<
    			(RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH))
    			- 1;
    	}
    }
    
    static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
    {
    	uint32_t odt_mask_0 = 0;
    	uint32_t odt_mask_1 = 0;
    	uint32_t cs_and_odt_mask;
    	uint32_t addr;
    
    	if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
    		if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
    			/*
    			 * 1 Rank
    			 * Read: ODT = 0
    			 * Write: ODT = 1
    			 */
    			odt_mask_0 = 0x0;
    			odt_mask_1 = 0x1;
    		} else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
    			/* 2 Ranks */
    			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
    				/* - Dual-Slot , Single-Rank
    				 * (1 chip-select per DIMM)
    				 * OR
    				 * - RDIMM, 4 total CS (2 CS per DIMM)
    				 * means 2 DIMM
    				 * Since MEM_NUMBER_OF_RANKS is 2 they are
    				 * both single rank
    				 * with 2 CS each (special for RDIMM)
    				 * Read: Turn on ODT on the opposite rank
    				 * Write: Turn on ODT on all ranks
    				 */
    				odt_mask_0 = 0x3 & ~(1 << rank);
    				odt_mask_1 = 0x3;
    			} else {
    				/*
    				 * USER - Single-Slot , Dual-rank DIMMs
    				 * (2 chip-selects per DIMM)
    				 * USER Read: Turn on ODT off on all ranks
    				 * USER Write: Turn on ODT on active rank
    				 */
    				odt_mask_0 = 0x0;
    				odt_mask_1 = 0x3 & (1 << rank);
    			}
    
    			/* 4 Ranks
    			 * Read:
    			 * ----------+-----------------------+
    			 *           |                       |
    			 *           |         ODT           |
    			 * Read From +-----------------------+
    			 *   Rank    |  3  |  2  |  1  |  0  |
    			 * ----------+-----+-----+-----+-----+
    			 *     0     |  0  |  1  |  0  |  0  |
    			 *     1     |  1  |  0  |  0  |  0  |
    			 *     2     |  0  |  0  |  0  |  1  |
    			 *     3     |  0  |  0  |  1  |  0  |
    			 * ----------+-----+-----+-----+-----+
    			 *
    			 * Write:
    			 * ----------+-----------------------+
    			 *           |                       |
    			 *           |         ODT           |
    			 * Write To  +-----------------------+
    			 *   Rank    |  3  |  2  |  1  |  0  |
    			 * ----------+-----+-----+-----+-----+
    			 *     0     |  0  |  1  |  0  |  1  |
    			 *     1     |  1  |  0  |  1  |  0  |
    			 *     2     |  0  |  1  |  0  |  1  |
    			 *     3     |  1  |  0  |  1  |  0  |
    			 * ----------+-----+-----+-----+-----+
    			 */
    			switch (rank) {
    			case 0:
    				odt_mask_0 = 0x4;
    				odt_mask_1 = 0x5;
    				break;
    			case 1:
    				odt_mask_0 = 0x8;
    				odt_mask_1 = 0xA;
    				break;
    			case 2:
    				odt_mask_0 = 0x1;
    				odt_mask_1 = 0x5;
    				break;
    			case 3:
    				odt_mask_0 = 0x2;
    				odt_mask_1 = 0xA;
    				break;
    			}
    		}
    	} else {
    		odt_mask_0 = 0x0;
    		odt_mask_1 = 0x0;
    	}
    
    	cs_and_odt_mask =
    		(0xFF & ~(1 << rank)) |
    		((0xFF & odt_mask_0) << 8) |
    		((0xFF & odt_mask_1) << 16);
    	addr = sdr_get_addr((u32 *)RW_MGR_SET_CS_AND_ODT_MASK);
    	writel(cs_and_odt_mask, SOCFPGA_SDR_ADDRESS + addr);
    }
    
    static void scc_mgr_initialize(void)
    {
    	u32 addr = sdr_get_addr((u32 *)SCC_MGR_HHP_RFILE);
    
    	/*
    	 * Clear register file for HPS
    	 * 16 (2^4) is the size of the full register file in the scc mgr:
    	 *	RFILE_DEPTH = log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
    	 * MEM_IF_READ_DQS_WIDTH - 1) + 1;
    	 */
    	uint32_t i;
    	for (i = 0; i < 16; i++) {
    
    		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
    
    336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    			   __func__, __LINE__, i);
    		writel(0, SOCFPGA_SDR_ADDRESS + addr + (i << 2));
    	}
    }
    
    static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group,
    						uint32_t delay)
    {
    	u32 addr = sdr_get_addr((u32 *)SCC_MGR_DQS_IN_DELAY);
    
