Newer
Older
*/
/*
* 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
* If a and b are the number of iteration in 2 nested loops
* it takes the following number of cycles to complete the operation
* number_of_cycles = ((2 + n) * a + 2) * b
* where n is the number of instruction in the inner loop
* One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
* b = FF
*/
rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
SEQ_TRESET_CNTR2_VAL,
RW_MGR_INIT_RESET_1_CKE_0);
/* Bring up clock enable. */
/* tXRP < 250 ck cycles */
delay_for_n_mem_clocks(250);
rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
0);
}
/*
* At the end of calibration we have to program the user settings in, and
* USER hand off the memory to the user.
*/
static void rw_mgr_mem_handoff(void)
{
rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
/*
* USER need to wait tMOD (12CK or 15ns) time before issuing
* other commands, but we will have plenty of NIOS cycles before
* actual handoff so its okay.
*/
/**
* rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
* @rank_bgn: Rank number
* @group: Read/Write Group
* @all_ranks: Test all ranks
*
* Performs a guaranteed read on the patterns we are going to use during a
* read test to ensure memory works.
static int
rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
const u32 all_ranks)
const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET;
const u32 addr_offset =
(group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
const u32 rank_end = all_ranks ?
RW_MGR_MEM_NUMBER_OF_RANKS :
(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
const u32 correct_mask_vg = param->read_correct_mask_vg;
u32 tmp_bit_chk, base_rw_mgr, bit_chk;
int vg, r;
int ret = 0;
bit_chk = param->read_correct_mask;
for (r = rank_bgn; r < rank_end; r++) {
/* Request to skip the rank */
if (param->skip_ranks[r])
continue;
/* Set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
/* Load up a constant bursts of read commands */
writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
writel(RW_MGR_GUARANTEED_READ,
&sdr_rw_load_jump_mgr_regs->load_jump_add0);
writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_GUARANTEED_READ_CONT,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
tmp_bit_chk = 0;
for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
vg >= 0; vg--) {
/* Reset the FIFOs to get pointers to known state. */
writel(0, &phy_mgr_cmd->fifo_reset);
writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RESET_READ_DATAPATH_OFFSET);
writel(RW_MGR_GUARANTEED_READ,
addr + addr_offset + (vg << 2));
base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
tmp_bit_chk <<= shift_ratio;
tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
bit_chk &= tmp_bit_chk;
writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
if (bit_chk != param->read_correct_mask)
ret = -EIO;
debug_cond(DLEVEL == 1,
"%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
__func__, __LINE__, group, bit_chk,
param->read_correct_mask, ret);
return ret;
/**
* rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
* @rank_bgn: Rank number
* @all_ranks: Test all ranks
*
* Load up the patterns we are going to use during a read test.
*/
static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
const int all_ranks)
const u32 rank_end = all_ranks ?
RW_MGR_MEM_NUMBER_OF_RANKS :
(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
u32 r;
debug("%s:%d\n", __func__, __LINE__);
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r])
/* request to skip the rank */
continue;
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
/* Load up a constant bursts */
writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
&sdr_rw_load_jump_mgr_regs->load_jump_add0);
writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
}
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
}
/*
* try a read and see if it returns correct data back. has dummy reads
* inserted into the mix used to align dqs enable. has more thorough checks
* than the regular read test.
*/
static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
uint32_t all_groups, uint32_t all_ranks)
{
uint32_t r, vg;
uint32_t correct_mask_vg;
uint32_t tmp_bit_chk;
uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
uint32_t addr;
uint32_t base_rw_mgr;
*bit_chk = param->read_correct_mask;
correct_mask_vg = param->read_correct_mask_vg;
uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r])
/* request to skip the rank */
continue;
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_READ_B2B_WAIT1,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
writel(RW_MGR_READ_B2B_WAIT2,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
if (quick_read_mode)
writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
/* need at least two (1+1) reads to capture failures */
else if (all_groups)
writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
writel(RW_MGR_READ_B2B,
&sdr_rw_load_jump_mgr_regs->load_jump_add0);
if (all_groups)
writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
&sdr_rw_load_mgr_regs->load_cntr3);
writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
writel(RW_MGR_READ_B2B,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
tmp_bit_chk = 0;
for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
/* reset the fifos to get pointers to known state */
writel(0, &phy_mgr_cmd->fifo_reset);
writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RESET_READ_DATAPATH_OFFSET);
tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
if (all_groups)
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
else
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
writel(RW_MGR_READ_B2B, addr +
((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
vg) << 2));
base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
if (vg == 0)
break;
}
*bit_chk &= tmp_bit_chk;
}
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
if (all_correct) {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
(%u == %u) => %lu", __func__, __LINE__, group,
all_groups, *bit_chk, param->read_correct_mask,
(long unsigned int)(*bit_chk ==
param->read_correct_mask));
return *bit_chk == param->read_correct_mask;
} else {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
(%u != %lu) => %lu\n", __func__, __LINE__,
group, all_groups, *bit_chk, (long unsigned int)0,
(long unsigned int)(*bit_chk != 0x00));
return *bit_chk != 0x00;
}
}
static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
uint32_t all_groups)
{
return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
bit_chk, all_groups, 1);
}
/**
* rw_mgr_incr_vfifo() - Increase VFIFO value
* @grp: Read/Write group
*
* Increase VFIFO value.
