Skip to content
Snippets Groups Projects
sequencer.c 108 KiB
Newer Older
/*
 * Copyright Altera Corporation (C) 2012-2015
 *
 * SPDX-License-Identifier:    BSD-3-Clause
 */

#include <common.h>
#include <asm/io.h>
#include <asm/arch/sdram.h>
#include "sequencer.h"
#include "sequencer_auto.h"
#include "sequencer_auto_ac_init.h"
#include "sequencer_auto_inst_init.h"
#include "sequencer_defines.h"

static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);

static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);

static struct socfpga_sdr_reg_file *sdr_reg_file =
	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;

static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);

static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;

static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);

static struct socfpga_data_mgr *data_mgr =
	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
static struct socfpga_sdr_ctrl *sdr_ctrl =
	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;

#define DELTA_D		1

/*
 * In order to reduce ROM size, most of the selectable calibration steps are
 * decided at compile time based on the user's calibration mode selection,
 * as captured by the STATIC_CALIB_STEPS selection below.
 *
 * However, to support simulation-time selection of fast simulation mode, where
 * we skip everything except the bare minimum, we need a few of the steps to
 * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
 * check, which is based on the rtl-supplied value, or we dynamically compute
 * the value to use based on the dynamically-chosen calibration mode
 */

#define DLEVEL 0
#define STATIC_IN_RTL_SIM 0
#define STATIC_SKIP_DELAY_LOOPS 0

#define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
	STATIC_SKIP_DELAY_LOOPS)

/* calibration steps requested by the rtl */
uint16_t dyn_calib_steps;

/*
 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
 * instead of static, we use boolean logic to select between
 * non-skip and skip values
 *
 * The mask is set to include all bits when not-skipping, but is
 * zero when skipping
 */

uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */

#define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
	((non_skip_value) & skip_delay_mask)

struct gbl_type *gbl;
struct param_type *param;
uint32_t curr_shadow_reg;

static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
	uint32_t write_group, uint32_t use_dm,
	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);

static void set_failing_group_stage(uint32_t group, uint32_t stage,
	uint32_t substage)
{
	/*
	 * Only set the global stage if there was not been any other
	 * failing group
	 */
	if (gbl->error_stage == CAL_STAGE_NIL)	{
		gbl->error_substage = substage;
		gbl->error_stage = stage;
		gbl->error_group = group;
	}
}

static void reg_file_set_group(u16 set_group)
	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
static void reg_file_set_stage(u8 set_stage)
	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
static void reg_file_set_sub_stage(u8 set_sub_stage)
	set_sub_stage &= 0xff;
	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
}

static void initialize(void)
{
	debug("%s:%d\n", __func__, __LINE__);
	/* USER calibration has control over path to memory */
	/*
	 * In Hard PHY this is a 2-bit control:
	 * 0: AFI Mux Select
	 * 1: DDIO Mux Select
	 */
	writel(0x3, &phy_mgr_cfg->mux_sel);

	/* USER memory clock is not stable we begin initialization  */
	writel(0, &phy_mgr_cfg->reset_mem_stbl);

	/* USER calibration status all set to zero */
	writel(0, &phy_mgr_cfg->cal_status);
	writel(0, &phy_mgr_cfg->cal_debug_info);

	if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
		param->read_correct_mask_vg  = ((uint32_t)1 <<
			(RW_MGR_MEM_DQ_PER_READ_DQS /
			RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
		param->write_correct_mask_vg = ((uint32_t)1 <<
			(RW_MGR_MEM_DQ_PER_READ_DQS /
			RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
		param->read_correct_mask     = ((uint32_t)1 <<
			RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
		param->write_correct_mask    = ((uint32_t)1 <<
			RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
		param->dm_correct_mask       = ((uint32_t)1 <<
			(RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH))
			- 1;
	}
}

static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
{
	uint32_t odt_mask_0 = 0;
	uint32_t odt_mask_1 = 0;
	uint32_t cs_and_odt_mask;