    	/* Load the setting in the SCC manager */
    	writel(delay, SOCFPGA_SDR_ADDRESS + addr + (read_group << 2));
    }
    
    static void scc_mgr_set_dqs_io_in_delay(uint32_t write_group,
    	uint32_t delay)
    {
    	u32 addr = sdr_get_addr((u32 *)SCC_MGR_IO_IN_DELAY);
    
    	writel(delay, SOCFPGA_SDR_ADDRESS + addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
    }
    
    static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
    {
    	u32 addr = sdr_get_addr((u32 *)SCC_MGR_DQS_EN_PHASE);
    
    	/* Load the setting in the SCC manager */
    	writel(phase, SOCFPGA_SDR_ADDRESS + addr + (read_group << 2));
    }
    
    static void scc_mgr_set_dqs_en_phase_all_ranks(uint32_t read_group,
    					       uint32_t phase)
    {
    	uint32_t r;
    	uint32_t update_scan_chains;
    	uint32_t addr;
    
    	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
    	     r += NUM_RANKS_PER_SHADOW_REG) {
    		/*
    		 * USER although the h/w doesn't support different phases per
    		 * shadow register, for simplicity our scc manager modeling
    		 * keeps different phase settings per shadow reg, and it's
    		 * important for us to keep them in sync to match h/w.
    		 * for efficiency, the scan chain update should occur only
    		 * once to sr0.
    		 */
    		update_scan_chains = (r == 0) ? 1 : 0;
    
    		scc_mgr_set_dqs_en_phase(read_group, phase);
    
    		if (update_scan_chains) {
    			addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
    			writel(read_group, SOCFPGA_SDR_ADDRESS + addr);
    
    			addr = sdr_get_addr(&sdr_scc_mgr->update);
    			writel(0, SOCFPGA_SDR_ADDRESS + addr);
    		}
    	}
    }
    
    static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group,
    						  uint32_t phase)
    {
    	u32 addr = sdr_get_addr((u32 *)SCC_MGR_DQDQS_OUT_PHASE);
    
    	/* Load the setting in the SCC manager */
    	writel(phase, SOCFPGA_SDR_ADDRESS + addr + (write_group << 2));
    }
    
    static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
    						     uint32_t phase)
    {
    	uint32_t r;
    	uint32_t update_scan_chains;
    	uint32_t addr;
    
    	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
    	     r += NUM_RANKS_PER_SHADOW_REG) {
    		/*
    		 * USER although the h/w doesn't support different phases per
    		 * shadow register, for simplicity our scc manager modeling
    		 * keeps different phase settings per shadow reg, and it's
    		 * important for us to keep them in sync to match h/w.
    		 * for efficiency, the scan chain update should occur only
    		 * once to sr0.
    		 */
    		update_scan_chains = (r == 0) ? 1 : 0;
    
    		scc_mgr_set_dqdqs_output_phase(write_group, phase);
    
    		if (update_scan_chains) {
    			addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
    			writel(write_group, SOCFPGA_SDR_ADDRESS + addr);
    
    			addr = sdr_get_addr(&sdr_scc_mgr->update);
    			writel(0, SOCFPGA_SDR_ADDRESS + addr);
    		}
    	}
    }
    
    static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
    {
    	uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_DQS_EN_DELAY);
    
    	/* Load the setting in the SCC manager */
    	writel(delay + IO_DQS_EN_DELAY_OFFSET, SOCFPGA_SDR_ADDRESS + addr +
    	       (read_group << 2));
    }
    
    static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
    					       uint32_t delay)
    {
    	uint32_t r;
    	uint32_t addr;
    
    	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
    		r += NUM_RANKS_PER_SHADOW_REG) {
    		scc_mgr_set_dqs_en_delay(read_group, delay);
    
    		addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
    		writel(read_group, SOCFPGA_SDR_ADDRESS + addr);
    		/*
    		 * In shadow register mode, the T11 settings are stored in
    		 * registers in the core, which are updated by the DQS_ENA
    		 * signals. Not issuing the SCC_MGR_UPD command allows us to
    		 * save lots of rank switching overhead, by calling
    		 * select_shadow_regs_for_update with update_scan_chains
    		 * set to 0.
    		 */
    		addr = sdr_get_addr(&sdr_scc_mgr->update);
    		writel(0, SOCFPGA_SDR_ADDRESS + addr);
    	}
    	/*
    	 * In shadow register mode, the T11 settings are stored in
    	 * registers in the core, which are updated by the DQS_ENA
    	 * signals. Not issuing the SCC_MGR_UPD command allows us to
    	 * save lots of rank switching overhead, by calling
    	 * select_shadow_regs_for_update with update_scan_chains
    	 * set to 0.
    	 */
    	addr = sdr_get_addr(&sdr_scc_mgr->update);
    	writel(0, SOCFPGA_SDR_ADDRESS + addr);
    }
    