*/
static void rw_mgr_incr_vfifo(const u32 grp)
writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
/**
* rw_mgr_decr_vfifo() - Decrease VFIFO value
* @grp: Read/Write group
*
* Decrease VFIFO value.
*/
static void rw_mgr_decr_vfifo(const u32 grp)
for (i = 0; i < VFIFO_SIZE - 1; i++)
/**
* find_vfifo_failing_read() - Push VFIFO to get a failing read
* @grp: Read/Write group
*
* Push VFIFO until a failing read happens.
*/
static int find_vfifo_failing_read(const u32 grp)
u32 v, ret, bit_chk, fail_cnt = 0;
for (v = 0; v < VFIFO_SIZE; v++) {
debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
__func__, __LINE__, v);
ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
PASS_ONE_BIT, &bit_chk, 0);
if (!ret) {
fail_cnt++;
if (fail_cnt == 2)
/* No failing read found! Something must have gone wrong. */
debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
return 0;
/**
* sdr_find_phase() - Find DQS enable phase
* @working: If 1, look for working phase, if 0, look for non-working phase
* @grp: Read/Write group
* @work: Working window position
* @i: Iterator
* @p: DQS Phase Iterator
*
* Find working or non-working DQS enable phase setting.
*/
static int sdr_find_phase(int working, const u32 grp, u32 *work,
u32 ret, bit_chk;
const u32 end = VFIFO_SIZE + (working ? 0 : 1);
for (; *i < end; (*i)++) {
if (working)
*p = 0;
for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++) {
scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
PASS_ONE_BIT, &bit_chk, 0);
if (!working)
ret = !ret;
*work += IO_DELAY_PER_OPA_TAP;
}
if (*p > IO_DQS_EN_PHASE_MAX) {
/* Fiddle with FIFO. */
/**
* sdr_working_phase() - Find working DQS enable phase
* @grp: Read/Write group
* @work_bgn: Working window start position
* @d: dtaps output value
* @p: DQS Phase Iterator
* @i: Iterator
*
* Find working DQS enable phase setting.
*/
static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
int ret;
*work_bgn = 0;
for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
*i = 0;
scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
ret = sdr_find_phase(1, grp, work_bgn, i, p);
if (!ret)
return 0;
*work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
}
/* Cannot find working solution */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
__func__, __LINE__);
return -EINVAL;
/**
* sdr_backup_phase() - Find DQS enable backup phase
* @grp: Read/Write group
* @work_bgn: Working window start position
* @p: DQS Phase Iterator
*
* Find DQS enable backup phase setting.
*/
static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
u32 tmp_delay, bit_chk, d;
int ret;
/* Special case code for backing up a phase */
if (*p == 0) {
*p = IO_DQS_EN_PHASE_MAX;
} else {
(*p)--;
}
tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
PASS_ONE_BIT, &bit_chk, 0);
if (ret) {
*work_bgn = tmp_delay;
break;
}
tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
/* Restore VFIFO to old state before we decremented it (if needed). */
(*p)++;
if (*p > IO_DQS_EN_PHASE_MAX) {
*p = 0;
scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
/**
* sdr_nonworking_phase() - Find non-working DQS enable phase
* @grp: Read/Write group
* @work_end: Working window end position
* @p: DQS Phase Iterator
* @i: Iterator
*
* Find non-working DQS enable phase setting.
*/
static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
(*p)++;
*work_end += IO_DELAY_PER_OPA_TAP;
if (*p > IO_DQS_EN_PHASE_MAX) {
ret = sdr_find_phase(0, grp, work_end, i, p);
if (ret) {
/* Cannot see edge of failing read. */
debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
__func__, __LINE__);
/**
* sdr_find_window_center() - Find center of the working DQS window.
* @grp: Read/Write group
* @work_bgn: First working settings
* @work_end: Last working settings
*
* Find center of the working DQS enable window.
*/
static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
work_mid = (work_bgn + work_end) / 2;
debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
work_bgn, work_end, work_mid);
/* Get the middle delay to be less than a VFIFO delay */
tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
work_mid %= tmp_delay;
debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
p = tmp_delay / IO_DELAY_PER_OPA_TAP;
debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
if (d > IO_DQS_EN_DELAY_MAX)
d = IO_DQS_EN_DELAY_MAX;
tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
/*
* push vfifo until we can successfully calibrate. We can do this
* because the largest possible margin in 1 VFIFO cycle.