	if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
		if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
			/*
			 * 1 Rank
			 * Read: ODT = 0
			 * Write: ODT = 1
			 */
			odt_mask_0 = 0x0;
			odt_mask_1 = 0x1;
		} else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
			/* 2 Ranks */
			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
				/* - Dual-Slot , Single-Rank
				 * (1 chip-select per DIMM)
				 * OR
				 * - RDIMM, 4 total CS (2 CS per DIMM)
				 * means 2 DIMM
				 * Since MEM_NUMBER_OF_RANKS is 2 they are
				 * both single rank
				 * with 2 CS each (special for RDIMM)
				 * Read: Turn on ODT on the opposite rank
				 * Write: Turn on ODT on all ranks
				 */
				odt_mask_0 = 0x3 & ~(1 << rank);
				odt_mask_1 = 0x3;
			} else {
				/*
				 * USER - Single-Slot , Dual-rank DIMMs
				 * (2 chip-selects per DIMM)
				 * USER Read: Turn on ODT off on all ranks
				 * USER Write: Turn on ODT on active rank
				 */
				odt_mask_0 = 0x0;
				odt_mask_1 = 0x3 & (1 << rank);
			}
			/* 4 Ranks
			 * Read:
			 * ----------+-----------------------+
			 *           |                       |
			 *           |         ODT           |
			 * Read From +-----------------------+
			 *   Rank    |  3  |  2  |  1  |  0  |
			 * ----------+-----+-----+-----+-----+
			 *     0     |  0  |  1  |  0  |  0  |
			 *     1     |  1  |  0  |  0  |  0  |
			 *     2     |  0  |  0  |  0  |  1  |
			 *     3     |  0  |  0  |  1  |  0  |
			 * ----------+-----+-----+-----+-----+
			 *
			 * Write:
			 * ----------+-----------------------+
			 *           |                       |
			 *           |         ODT           |
			 * Write To  +-----------------------+
			 *   Rank    |  3  |  2  |  1  |  0  |
			 * ----------+-----+-----+-----+-----+
			 *     0     |  0  |  1  |  0  |  1  |
			 *     1     |  1  |  0  |  1  |  0  |
			 *     2     |  0  |  1  |  0  |  1  |
			 *     3     |  1  |  0  |  1  |  0  |
			 * ----------+-----+-----+-----+-----+
			 */
			switch (rank) {
			case 0:
				odt_mask_0 = 0x4;
				odt_mask_1 = 0x5;
				break;
			case 1:
				odt_mask_0 = 0x8;
				odt_mask_1 = 0xA;
				break;
			case 2:
				odt_mask_0 = 0x1;
				odt_mask_1 = 0x5;
				break;
			case 3:
				odt_mask_0 = 0x2;
				odt_mask_1 = 0xA;
				break;
			}
		}
	} else {
		odt_mask_0 = 0x0;
		odt_mask_1 = 0x0;
	}

	cs_and_odt_mask =
		(0xFF & ~(1 << rank)) |
		((0xFF & odt_mask_0) << 8) |
		((0xFF & odt_mask_1) << 16);
	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
/**
 * scc_mgr_set() - Set SCC Manager register
 * @off:	Base offset in SCC Manager space
 * @grp:	Read/Write group
 * @val:	Value to be set
 *
 * This function sets the SCC Manager (Scan Chain Control Manager) register.
 */
static void scc_mgr_set(u32 off, u32 grp, u32 val)
	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
}
/**
 * scc_mgr_initialize() - Initialize SCC Manager registers
 *
 * Initialize SCC Manager registers.
 */
static void scc_mgr_initialize(void)
{
	 * Clear register file for HPS. 16 (2^4) is the size of the
	 * full register file in the scc mgr:
	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
	 *                             MEM_IF_READ_DQS_WIDTH - 1);
	for (i = 0; i < 16; i++) {
		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
			   __func__, __LINE__, i);
		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
{
	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
}

static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
{
	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
}

static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
{
	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
		    delay);
static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
}

static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
{
	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
		    delay);
}

static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
{
	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
		    delay);
}

/* load up dqs config settings */
static void scc_mgr_load_dqs(uint32_t dqs)
{
	writel(dqs, &sdr_scc_mgr->dqs_ena);
}

/* load up dqs io config settings */
static void scc_mgr_load_dqs_io(void)
{
	writel(0, &sdr_scc_mgr->dqs_io_ena);
}

/* load up dq config settings */
static void scc_mgr_load_dq(uint32_t dq_in_group)
{
	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
}

/* load up dm config settings */
static void scc_mgr_load_dm(uint32_t dm)
{
	writel(dm, &sdr_scc_mgr->dm_ena);
/**
 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
 * @off:	Base offset in SCC Manager space
 * @grp:	Read/Write group
 * @val:	Value to be set
 * @update:	If non-zero, trigger SCC Manager update for all ranks
 *
 * This function sets the SCC Manager (Scan Chain Control Manager) register
 * and optionally triggers the SCC update for all ranks.
 */
static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
				  const int update)

