Skip to content
Snippets Groups Projects
sequencer.c 108 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Copyright Altera Corporation (C) 2012-2015
     *
     * SPDX-License-Identifier:    BSD-3-Clause
     */
    
    #include <common.h>
    #include <asm/io.h>
    #include <asm/arch/sdram.h>
    #include "sequencer.h"
    #include "sequencer_auto.h"
    #include "sequencer_auto_ac_init.h"
    #include "sequencer_auto_inst_init.h"
    #include "sequencer_defines.h"
    
    static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
    
    	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
    
    
    static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
    
    	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
    
    
    static struct socfpga_sdr_reg_file *sdr_reg_file =
    
    	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
    
    
    static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
    
    	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
    
    
    static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
    
    	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
    
    
    static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
    
    	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
    
    
    static struct socfpga_data_mgr *data_mgr =
    
    	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
    
    static struct socfpga_sdr_ctrl *sdr_ctrl =
    	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
    
    
    #define DELTA_D		1
    
    /*
     * In order to reduce ROM size, most of the selectable calibration steps are
     * decided at compile time based on the user's calibration mode selection,
     * as captured by the STATIC_CALIB_STEPS selection below.
     *
     * However, to support simulation-time selection of fast simulation mode, where
     * we skip everything except the bare minimum, we need a few of the steps to
     * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
     * check, which is based on the rtl-supplied value, or we dynamically compute
     * the value to use based on the dynamically-chosen calibration mode
     */
    
    #define DLEVEL 0
    #define STATIC_IN_RTL_SIM 0
    #define STATIC_SKIP_DELAY_LOOPS 0
    
    #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
    	STATIC_SKIP_DELAY_LOOPS)
    
    /* calibration steps requested by the rtl */
    uint16_t dyn_calib_steps;
    
    /*
     * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
     * instead of static, we use boolean logic to select between
     * non-skip and skip values
     *
     * The mask is set to include all bits when not-skipping, but is
     * zero when skipping
     */
    
    uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
    
    #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
    	((non_skip_value) & skip_delay_mask)
    
    struct gbl_type *gbl;
    struct param_type *param;
    uint32_t curr_shadow_reg;
    
    static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
    	uint32_t write_group, uint32_t use_dm,
    	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
    
    static void set_failing_group_stage(uint32_t group, uint32_t stage,
    	uint32_t substage)
    {
    	/*
    	 * Only set the global stage if there was not been any other
    	 * failing group
    	 */
    	if (gbl->error_stage == CAL_STAGE_NIL)	{
    		gbl->error_substage = substage;
    		gbl->error_stage = stage;
    		gbl->error_group = group;
    	}
    }
    
    
    static void reg_file_set_group(u16 set_group)
    
    	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
    
    static void reg_file_set_stage(u8 set_stage)
    
    	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
    
    static void reg_file_set_sub_stage(u8 set_sub_stage)
    
    	set_sub_stage &= 0xff;
    	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
    
    }
    
    static void initialize(void)
    {
    	debug("%s:%d\n", __func__, __LINE__);
    	/* USER calibration has control over path to memory */
    	/*
    	 * In Hard PHY this is a 2-bit control:
    	 * 0: AFI Mux Select
    	 * 1: DDIO Mux Select
    	 */
    
    	writel(0x3, &phy_mgr_cfg->mux_sel);
    
    
    	/* USER memory clock is not stable we begin initialization  */
    
    	writel(0, &phy_mgr_cfg->reset_mem_stbl);
    