    static void scc_mgr_set_oct_out1_delay(uint32_t write_group, uint32_t delay)
    {
    	uint32_t read_group;
    	uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_OCT_OUT1_DELAY);
    
    	/*
    	 * Load the setting in the SCC manager
    	 * Although OCT affects only write data, the OCT delay is controlled
    	 * by the DQS logic block which is instantiated once per read group.
    	 * For protocols where a write group consists of multiple read groups,
    	 * the setting must be set multiple times.
    	 */
    	for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
    	     RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
    	     read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
    	     RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
    		writel(delay, SOCFPGA_SDR_ADDRESS + addr + (read_group << 2));
    }
    
    static void scc_mgr_set_dq_out1_delay(uint32_t write_group,
    				      uint32_t dq_in_group, uint32_t delay)
    {
    	uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
    
    	/* Load the setting in the SCC manager */
    	writel(delay, SOCFPGA_SDR_ADDRESS + addr + (dq_in_group << 2));
    }
    
    static void scc_mgr_set_dq_in_delay(uint32_t write_group,
    	uint32_t dq_in_group, uint32_t delay)
    {
    	uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_IN_DELAY);
    
    	/* Load the setting in the SCC manager */
    	writel(delay, SOCFPGA_SDR_ADDRESS + addr + (dq_in_group << 2));
    }
    
    static void scc_mgr_set_hhp_extras(void)
    {
    	/*
    	 * Load the fixed setting in the SCC manager
    	 * bits: 0:0 = 1'b1   - dqs bypass
    	 * bits: 1:1 = 1'b1   - dq bypass
    	 * bits: 4:2 = 3'b001   - rfifo_mode
    	 * bits: 6:5 = 2'b01  - rfifo clock_select
    	 * bits: 7:7 = 1'b0  - separate gating from ungating setting
    	 * bits: 8:8 = 1'b0  - separate OE from Output delay setting
    	 */
    	uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0);
    	uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_HHP_GLOBALS);
    
    	writel(value, SOCFPGA_SDR_ADDRESS + addr + SCC_MGR_HHP_EXTRAS_OFFSET);
    }
    
    static void scc_mgr_set_dqs_out1_delay(uint32_t write_group,
    					      uint32_t delay)
    {
    	uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
    
    	/* Load the setting in the SCC manager */
    	writel(delay, SOCFPGA_SDR_ADDRESS + addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
    }
    
    static void scc_mgr_set_dm_out1_delay(uint32_t write_group,
    					     uint32_t dm, uint32_t delay)
    {
    	uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
    
    	/* Load the setting in the SCC manager */
    	writel(delay, SOCFPGA_SDR_ADDRESS + addr +
    		((RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm) << 2));
    }
    
    /*
     * USER Zero all DQS config
     * TODO: maybe rename to scc_mgr_zero_dqs_config (or something)
     */
    static void scc_mgr_zero_all(void)
    {
    	uint32_t i, r;
    	uint32_t addr;
    
    	/*
    	 * USER Zero all DQS config settings, across all groups and all
    	 * shadow registers
    	 */
    	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
    	     NUM_RANKS_PER_SHADOW_REG) {
    		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
    			/*
    			 * The phases actually don't exist on a per-rank basis,
    			 * but there's no harm updating them several times, so
    			 * let's keep the code simple.
    			 */
    			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
    			scc_mgr_set_dqs_en_phase(i, 0);
    			scc_mgr_set_dqs_en_delay(i, 0);
    		}
    
    		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
    			scc_mgr_set_dqdqs_output_phase(i, 0);
    			/* av/cv don't have out2 */
    			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
    		}
    	}
    
    	/* multicast to all DQS group enables */
    	addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
    	writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
    
    	addr = sdr_get_addr(&sdr_scc_mgr->update);
    	writel(0, SOCFPGA_SDR_ADDRESS + addr);
    }
    
    static void scc_set_bypass_mode(uint32_t write_group, uint32_t mode)
    {
    	uint32_t addr;
    	/* mode = 0 : Do NOT bypass - Half Rate Mode */
    	/* mode = 1 : Bypass - Full Rate Mode */
    