	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
	     r += NUM_RANKS_PER_SHADOW_REG) {
		scc_mgr_set(off, grp, val);

		if (update || (r == 0)) {
			writel(grp, &sdr_scc_mgr->dqs_ena);
			writel(0, &sdr_scc_mgr->update);
static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
{
	/*
	 * USER although the h/w doesn't support different phases per
	 * shadow register, for simplicity our scc manager modeling
	 * keeps different phase settings per shadow reg, and it's
	 * important for us to keep them in sync to match h/w.
	 * for efficiency, the scan chain update should occur only
	 * once to sr0.
	 */
	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
			      read_group, phase, 0);
}

static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
						     uint32_t phase)
{
	/*
	 * USER although the h/w doesn't support different phases per
	 * shadow register, for simplicity our scc manager modeling
	 * keeps different phase settings per shadow reg, and it's
	 * important for us to keep them in sync to match h/w.
	 * for efficiency, the scan chain update should occur only
	 * once to sr0.
	 */
	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
			      write_group, phase, 0);
}

static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
					       uint32_t delay)
{
	/*
	 * In shadow register mode, the T11 settings are stored in
	 * registers in the core, which are updated by the DQS_ENA
	 * signals. Not issuing the SCC_MGR_UPD command allows us to
	 * save lots of rank switching overhead, by calling
	 * select_shadow_regs_for_update with update_scan_chains
	 * set to 0.
	 */
	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
			      read_group, delay, 1);
	writel(0, &sdr_scc_mgr->update);
/**
 * scc_mgr_set_oct_out1_delay() - Set OCT output delay
 * @write_group:	Write group
 * @delay:		Delay value
 *
 * This function sets the OCT output delay in SCC manager.
 */
static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
	const int base = write_group * ratio;
	int i;
	/*
	 * Load the setting in the SCC manager
	 * Although OCT affects only write data, the OCT delay is controlled
	 * by the DQS logic block which is instantiated once per read group.
	 * For protocols where a write group consists of multiple read groups,
	 * the setting must be set multiple times.
	 */
	for (i = 0; i < ratio; i++)
		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
/**
 * scc_mgr_set_hhp_extras() - Set HHP extras.
 *
 * Load the fixed setting in the SCC manager HHP extras.
 */
static void scc_mgr_set_hhp_extras(void)
{
	/*
	 * Load the fixed setting in the SCC manager
	 * bits: 0:0 = 1'b1	- DQS bypass
	 * bits: 1:1 = 1'b1	- DQ bypass
	 * bits: 4:2 = 3'b001	- rfifo_mode
	 * bits: 6:5 = 2'b01	- rfifo clock_select
	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
			  (1 << 2) | (1 << 1) | (1 << 0);
	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
			 SCC_MGR_HHP_GLOBALS_OFFSET |
			 SCC_MGR_HHP_EXTRAS_OFFSET;

	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
		   __func__, __LINE__);
	writel(value, addr);
	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
		   __func__, __LINE__);
/**
 * scc_mgr_zero_all() - Zero all DQS config
 *
 * Zero all DQS config.
 */
static void scc_mgr_zero_all(void)
{

	/*
	 * USER Zero all DQS config settings, across all groups and all
	 * shadow registers
	 */
	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
	     r += NUM_RANKS_PER_SHADOW_REG) {
		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
			/*
			 * The phases actually don't exist on a per-rank basis,
			 * but there's no harm updating them several times, so
			 * let's keep the code simple.
			 */
			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
			scc_mgr_set_dqs_en_phase(i, 0);
			scc_mgr_set_dqs_en_delay(i, 0);
		}

		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
			scc_mgr_set_dqdqs_output_phase(i, 0);
			/* Arria V/Cyclone V don't have out2. */
			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
		}
	}