    
    	/* USER calibration status all set to zero */
    
    	writel(0, &phy_mgr_cfg->cal_status);
    
    	writel(0, &phy_mgr_cfg->cal_debug_info);
    
    
    	if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
    		param->read_correct_mask_vg  = ((uint32_t)1 <<
    			(RW_MGR_MEM_DQ_PER_READ_DQS /
    			RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
    		param->write_correct_mask_vg = ((uint32_t)1 <<
    			(RW_MGR_MEM_DQ_PER_READ_DQS /
    			RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
    		param->read_correct_mask     = ((uint32_t)1 <<
    			RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
    		param->write_correct_mask    = ((uint32_t)1 <<
    			RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
    		param->dm_correct_mask       = ((uint32_t)1 <<
    			(RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH))
    			- 1;
    	}
    }
    
    static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
    {
    	uint32_t odt_mask_0 = 0;
    	uint32_t odt_mask_1 = 0;
    	uint32_t cs_and_odt_mask;
    
    	if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
    		if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
    			/*
    			 * 1 Rank
    			 * Read: ODT = 0
    			 * Write: ODT = 1
    			 */
    			odt_mask_0 = 0x0;
    			odt_mask_1 = 0x1;
    		} else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
    			/* 2 Ranks */
    			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
    				/* - Dual-Slot , Single-Rank
    				 * (1 chip-select per DIMM)
    				 * OR
    				 * - RDIMM, 4 total CS (2 CS per DIMM)
    				 * means 2 DIMM
    				 * Since MEM_NUMBER_OF_RANKS is 2 they are
    				 * both single rank
    				 * with 2 CS each (special for RDIMM)
    				 * Read: Turn on ODT on the opposite rank
    				 * Write: Turn on ODT on all ranks
    				 */
    				odt_mask_0 = 0x3 & ~(1 << rank);
    				odt_mask_1 = 0x3;
    			} else {
    				/*
    				 * USER - Single-Slot , Dual-rank DIMMs
    				 * (2 chip-selects per DIMM)
    				 * USER Read: Turn on ODT off on all ranks
    				 * USER Write: Turn on ODT on active rank
    				 */
    				odt_mask_0 = 0x0;
    				odt_mask_1 = 0x3 & (1 << rank);
    			}
    
    			/* 4 Ranks
    			 * Read:
    			 * ----------+-----------------------+
    			 *           |                       |
    			 *           |         ODT           |
    			 * Read From +-----------------------+
    			 *   Rank    |  3  |  2  |  1  |  0  |
    			 * ----------+-----+-----+-----+-----+
    			 *     0     |  0  |  1  |  0  |  0  |
    			 *     1     |  1  |  0  |  0  |  0  |
    			 *     2     |  0  |  0  |  0  |  1  |
    			 *     3     |  0  |  0  |  1  |  0  |
    			 * ----------+-----+-----+-----+-----+
    			 *
    			 * Write:
    			 * ----------+-----------------------+
    			 *           |                       |
    			 *           |         ODT           |
    			 * Write To  +-----------------------+
    			 *   Rank    |  3  |  2  |  1  |  0  |
    			 * ----------+-----+-----+-----+-----+
    			 *     0     |  0  |  1  |  0  |  1  |
    			 *     1     |  1  |  0  |  1  |  0  |
    			 *     2     |  0  |  1  |  0  |  1  |
    			 *     3     |  1  |  0  |  1  |  0  |
    			 * ----------+-----+-----+-----+-----+
    			 */
    			switch (rank) {
    			case 0:
    				odt_mask_0 = 0x4;
    				odt_mask_1 = 0x5;
    				break;
    			case 1:
    				odt_mask_0 = 0x8;
    				odt_mask_1 = 0xA;
    				break;
    			case 2:
    				odt_mask_0 = 0x1;
    				odt_mask_1 = 0x5;
    				break;
    			case 3:
    				odt_mask_0 = 0x2;
    				odt_mask_1 = 0xA;
    				break;
    			}
    		}
    	} else {
    		odt_mask_0 = 0x0;
    		odt_mask_1 = 0x0;
    	}
    
    	cs_and_odt_mask =
    		(0xFF & ~(1 << rank)) |
    		((0xFF & odt_mask_0) << 8) |
    		((0xFF & odt_mask_1) << 16);
    
    	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
    				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
    
    /**
     * scc_mgr_set() - Set SCC Manager register
     * @off:	Base offset in SCC Manager space
     * @grp:	Read/Write group
     * @val:	Value to be set
     *
     * This function sets the SCC Manager (Scan Chain Control Manager) register.
     */
    static void scc_mgr_set(u32 off, u32 grp, u32 val)
    