    	/* only need to set once for all groups, pins, dq, dqs, dm */
    	if (write_group == 0) {
    		debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", __func__,
    			   __LINE__);
    		scc_mgr_set_hhp_extras();
    		debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
    			  __func__, __LINE__);
    	}
    	/* multicast to all DQ enables */
    	addr = sdr_get_addr(&sdr_scc_mgr->dq_ena);
    	writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
    
    	addr = sdr_get_addr(&sdr_scc_mgr->dm_ena);
    	writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
    
    	/* update current DQS IO enable */
    	addr = sdr_get_addr(&sdr_scc_mgr->dqs_io_ena);
    	writel(0, SOCFPGA_SDR_ADDRESS + addr);
    
    	/* update the DQS logic */
    	addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
    	writel(write_group, SOCFPGA_SDR_ADDRESS + addr);
    
    	/* hit update */
    	addr = sdr_get_addr(&sdr_scc_mgr->update);
    	writel(0, SOCFPGA_SDR_ADDRESS + addr);
    }
    
    static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin,
    			       int32_t out_only)
    {
    	uint32_t i, r;
    	uint32_t addr;
    
    	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
    		NUM_RANKS_PER_SHADOW_REG) {
    		/* Zero all DQ config settings */
    		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
    			scc_mgr_set_dq_out1_delay(write_group, i, 0);
    			if (!out_only)
    				scc_mgr_set_dq_in_delay(write_group, i, 0);
    		}
    
    		/* multicast to all DQ enables */
    		addr = sdr_get_addr(&sdr_scc_mgr->dq_ena);
    		writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
    
    		/* Zero all DM config settings */
    		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
    			scc_mgr_set_dm_out1_delay(write_group, i, 0);
    		}
    
    		/* multicast to all DM enables */
    		addr = sdr_get_addr(&sdr_scc_mgr->dm_ena);
    		writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
    
    		/* zero all DQS io settings */
    		if (!out_only)
    			scc_mgr_set_dqs_io_in_delay(write_group, 0);
    		/* av/cv don't have out2 */
    		scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE);
    		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
    		scc_mgr_load_dqs_for_write_group(write_group);
    
    		/* multicast to all DQS IO enables (only 1) */
    		addr = sdr_get_addr(&sdr_scc_mgr->dqs_io_ena);
    		writel(0, SOCFPGA_SDR_ADDRESS + addr);
    
    		/* hit update to zero everything */
    		addr = sdr_get_addr(&sdr_scc_mgr->update);
    		writel(0, SOCFPGA_SDR_ADDRESS + addr);
    	}
    }
    
    /* load up dqs config settings */
    static void scc_mgr_load_dqs(uint32_t dqs)
    {
    	uint32_t addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
    
    	writel(dqs, SOCFPGA_SDR_ADDRESS + addr);
    }
    
    static void scc_mgr_load_dqs_for_write_group(uint32_t write_group)
    {
    	uint32_t read_group;
    	uint32_t addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
    	/*
    	 * Although OCT affects only write data, the OCT delay is controlled
    	 * by the DQS logic block which is instantiated once per read group.
    	 * For protocols where a write group consists of multiple read groups,
    	 * the setting must be scanned multiple times.
    	 */
    	for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
    	     RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
    	     read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
    	     RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
    		writel(read_group, SOCFPGA_SDR_ADDRESS + addr);
    }
    
    /* load up dqs io config settings */
    static void scc_mgr_load_dqs_io(void)
    {
    	uint32_t addr = sdr_get_addr(&sdr_scc_mgr->dqs_io_ena);
    
    	writel(0, SOCFPGA_SDR_ADDRESS + addr);
    }
    
    /* load up dq config settings */
    static void scc_mgr_load_dq(uint32_t dq_in_group)
    {
    	uint32_t addr = sdr_get_addr(&sdr_scc_mgr->dq_ena);
    
    	writel(dq_in_group, SOCFPGA_SDR_ADDRESS + addr);
    }
    
    /* load up dm config settings */
    static void scc_mgr_load_dm(uint32_t dm)
    {
    	uint32_t addr = sdr_get_addr(&sdr_scc_mgr->dm_ena);
    
    	writel(dm, SOCFPGA_SDR_ADDRESS + addr);
    }
    
    /*
     * apply and load a particular input delay for the DQ pins in a group
     * group_bgn is the index of the first dq pin (in the write group)
     */
    static void scc_mgr_apply_group_dq_in_delay(uint32_t write_group,
    					    uint32_t group_bgn, uint32_t delay)
    {
    	uint32_t i, p;
    