*/
for (i = 0; i < VFIFO_SIZE; i++) {
debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
debug_cond(DLEVEL == 2,
"%s:%d center: found: ptap=%u dtap=%u\n",
__func__, __LINE__, p, d);
/* Fiddle with FIFO. */
debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
__func__, __LINE__);
return -EINVAL;
}
/* find a good dqs enable to use */
static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
{
uint32_t bit_chk;
uint32_t dtaps_per_ptap;
uint32_t work_bgn, work_end;
uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
debug("%s:%d %u\n", __func__, __LINE__, grp);
reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
/* ************************************************************** */
/* * Step 0 : Determine number of delay taps for each phase tap * */
dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
/* ********************************************************* */
/* * Step 1 : First push vfifo until we get a failing read * */
/* ******************************************************** */
/* * step 2: find first working phase, increment in ptaps * */
work_bgn = 0;
if (sdr_working_phase(grp, &work_bgn, &d, &p, &i))
return 0;
work_end = work_bgn;
/*
* If d is 0 then the working window covers a phase tap and
* we can follow the old procedure otherwise, we've found the beginning,
* and we need to increment the dtaps until we find the end.
*/
if (d == 0) {
/* ********************************************************* */
/* * step 3a: if we have room, back off by one and
increment in dtaps * */
sdr_backup_phase(grp, &work_bgn, &p);
/* ********************************************************* */
/* * step 4a: go forward from working phase to non working
phase, increment in ptaps * */
if (sdr_nonworking_phase(grp, &work_end, &p, &i))
return 0;
/* ********************************************************* */
/* * step 5a: back off one from last, increment in dtaps * */
/* Special case code for backing up a phase */
if (p == 0) {
p = IO_DQS_EN_PHASE_MAX;
} else {
p = p - 1;
}
work_end -= IO_DELAY_PER_OPA_TAP;
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
/* * The actual increment of dtaps is done outside of
the if/else loop to share code */
d = 0;
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: p: \
ptap=%u\n", __func__, __LINE__,
p);
} else {
/* ******************************************************* */
/* * step 3-5b: Find the right edge of the window using
delay taps * */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
work_end = work_bgn;
}
/* The dtap increment to find the failing edge is done here */
for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
end-2: dtap=%u\n", __func__, __LINE__, d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
PASS_ONE_BIT,
&bit_chk, 0)) {
break;
}
}
/* Go back to working dtap */
if (d != 0)
work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: p/d: \
ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
if (work_end < work_bgn) {
/* nil range */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
failed\n", __func__, __LINE__);
return 0;
}
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
__func__, __LINE__, work_bgn, work_end);
/* *************************************************************** */
/*
* * We need to calculate the number of dtaps that equal a ptap
* * To do that we'll back up a ptap and re-find the edge of the
* * window using dtaps
*/
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
for tracking\n", __func__, __LINE__);
/* Special case code for backing up a phase */
if (p == 0) {
p = IO_DQS_EN_PHASE_MAX;
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
cycle/phase: p=%u\n", __func__, __LINE__,
p);
} else {
p = p - 1;
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
phase only: p=%u", __func__, __LINE__,
p);
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
}
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
/*
* Increase dtap until we first see a passing read (in case the
* window is smaller than a ptap),
* and then a failing read to mark the edge of the window again
*/
/* Find a passing read */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
__func__, __LINE__);
found_passing_read = 0;
found_failing_read = 0;
initial_failing_dtap = d;
for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
read d=%u\n", __func__, __LINE__, d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
PASS_ONE_BIT,
&bit_chk, 0)) {
found_passing_read = 1;
break;
}
}
if (found_passing_read) {
/* Find a failing read */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
read\n", __func__, __LINE__);
for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
testing read d=%u\n", __func__, __LINE__, d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (!rw_mgr_mem_calibrate_read_test_all_ranks
(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
found_failing_read = 1;
break;
}
}
} else {
debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
calculate dtaps", __func__, __LINE__);
debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
}
/*
* The dynamically calculated dtaps_per_ptap is only valid if we
* found a passing/failing read. If we didn't, it means d hit the max
* (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
* statically calculated value.
*/
if (found_passing_read && found_failing_read)
dtaps_per_ptap = d - initial_failing_dtap;
writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
- %u = %u", __func__, __LINE__, d,
initial_failing_dtap, dtaps_per_ptap);
/* ******************************************** */
/* * step 6: Find the centre of the window * */
if (sdr_find_window_centre(grp, work_bgn, work_end))
return 0; /* FIXME: Old code, return 0 means failure :-( */
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
return 1;
}
/* per-bit deskew DQ and center */
static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
uint32_t use_read_test, uint32_t update_fom)
{
uint32_t i, p, d, min_index;
/*
* Store these as signed since there are comparisons with
* signed numbers.