    	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
    }
    
    /**
     * scc_mgr_initialize() - Initialize SCC Manager registers
     *
     * Initialize SCC Manager registers.
     */
    
    static void scc_mgr_initialize(void)
    {
    
    	 * Clear register file for HPS. 16 (2^4) is the size of the
    	 * full register file in the scc mgr:
    	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
    	 *                             MEM_IF_READ_DQS_WIDTH - 1);
    
    	for (i = 0; i < 16; i++) {
    
    		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
    
    			   __func__, __LINE__, i);
    
    		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
    
    static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
    {
    
    	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
    
    }
    
    static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
    
    	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
    
    static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
    {
    
    	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
    
    }
    
    static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
    {
    
    	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
    
    static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
    
    	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
    		    delay);
    
    static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
    
    	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
    
    }
    
    static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
    {
    
    	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
    
    static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
    
    	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
    		    delay);
    
    }
    
    static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
    {
    
    	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
    		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
    		    delay);
    
    }
    
    /* load up dqs config settings */
    static void scc_mgr_load_dqs(uint32_t dqs)
    {
    	writel(dqs, &sdr_scc_mgr->dqs_ena);
    }
    
    /* load up dqs io config settings */
    static void scc_mgr_load_dqs_io(void)
    {
    	writel(0, &sdr_scc_mgr->dqs_io_ena);
    }
    
    /* load up dq config settings */
    static void scc_mgr_load_dq(uint32_t dq_in_group)
    {
    	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
    }
    
    /* load up dm config settings */
    static void scc_mgr_load_dm(uint32_t dm)
    {
    	writel(dm, &sdr_scc_mgr->dm_ena);
    
    /**
     * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
     * @off:	Base offset in SCC Manager space
     * @grp:	Read/Write group
     * @val:	Value to be set
     * @update:	If non-zero, trigger SCC Manager update for all ranks
     *
     * This function sets the SCC Manager (Scan Chain Control Manager) register
     * and optionally triggers the SCC update for all ranks.
     */
    static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
    				  const int update)
    
    
    	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
    	     r += NUM_RANKS_PER_SHADOW_REG) {
    
    		scc_mgr_set(off, grp, val);
    
    		if (update || (r == 0)) {
    			writel(grp, &sdr_scc_mgr->dqs_ena);
    
    			writel(0, &sdr_scc_mgr->update);
    
    static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
    {
    	/*
    	 * USER although the h/w doesn't support different phases per
    	 * shadow register, for simplicity our scc manager modeling
    	 * keeps different phase settings per shadow reg, and it's
    	 * important for us to keep them in sync to match h/w.
    	 * for efficiency, the scan chain update should occur only
    	 * once to sr0.
    	 */
    	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
    			      read_group, phase, 0);
    }
    
    
    static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
    						     uint32_t phase)
    {
    
    	/*
    	 * USER although the h/w doesn't support different phases per
    	 * shadow register, for simplicity our scc manager modeling
    	 * keeps different phase settings per shadow reg, and it's
    	 * important for us to keep them in sync to match h/w.
    	 * for efficiency, the scan chain update should occur only
    	 * once to sr0.
    	 */
    	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
    			      write_group, phase, 0);
    
    }
    
    static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
    					       uint32_t delay)
    {
    	/*
    	 * In shadow register mode, the T11 settings are stored in
    	 * registers in the core, which are updated by the DQS_ENA
    	 * signals. Not issuing the SCC_MGR_UPD command allows us to
    	 * save lots of rank switching overhead, by calling
    	 * select_shadow_regs_for_update with update_scan_chains
    	 * set to 0.
    	 */
    
    	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
    			      read_group, delay, 1);
    
    	writel(0, &sdr_scc_mgr->update);
    
    /**
     * scc_mgr_set_oct_out1_delay() - Set OCT output delay
     * @write_group:	Write group
     * @delay:		Delay value
     *
     * This function sets the OCT output delay in SCC manager.
     */
    static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
    
    	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
    			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
    	const int base = write_group * ratio;
    	int i;
    