    	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
    		scc_mgr_set_dq_in_delay(write_group, p, delay);
    		scc_mgr_load_dq(p);
    	}
    }
    
    /* apply and load a particular output delay for the DQ pins in a group */
    static void scc_mgr_apply_group_dq_out1_delay(uint32_t write_group,
    					      uint32_t group_bgn,
    					      uint32_t delay1)
    {
    	uint32_t i, p;
    
    	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
    		scc_mgr_set_dq_out1_delay(write_group, i, delay1);
    		scc_mgr_load_dq(i);
    	}
    }
    
    /* apply and load a particular output delay for the DM pins in a group */
    static void scc_mgr_apply_group_dm_out1_delay(uint32_t write_group,
    					      uint32_t delay1)
    {
    	uint32_t i;
    
    	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
    		scc_mgr_set_dm_out1_delay(write_group, i, delay1);
    		scc_mgr_load_dm(i);
    	}
    }
    
    
    /* apply and load delay on both DQS and OCT out1 */
    static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
    						    uint32_t delay)
    {
    	scc_mgr_set_dqs_out1_delay(write_group, delay);
    	scc_mgr_load_dqs_io();
    
    	scc_mgr_set_oct_out1_delay(write_group, delay);
    	scc_mgr_load_dqs_for_write_group(write_group);
    }
    
    /* apply a delay to the entire output side: DQ, DM, DQS, OCT */
    static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group,
    						  uint32_t group_bgn,
    						  uint32_t delay)
    {
    	uint32_t i, p, new_delay;
    
    	/* dq shift */
    	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
    		new_delay = READ_SCC_DQ_OUT2_DELAY;
    		new_delay += delay;
    
    		if (new_delay > IO_IO_OUT2_DELAY_MAX) {
    			debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\
    				   %u > %lu => %lu", __func__, __LINE__,
    				   write_group, group_bgn, delay, i, p, new_delay,
    				   (long unsigned int)IO_IO_OUT2_DELAY_MAX,
    				   (long unsigned int)IO_IO_OUT2_DELAY_MAX);
    			new_delay = IO_IO_OUT2_DELAY_MAX;
    		}
    
    		scc_mgr_load_dq(i);
    	}
    
    	/* dm shift */
    	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
    		new_delay = READ_SCC_DM_IO_OUT2_DELAY;
    		new_delay += delay;
    
    		if (new_delay > IO_IO_OUT2_DELAY_MAX) {
    			debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\
    				   %u > %lu => %lu\n",  __func__, __LINE__,
    				   write_group, group_bgn, delay, i, new_delay,
    				   (long unsigned int)IO_IO_OUT2_DELAY_MAX,
    				   (long unsigned int)IO_IO_OUT2_DELAY_MAX);
    			new_delay = IO_IO_OUT2_DELAY_MAX;
    		}
    
    		scc_mgr_load_dm(i);
    	}
    
    	/* dqs shift */
    	new_delay = READ_SCC_DQS_IO_OUT2_DELAY;
    	new_delay += delay;
    
    	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
    		debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
    			   " adding %u to OUT1\n", __func__, __LINE__,
    			   write_group, group_bgn, delay, new_delay,
    			   IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
    			   new_delay - IO_IO_OUT2_DELAY_MAX);
    		scc_mgr_set_dqs_out1_delay(write_group, new_delay -
    					   IO_IO_OUT2_DELAY_MAX);
    		new_delay = IO_IO_OUT2_DELAY_MAX;
    	}
    
    	scc_mgr_load_dqs_io();
    
    	/* oct shift */
    	new_delay = READ_SCC_OCT_OUT2_DELAY;
    	new_delay += delay;
    
    	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
    		debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
    			   " adding %u to OUT1\n", __func__, __LINE__,
    			   write_group, group_bgn, delay, new_delay,
    			   IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
    			   new_delay - IO_IO_OUT2_DELAY_MAX);
    		scc_mgr_set_oct_out1_delay(write_group, new_delay -
    					   IO_IO_OUT2_DELAY_MAX);
    		new_delay = IO_IO_OUT2_DELAY_MAX;
    	}
    
    	scc_mgr_load_dqs_for_write_group(write_group);
    }
    
    /*
     * USER apply a delay to the entire output side (DQ, DM, DQS, OCT)
     * and to all ranks
     */
    static void scc_mgr_apply_group_all_out_delay_add_all_ranks(
    	uint32_t write_group, uint32_t group_bgn, uint32_t delay)
    {
    	uint32_t r;
    	uint32_t addr = sdr_get_addr(&sdr_scc_mgr->update);
    