	/* Multicast to all DQS group enables. */
	writel(0xff, &sdr_scc_mgr->dqs_ena);
	writel(0, &sdr_scc_mgr->update);
/**
 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
 * @write_group:	Write group
 *
 * Set bypass mode and trigger SCC update.
 */
static void scc_set_bypass_mode(const u32 write_group)
	/* Multicast to all DQ enables. */
	writel(0xff, &sdr_scc_mgr->dq_ena);
	writel(0xff, &sdr_scc_mgr->dm_ena);
	/* Update current DQS IO enable. */
	writel(0, &sdr_scc_mgr->dqs_io_ena);
	/* Update the DQS logic. */
	writel(write_group, &sdr_scc_mgr->dqs_ena);
	/* Hit update. */
	writel(0, &sdr_scc_mgr->update);
/**
 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
 * @write_group:	Write group
 *
 * Load DQS settings for Write Group, do not trigger SCC update.
 */
static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
	const int base = write_group * ratio;
	int i;
	 * Load the setting in the SCC manager
	 * Although OCT affects only write data, the OCT delay is controlled
	 * by the DQS logic block which is instantiated once per read group.
	 * For protocols where a write group consists of multiple read groups,
	 * the setting must be set multiple times.
	for (i = 0; i < ratio; i++)
		writel(base + i, &sdr_scc_mgr->dqs_ena);
/**
 * scc_mgr_zero_group() - Zero all configs for a group
 *
 * Zero DQ, DM, DQS and OCT configs for a group.
 */
static void scc_mgr_zero_group(const u32 write_group, const int out_only)
	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
	     r += NUM_RANKS_PER_SHADOW_REG) {
		/* Zero all DQ config settings. */
		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
			scc_mgr_set_dq_out1_delay(i, 0);
				scc_mgr_set_dq_in_delay(i, 0);
		/* Multicast to all DQ enables. */
		writel(0xff, &sdr_scc_mgr->dq_ena);
		/* Zero all DM config settings. */
		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
			scc_mgr_set_dm_out1_delay(i, 0);
		/* Multicast to all DM enables. */
		writel(0xff, &sdr_scc_mgr->dm_ena);
		/* Zero all DQS IO settings. */
			scc_mgr_set_dqs_io_in_delay(0);

		/* Arria V/Cyclone V don't have out2. */
		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
		scc_mgr_load_dqs_for_write_group(write_group);

		/* Multicast to all DQS IO enables (only 1 in total). */
		writel(0, &sdr_scc_mgr->dqs_io_ena);
		/* Hit update to zero everything. */
		writel(0, &sdr_scc_mgr->update);
	}
}

/*
 * apply and load a particular input delay for the DQ pins in a group
 * group_bgn is the index of the first dq pin (in the write group)
 */
static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
{
	uint32_t i, p;

	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
		scc_mgr_set_dq_in_delay(p, delay);
/**
 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
 * @delay:		Delay value
 *
 * Apply and load a particular output delay for the DQ pins in a group.
 */
static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
		scc_mgr_set_dq_out1_delay(i, delay);
		scc_mgr_load_dq(i);
	}
}

/* apply and load a particular output delay for the DM pins in a group */
static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
{
	uint32_t i;

	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
		scc_mgr_set_dm_out1_delay(i, delay1);
		scc_mgr_load_dm(i);
	}
}


/* apply and load delay on both DQS and OCT out1 */
static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
						    uint32_t delay)
{
	scc_mgr_set_dqs_out1_delay(delay);
	scc_mgr_load_dqs_io();

	scc_mgr_set_oct_out1_delay(write_group, delay);
	scc_mgr_load_dqs_for_write_group(write_group);
}

/**
 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
 * @write_group:	Write group
 * @delay:		Delay value
 *
 * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
 */
static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
						  const u32 delay)
{
	u32 i, new_delay;
	/* DQ shift */
	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
	/* DM shift */
	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
	/* DQS shift */
	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
		debug_cond(DLEVEL == 1,
			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
			   __func__, __LINE__, write_group, delay, new_delay,
			   IO_IO_OUT2_DELAY_MAX,
			   new_delay - IO_IO_OUT2_DELAY_MAX);
		new_delay -= IO_IO_OUT2_DELAY_MAX;
		scc_mgr_set_dqs_out1_delay(new_delay);
	/* OCT shift */
	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
		debug_cond(DLEVEL == 1,
			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
			   __func__, __LINE__, write_group, delay,
			   new_delay, IO_IO_OUT2_DELAY_MAX,
			   new_delay - IO_IO_OUT2_DELAY_MAX);
		new_delay -= IO_IO_OUT2_DELAY_MAX;
		scc_mgr_set_oct_out1_delay(write_group, new_delay);
	}

	scc_mgr_load_dqs_for_write_group(write_group);
}

/**
 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
 * @write_group:	Write group
 * @delay:		Delay value
 *
 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
static void
scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
						const u32 delay)

	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
		writel(0, &sdr_scc_mgr->update);
	}
}