    	/*
    	 * Load the setting in the SCC manager
    	 * Although OCT affects only write data, the OCT delay is controlled
    	 * by the DQS logic block which is instantiated once per read group.
    	 * For protocols where a write group consists of multiple read groups,
    	 * the setting must be set multiple times.
    	 */
    
    	for (i = 0; i < ratio; i++)
    		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
    
    /**
     * scc_mgr_set_hhp_extras() - Set HHP extras.
     *
     * Load the fixed setting in the SCC manager HHP extras.
     */
    
    static void scc_mgr_set_hhp_extras(void)
    {
    	/*
    	 * Load the fixed setting in the SCC manager
    
    	 * bits: 0:0 = 1'b1	- DQS bypass
    	 * bits: 1:1 = 1'b1	- DQ bypass
    	 * bits: 4:2 = 3'b001	- rfifo_mode
    	 * bits: 6:5 = 2'b01	- rfifo clock_select
    	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
    	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
    
    	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
    			  (1 << 2) | (1 << 1) | (1 << 0);
    	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
    			 SCC_MGR_HHP_GLOBALS_OFFSET |
    			 SCC_MGR_HHP_EXTRAS_OFFSET;
    
    	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
    		   __func__, __LINE__);
    	writel(value, addr);
    	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
    		   __func__, __LINE__);
    
    /**
     * scc_mgr_zero_all() - Zero all DQS config
     *
     * Zero all DQS config.
    
     */
    static void scc_mgr_zero_all(void)
    {
    
    
    	/*
    	 * USER Zero all DQS config settings, across all groups and all
    	 * shadow registers
    	 */
    
    	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
    	     r += NUM_RANKS_PER_SHADOW_REG) {
    
    		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
    			/*
    			 * The phases actually don't exist on a per-rank basis,
    			 * but there's no harm updating them several times, so
    			 * let's keep the code simple.
    			 */
    			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
    			scc_mgr_set_dqs_en_phase(i, 0);
    			scc_mgr_set_dqs_en_delay(i, 0);
    		}
    
    		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
    			scc_mgr_set_dqdqs_output_phase(i, 0);
    
    			/* Arria V/Cyclone V don't have out2. */
    
    			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
    		}
    	}
    
    
    	/* Multicast to all DQS group enables. */
    
    	writel(0xff, &sdr_scc_mgr->dqs_ena);
    	writel(0, &sdr_scc_mgr->update);
    
    /**
     * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
     * @write_group:	Write group
     *
     * Set bypass mode and trigger SCC update.
     */
    static void scc_set_bypass_mode(const u32 write_group)
    
    	/* Multicast to all DQ enables. */
    
    	writel(0xff, &sdr_scc_mgr->dq_ena);
    	writel(0xff, &sdr_scc_mgr->dm_ena);
    
    	/* Update current DQS IO enable. */
    
    	writel(0, &sdr_scc_mgr->dqs_io_ena);
    
    	/* Update the DQS logic. */
    
    	writel(write_group, &sdr_scc_mgr->dqs_ena);
    
    	/* Hit update. */
    
    	writel(0, &sdr_scc_mgr->update);
    
    /**
     * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
     * @write_group:	Write group
     *
     * Load DQS settings for Write Group, do not trigger SCC update.
     */
    static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
    
    	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
    			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
    	const int base = write_group * ratio;
    	int i;
    
    	 * Load the setting in the SCC manager
    
    	 * Although OCT affects only write data, the OCT delay is controlled
    	 * by the DQS logic block which is instantiated once per read group.
    	 * For protocols where a write group consists of multiple read groups,
    
    	 * the setting must be set multiple times.
    
    	for (i = 0; i < ratio; i++)
    		writel(base + i, &sdr_scc_mgr->dqs_ena);
    
    /**
     * scc_mgr_zero_group() - Zero all configs for a group
     *
     * Zero DQ, DM, DQS and OCT configs for a group.
     */
    static void scc_mgr_zero_group(const u32 write_group, const int out_only)
    
    	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
    	     r += NUM_RANKS_PER_SHADOW_REG) {
    		/* Zero all DQ config settings. */
    