    	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
    		r += NUM_RANKS_PER_SHADOW_REG) {
    		scc_mgr_apply_group_all_out_delay_add(write_group,
    						      group_bgn, delay);
    		writel(0, SOCFPGA_SDR_ADDRESS + addr);
    	}
    }
    
    /* optimization used to recover some slots in ddr3 inst_rom */
    /* could be applied to other protocols if we wanted to */
    static void set_jump_as_return(void)
    {
    	uint32_t addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
    
    	/*
    	 * to save space, we replace return with jump to special shared
    	 * RETURN instruction so we set the counter to large value so that
    	 * we always jump
    	 */
    	writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
    	addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
    	writel(RW_MGR_RETURN, SOCFPGA_SDR_ADDRESS + addr);
    }
    
    /*
     * should always use constants as argument to ensure all computations are
     * performed at compile time
     */
    static void delay_for_n_mem_clocks(const uint32_t clocks)
    {
    	uint32_t afi_clocks;
    	uint8_t inner = 0;
    	uint8_t outer = 0;
    	uint16_t c_loop = 0;
    	uint32_t addr;
    
    	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
    
    
    	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
    	/* scale (rounding up) to get afi clocks */
    
    	/*
    	 * Note, we don't bother accounting for being off a little bit
    	 * because of a few extra instructions in outer loops
    	 * Note, the loops have a test at the end, and do the test before
    	 * the decrement, and so always perform the loop
    	 * 1 time more than the counter value
    	 */
    	if (afi_clocks == 0) {
    		;
    	} else if (afi_clocks <= 0x100) {
    		inner = afi_clocks-1;
    		outer = 0;
    		c_loop = 0;
    	} else if (afi_clocks <= 0x10000) {
    		inner = 0xff;
    		outer = (afi_clocks-1) >> 8;
    		c_loop = 0;
    	} else {
    		inner = 0xff;
    		outer = 0xff;
    		c_loop = (afi_clocks-1) >> 16;
    	}
    
    	/*
    	 * rom instructions are structured as follows:
    	 *
    	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
    	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
    	 *                return
    	 *
    	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
    	 * TARGET_B is set to IDLE_LOOP2 as well
    	 *
    	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
    	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
    	 *
    	 * a little confusing, but it helps save precious space in the inst_rom
    	 * and sequencer rom and keeps the delays more accurate and reduces
    	 * overhead
    	 */
    	if (afi_clocks <= 0x100) {
    		addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
    		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), SOCFPGA_SDR_ADDRESS + addr);
    
    		addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
    		writel(RW_MGR_IDLE_LOOP1, SOCFPGA_SDR_ADDRESS + addr);
    
    		addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
    		writel(RW_MGR_IDLE_LOOP1, SOCFPGA_SDR_ADDRESS + addr);
    	} else {
    		addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
    		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), SOCFPGA_SDR_ADDRESS + addr);
    
    		addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
    		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), SOCFPGA_SDR_ADDRESS + addr);
    
    		addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
    		writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr);
    
    		addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
    		writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr);
    
    		/* hack to get around compiler not being smart enough */
    		if (afi_clocks <= 0x10000) {
    			/* only need to run once */
    			addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
    			writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr);
    		} else {
    			do {
    				addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
    				writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr);
    			} while (c_loop-- != 0);
    		}
    	}
    	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
    }
    
    static void rw_mgr_mem_initialize(void)
    {
    	uint32_t r;
    	uint32_t addr;
    
    	debug("%s:%d\n", __func__, __LINE__);
    
    	/* The reset / cke part of initialization is broadcasted to all ranks */
    	addr = sdr_get_addr((u32 *)RW_MGR_SET_CS_AND_ODT_MASK);
    	writel(RW_MGR_RANK_ALL, SOCFPGA_SDR_ADDRESS + addr);
    
    	/*
    	 * Here's how you load register for a loop
    	 * Counters are located @ 0x800
    	 * Jump address are located @ 0xC00
    	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
    	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
    	 * I know this ain't pretty, but Avalon bus throws away the 2 least
    	 * significant bits
    	 */