/* optimization used to recover some slots in ddr3 inst_rom */
/* could be applied to other protocols if we wanted to */
static void set_jump_as_return(void)
{
	/*
	 * to save space, we replace return with jump to special shared
	 * RETURN instruction so we set the counter to large value so that
	 * we always jump
	 */
	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
}

/*
 * should always use constants as argument to ensure all computations are
 * performed at compile time
 */
static void delay_for_n_mem_clocks(const uint32_t clocks)
{
	uint32_t afi_clocks;
	uint8_t inner = 0;
	uint8_t outer = 0;
	uint16_t c_loop = 0;

	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);


	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
	/* scale (rounding up) to get afi clocks */

	/*
	 * Note, we don't bother accounting for being off a little bit
	 * because of a few extra instructions in outer loops
	 * Note, the loops have a test at the end, and do the test before
	 * the decrement, and so always perform the loop
	 * 1 time more than the counter value
	 */
	if (afi_clocks == 0) {
		;
	} else if (afi_clocks <= 0x100) {
		inner = afi_clocks-1;
		outer = 0;
		c_loop = 0;
	} else if (afi_clocks <= 0x10000) {
		inner = 0xff;
		outer = (afi_clocks-1) >> 8;
		c_loop = 0;
	} else {
		inner = 0xff;
		outer = 0xff;
		c_loop = (afi_clocks-1) >> 16;
	}

	/*
	 * rom instructions are structured as follows:
	 *
	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
	 *                return
	 *
	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
	 * TARGET_B is set to IDLE_LOOP2 as well
	 *
	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
	 *
	 * a little confusing, but it helps save precious space in the inst_rom
	 * and sequencer rom and keeps the delays more accurate and reduces
	 * overhead
	 */
	if (afi_clocks <= 0x100) {
		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
			&sdr_rw_load_mgr_regs->load_cntr1);
		writel(RW_MGR_IDLE_LOOP1,
			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
			&sdr_rw_load_mgr_regs->load_cntr0);
		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
			&sdr_rw_load_mgr_regs->load_cntr1);
		writel(RW_MGR_IDLE_LOOP2,
			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
		writel(RW_MGR_IDLE_LOOP2,
			&sdr_rw_load_jump_mgr_regs->load_jump_add1);

		/* hack to get around compiler not being smart enough */
		if (afi_clocks <= 0x10000) {
			/* only need to run once */
			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
				writel(RW_MGR_IDLE_LOOP2,
					SDR_PHYGRP_RWMGRGRP_ADDRESS |
					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
			} while (c_loop-- != 0);
		}
	}
	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
}

static void rw_mgr_mem_initialize(void)
{
	uint32_t r;
	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;

	debug("%s:%d\n", __func__, __LINE__);

	/* The reset / cke part of initialization is broadcasted to all ranks */
	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);

	/*
	 * Here's how you load register for a loop
	 * Counters are located @ 0x800
	 * Jump address are located @ 0xC00
	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
	 * I know this ain't pretty, but Avalon bus throws away the 2 least
	 * significant bits
	 */

	/* start with memory RESET activated */

	/* tINIT = 200us */

	/*
	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
	 * If a and b are the number of iteration in 2 nested loops
	 * it takes the following number of cycles to complete the operation:
	 * number_of_cycles = ((2 + n) * a + 2) * b
	 * where n is the number of instruction in the inner loop
	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
	 * b = 6A
	 */

	/* Load counters */
	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL),
	       &sdr_rw_load_mgr_regs->load_cntr0);
	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL),
	       &sdr_rw_load_mgr_regs->load_cntr1);
	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL),
	       &sdr_rw_load_mgr_regs->load_cntr2);
	writel(RW_MGR_INIT_RESET_0_CKE_0,
		&sdr_rw_load_jump_mgr_regs->load_jump_add0);
	writel(RW_MGR_INIT_RESET_0_CKE_0,
		&sdr_rw_load_jump_mgr_regs->load_jump_add1);
	writel(RW_MGR_INIT_RESET_0_CKE_0,
		&sdr_rw_load_jump_mgr_regs->load_jump_add2);

	/* Execute count instruction */
	writel(RW_MGR_INIT_RESET_0_CKE_0, grpaddr);

	/* indicate that memory is stable */
	writel(1, &phy_mgr_cfg->reset_mem_stbl);