    		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
    
    			scc_mgr_set_dq_out1_delay(i, 0);
    
    				scc_mgr_set_dq_in_delay(i, 0);
    
    		/* Multicast to all DQ enables. */
    
    		writel(0xff, &sdr_scc_mgr->dq_ena);
    
    		/* Zero all DM config settings. */
    		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
    
    			scc_mgr_set_dm_out1_delay(i, 0);
    
    		/* Multicast to all DM enables. */
    
    		writel(0xff, &sdr_scc_mgr->dm_ena);
    
    		/* Zero all DQS IO settings. */
    
    			scc_mgr_set_dqs_io_in_delay(0);
    
    
    		/* Arria V/Cyclone V don't have out2. */
    
    		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
    
    		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
    		scc_mgr_load_dqs_for_write_group(write_group);
    
    
    		/* Multicast to all DQS IO enables (only 1 in total). */
    
    		writel(0, &sdr_scc_mgr->dqs_io_ena);
    
    		/* Hit update to zero everything. */
    
    		writel(0, &sdr_scc_mgr->update);
    
    	}
    }
    
    /*
     * apply and load a particular input delay for the DQ pins in a group
     * group_bgn is the index of the first dq pin (in the write group)
     */
    
    static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
    
    {
    	uint32_t i, p;
    
    	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
    
    		scc_mgr_set_dq_in_delay(p, delay);
    
    /**
     * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
     * @delay:		Delay value
     *
     * Apply and load a particular output delay for the DQ pins in a group.
     */
    static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
    
    	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
    		scc_mgr_set_dq_out1_delay(i, delay);
    
    		scc_mgr_load_dq(i);
    	}
    }
    
    /* apply and load a particular output delay for the DM pins in a group */
    
    static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
    
    {
    	uint32_t i;
    
    	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
    
    		scc_mgr_set_dm_out1_delay(i, delay1);
    
    		scc_mgr_load_dm(i);
    	}
    }
    
    
    /* apply and load delay on both DQS and OCT out1 */
    static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
    						    uint32_t delay)
    {
    
    	scc_mgr_set_dqs_out1_delay(delay);
    
    	scc_mgr_load_dqs_io();
    
    	scc_mgr_set_oct_out1_delay(write_group, delay);
    	scc_mgr_load_dqs_for_write_group(write_group);
    }
    
    
    /**
     * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
     * @write_group:	Write group
     * @delay:		Delay value
     *
     * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
     */
    
    static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
    						  const u32 delay)
    {
    	u32 i, new_delay;
    
    	/* DQ shift */
    	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
    
    	/* DM shift */
    	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
    
    	/* DQS shift */
    	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
    
    	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
    
    		debug_cond(DLEVEL == 1,
    			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
    			   __func__, __LINE__, write_group, delay, new_delay,
    			   IO_IO_OUT2_DELAY_MAX,
    
    			   new_delay - IO_IO_OUT2_DELAY_MAX);
    
    		new_delay -= IO_IO_OUT2_DELAY_MAX;
    		scc_mgr_set_dqs_out1_delay(new_delay);
    
    	/* OCT shift */
    	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
    
    	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
    
    		debug_cond(DLEVEL == 1,
    			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
    			   __func__, __LINE__, write_group, delay,
    			   new_delay, IO_IO_OUT2_DELAY_MAX,
    
    			   new_delay - IO_IO_OUT2_DELAY_MAX);
    
    		new_delay -= IO_IO_OUT2_DELAY_MAX;
    		scc_mgr_set_oct_out1_delay(write_group, new_delay);
    
    	}
    
    	scc_mgr_load_dqs_for_write_group(write_group);
    }
    
    
    /**
     * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
     * @write_group:	Write group
     * @delay:		Delay value
     *
     * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
    
    static void
    scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
    						const u32 delay)
    
    
    	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
    
    		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
    
    		writel(0, &sdr_scc_mgr->update);
    
    	}
    }
    
    /* optimization used to recover some slots in ddr3 inst_rom */
    /* could be applied to other protocols if we wanted to */
    static void set_jump_as_return(void)
    {
    	/*
    	 * to save space, we replace return with jump to special shared
    	 * RETURN instruction so we set the counter to large value so that
    	 * we always jump
    	 */
    