*/
uint32_t bit_chk;
uint32_t sticky_bit_chk;
int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
int32_t mid;
int32_t orig_mid_min, mid_min;
int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
final_dqs_en;
int32_t dq_margin, dqs_margin;
uint32_t stop;
uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
uint32_t addr;
debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
start_dqs = readl(addr + (read_group << 2));
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
start_dqs_en = readl(addr + ((read_group << 2)
- IO_DQS_EN_DELAY_OFFSET));
/* set the left and right edge of each bit to an illegal value */
/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
sticky_bit_chk = 0;
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
left_edge[i] = IO_IO_IN_DELAY_MAX + 1;
right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
}
/* Search for the left edge of the window for each bit */
for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
writel(0, &sdr_scc_mgr->update);
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
/*
* Stop searching when the read test doesn't pass AND when
* we've seen a passing read on every bit.
*/
if (use_read_test) {
stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
&bit_chk, 0, 0);
} else {
rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
0, PASS_ONE_BIT,
&bit_chk, 0);
bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
(read_group - (write_group *
RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
stop = (bit_chk == 0);
}
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->read_correct_mask);
debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
&& %u", __func__, __LINE__, d,
sticky_bit_chk,
param->read_correct_mask, stop);
if (stop == 1) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
if (bit_chk & 1) {
/* Remember a passing test as the
left_edge */
left_edge[i] = d;
} else {
/* If a left edge has not been seen yet,
then a future passing test will mark
this edge as the right edge */
if (left_edge[i] ==
IO_IO_IN_DELAY_MAX + 1) {
right_edge[i] = -(d + 1);
}
}
bit_chk = bit_chk >> 1;
}
}
}
/* Reset DQ delay chains to 0 */
scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
sticky_bit_chk = 0;
for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
%d right_edge[%u]: %d\n", __func__, __LINE__,
i, left_edge[i], i, right_edge[i]);
/*
* Check for cases where we haven't found the left edge,
* which makes our assignment of the the right edge invalid.
* Reset it to the illegal value.
*/
if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
right_edge[%u]: %d\n", __func__, __LINE__,
i, right_edge[i]);
}
/*
* Reset sticky bit (except for bits where we have seen
* both the left and right edge).
*/
sticky_bit_chk = sticky_bit_chk << 1;
if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
(right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
sticky_bit_chk = sticky_bit_chk | 1;
}
if (i == 0)
break;
}
/* Search for the right edge of the window for each bit */
for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
uint32_t delay = d + start_dqs_en;
if (delay > IO_DQS_EN_DELAY_MAX)
delay = IO_DQS_EN_DELAY_MAX;
scc_mgr_set_dqs_en_delay(read_group, delay);
}
scc_mgr_load_dqs(read_group);
writel(0, &sdr_scc_mgr->update);
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
/*
* Stop searching when the read test doesn't pass AND when
* we've seen a passing read on every bit.
*/
if (use_read_test) {
stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
&bit_chk, 0, 0);
} else {
rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
0, PASS_ONE_BIT,
&bit_chk, 0);
bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
(read_group - (write_group *
RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
stop = (bit_chk == 0);
}
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->read_correct_mask);
debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
%u && %u", __func__, __LINE__, d,
sticky_bit_chk, param->read_correct_mask, stop);
if (stop == 1) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
if (bit_chk & 1) {
/* Remember a passing test as
the right_edge */
right_edge[i] = d;
} else {
if (d != 0) {
/* If a right edge has not been
seen yet, then a future passing
test will mark this edge as the
left edge */
if (right_edge[i] ==
IO_IO_IN_DELAY_MAX + 1) {
left_edge[i] = -(d + 1);
}
} else {
/* d = 0 failed, but it passed
when testing the left edge,
so it must be marginal,
set it to -1 */
if (right_edge[i] ==
IO_IO_IN_DELAY_MAX + 1 &&
left_edge[i] !=
IO_IO_IN_DELAY_MAX
+ 1) {
right_edge[i] = -1;
}
/* If a right edge has not been
seen yet, then a future passing
test will mark this edge as the
left edge */
else if (right_edge[i] ==
IO_IO_IN_DELAY_MAX +
1) {
left_edge[i] = -(d + 1);
}
}
}
debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
d=%u]: ", __func__, __LINE__, d);
debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
(int)(bit_chk & 1), i, left_edge[i]);
debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
right_edge[i]);
bit_chk = bit_chk >> 1;
}
}
}
/* Check that all bits have a window */
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
%d right_edge[%u]: %d", __func__, __LINE__,
i, left_edge[i], i, right_edge[i]);
if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]