    	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
    	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
    
    }
    
    /*
     * should always use constants as argument to ensure all computations are
     * performed at compile time
     */
    static void delay_for_n_mem_clocks(const uint32_t clocks)
    {
    	uint32_t afi_clocks;
    	uint8_t inner = 0;
    	uint8_t outer = 0;
    	uint16_t c_loop = 0;
    
    	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
    
    
    	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
    	/* scale (rounding up) to get afi clocks */
    
    	/*
    	 * Note, we don't bother accounting for being off a little bit
    	 * because of a few extra instructions in outer loops
    	 * Note, the loops have a test at the end, and do the test before
    	 * the decrement, and so always perform the loop
    	 * 1 time more than the counter value
    	 */
    	if (afi_clocks == 0) {
    		;
    	} else if (afi_clocks <= 0x100) {
    		inner = afi_clocks-1;
    		outer = 0;
    		c_loop = 0;
    	} else if (afi_clocks <= 0x10000) {
    		inner = 0xff;
    		outer = (afi_clocks-1) >> 8;
    		c_loop = 0;
    	} else {
    		inner = 0xff;
    		outer = 0xff;
    		c_loop = (afi_clocks-1) >> 16;
    	}
    
    	/*
    	 * rom instructions are structured as follows:
    	 *
    	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
    	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
    	 *                return
    	 *
    	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
    	 * TARGET_B is set to IDLE_LOOP2 as well
    	 *
    	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
    	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
    	 *
    	 * a little confusing, but it helps save precious space in the inst_rom
    	 * and sequencer rom and keeps the delays more accurate and reduces
    	 * overhead
    	 */
    	if (afi_clocks <= 0x100) {
    
    		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
    			&sdr_rw_load_mgr_regs->load_cntr1);
    
    		writel(RW_MGR_IDLE_LOOP1,
    			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
    
    		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
    					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
    
    		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
    			&sdr_rw_load_mgr_regs->load_cntr0);
    
    		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
    			&sdr_rw_load_mgr_regs->load_cntr1);
    
    		writel(RW_MGR_IDLE_LOOP2,
    			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
    
    		writel(RW_MGR_IDLE_LOOP2,
    			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
    
    
    		/* hack to get around compiler not being smart enough */
    		if (afi_clocks <= 0x10000) {
    			/* only need to run once */
    
    			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
    						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
    
    				writel(RW_MGR_IDLE_LOOP2,
    					SDR_PHYGRP_RWMGRGRP_ADDRESS |
    					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
    
    			} while (c_loop-- != 0);
    		}
    	}
    	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
    }
    
    static void rw_mgr_mem_initialize(void)
    {
    	uint32_t r;
    
    	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
    			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
    
    
    	debug("%s:%d\n", __func__, __LINE__);
    
    	/* The reset / cke part of initialization is broadcasted to all ranks */
    
    	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
    				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
    
    
    	/*
    	 * Here's how you load register for a loop
    	 * Counters are located @ 0x800
    	 * Jump address are located @ 0xC00
    	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
    	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
    	 * I know this ain't pretty, but Avalon bus throws away the 2 least
    	 * significant bits
    	 */
    
    	/* start with memory RESET activated */
    
    	/* tINIT = 200us */
    
    	/*
    	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
    	 * If a and b are the number of iteration in 2 nested loops
    	 * it takes the following number of cycles to complete the operation:
    	 * number_of_cycles = ((2 + n) * a + 2) * b
    	 * where n is the number of instruction in the inner loop
    	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
    	 * b = 6A
    	 */
    
    	/* Load counters */
    	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL),
    
    	       &sdr_rw_load_mgr_regs->load_cntr0);
    
    	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL),
    
    	       &sdr_rw_load_mgr_regs->load_cntr1);
    
    	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL),
    
    	       &sdr_rw_load_mgr_regs->load_cntr2);
    
    	writel(RW_MGR_INIT_RESET_0_CKE_0,
    		&sdr_rw_load_jump_mgr_regs->load_jump_add0);
    	writel(RW_MGR_INIT_RESET_0_CKE_0,
    		&sdr_rw_load_jump_mgr_regs->load_jump_add1);
    	writel(RW_MGR_INIT_RESET_0_CKE_0,
    		&sdr_rw_load_jump_mgr_regs->load_jump_add2);
    
    
    	/* Execute count instruction */
    
    	writel(RW_MGR_INIT_RESET_0_CKE_0, grpaddr);
    
    
    	/* indicate that memory is stable */
    
    	writel(1, &phy_mgr_cfg->reset_mem_stbl);
    
    
    	/*
    	 * transition the RESET to high
    	 * Wait for 500us
    	 */
    
    	/*
    	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
    	 * If a and b are the number of iteration in 2 nested loops
    	 * it takes the following number of cycles to complete the operation
    	 * number_of_cycles = ((2 + n) * a + 2) * b
    	 * where n is the number of instruction in the inner loop
    	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
    	 * b = FF
    	 */
    
    	/* Load counters */
    	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL),
    
    	       &sdr_rw_load_mgr_regs->load_cntr0);
    
    	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL),
    
    	       &sdr_rw_load_mgr_regs->load_cntr1);
    
    	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL),
    
    	       &sdr_rw_load_mgr_regs->load_cntr2);
    
    	writel(RW_MGR_INIT_RESET_1_CKE_0,
    		&sdr_rw_load_jump_mgr_regs->load_jump_add0);
    	writel(RW_MGR_INIT_RESET_1_CKE_0,
    		&sdr_rw_load_jump_mgr_regs->load_jump_add1);
    	writel(RW_MGR_INIT_RESET_1_CKE_0,
    		&sdr_rw_load_jump_mgr_regs->load_jump_add2);
    
    	writel(RW_MGR_INIT_RESET_1_CKE_0, grpaddr);
    
    
    	/* bring up clock enable */
    
    	/* tXRP < 250 ck cycles */
    	delay_for_n_mem_clocks(250);
    
    	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
    		if (param->skip_ranks[r]) {
    			/* request to skip the rank */
    			continue;
    		}
    
    		/* set rank */
    		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
    
    		/*
    		 * USER Use Mirror-ed commands for odd ranks if address
    		 * mirrorring is on
    		 */
    		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
    			set_jump_as_return();
    
    			writel(RW_MGR_MRS2_MIRR, grpaddr);
    
    			delay_for_n_mem_clocks(4);
    			set_jump_as_return();
    
    			writel(RW_MGR_MRS3_MIRR, grpaddr);
    
    			delay_for_n_mem_clocks(4);
    			set_jump_as_return();
    
    			writel(RW_MGR_MRS1_MIRR, grpaddr);
    
    			delay_for_n_mem_clocks(4);
    			set_jump_as_return();
    
    			writel(RW_MGR_MRS0_DLL_RESET_MIRR, grpaddr);
    
    		} else {
    			set_jump_as_return();
    
    			writel(RW_MGR_MRS2, grpaddr);
    
    			delay_for_n_mem_clocks(4);
    			set_jump_as_return();
    
    			writel(RW_MGR_MRS3, grpaddr);
    
    			delay_for_n_mem_clocks(4);
    			set_jump_as_return();
    
    			writel(RW_MGR_MRS1, grpaddr);
    
    			set_jump_as_return();
    
    			writel(RW_MGR_MRS0_DLL_RESET, grpaddr);
    
    		writel(RW_MGR_ZQCL, grpaddr);
    
    
    		/* tZQinit = tDLLK = 512 ck cycles */
    		delay_for_n_mem_clocks(512);
    	}
    }
    
    /*
     * At the end of calibration we have to program the user settings in, and
     * USER  hand off the memory to the user.
     */
    static void rw_mgr_mem_handoff(void)
    {
    	uint32_t r;
    
    	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
    			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
    
    
    	debug("%s:%d\n", __func__, __LINE__);
    	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
    		if (param->skip_ranks[r])
    			/* request to skip the rank */
    			continue;
    		/* set rank */
    		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);