	/*
	 * transition the RESET to high
	 * Wait for 500us
	 */

	/*
	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
	 * If a and b are the number of iteration in 2 nested loops
	 * it takes the following number of cycles to complete the operation
	 * number_of_cycles = ((2 + n) * a + 2) * b
	 * where n is the number of instruction in the inner loop
	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
	 * b = FF
	 */

	/* Load counters */
	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL),
	       &sdr_rw_load_mgr_regs->load_cntr0);
	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL),
	       &sdr_rw_load_mgr_regs->load_cntr1);
	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL),
	       &sdr_rw_load_mgr_regs->load_cntr2);
	writel(RW_MGR_INIT_RESET_1_CKE_0,
		&sdr_rw_load_jump_mgr_regs->load_jump_add0);
	writel(RW_MGR_INIT_RESET_1_CKE_0,
		&sdr_rw_load_jump_mgr_regs->load_jump_add1);
	writel(RW_MGR_INIT_RESET_1_CKE_0,
		&sdr_rw_load_jump_mgr_regs->load_jump_add2);
	writel(RW_MGR_INIT_RESET_1_CKE_0, grpaddr);

	/* bring up clock enable */

	/* tXRP < 250 ck cycles */
	delay_for_n_mem_clocks(250);

	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
		if (param->skip_ranks[r]) {
			/* request to skip the rank */
			continue;
		}

		/* set rank */
		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);

		/*
		 * USER Use Mirror-ed commands for odd ranks if address
		 * mirrorring is on
		 */
		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
			set_jump_as_return();
			writel(RW_MGR_MRS2_MIRR, grpaddr);
			delay_for_n_mem_clocks(4);
			set_jump_as_return();
			writel(RW_MGR_MRS3_MIRR, grpaddr);
			delay_for_n_mem_clocks(4);
			set_jump_as_return();
			writel(RW_MGR_MRS1_MIRR, grpaddr);
			delay_for_n_mem_clocks(4);
			set_jump_as_return();
			writel(RW_MGR_MRS0_DLL_RESET_MIRR, grpaddr);
		} else {
			set_jump_as_return();
			writel(RW_MGR_MRS2, grpaddr);
			delay_for_n_mem_clocks(4);
			set_jump_as_return();
			writel(RW_MGR_MRS3, grpaddr);
			delay_for_n_mem_clocks(4);
			set_jump_as_return();
			writel(RW_MGR_MRS1, grpaddr);
			set_jump_as_return();
			writel(RW_MGR_MRS0_DLL_RESET, grpaddr);
		writel(RW_MGR_ZQCL, grpaddr);

		/* tZQinit = tDLLK = 512 ck cycles */
		delay_for_n_mem_clocks(512);
	}
}

/*
 * At the end of calibration we have to program the user settings in, and
 * USER  hand off the memory to the user.
 */
static void rw_mgr_mem_handoff(void)
{
	uint32_t r;
	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;

	debug("%s:%d\n", __func__, __LINE__);
	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
		if (param->skip_ranks[r])
			/* request to skip the rank */
			continue;
		/* set rank */
		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);

		/* precharge all banks ... */
		writel(RW_MGR_PRECHARGE_ALL, grpaddr);

		/* load up MR settings specified by user */

		/*
		 * Use Mirror-ed commands for odd ranks if address
		 * mirrorring is on
		 */
		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
			set_jump_as_return();
			writel(RW_MGR_MRS2_MIRR, grpaddr);
			delay_for_n_mem_clocks(4);
			set_jump_as_return();
			writel(RW_MGR_MRS3_MIRR, grpaddr);
			delay_for_n_mem_clocks(4);
			set_jump_as_return();
			writel(RW_MGR_MRS1_MIRR, grpaddr);
			delay_for_n_mem_clocks(4);
			set_jump_as_return();
			writel(RW_MGR_MRS0_USER_MIRR, grpaddr);
		} else {
			set_jump_as_return();
			writel(RW_MGR_MRS2, grpaddr);
			delay_for_n_mem_clocks(4);
			set_jump_as_return();
			writel(RW_MGR_MRS3, grpaddr);
			delay_for_n_mem_clocks(4);
			set_jump_as_return();
			writel(RW_MGR_MRS1, grpaddr);
			delay_for_n_mem_clocks(4);
			set_jump_as_return();
			writel(RW_MGR_MRS0_USER, grpaddr);
		}
		/*
		 * USER  need to wait tMOD (12CK or 15ns) time before issuing
		 * other commands, but we will have plenty of NIOS cycles before
		 * actual handoff so its okay.
		 */
	}
}

/*
 * performs a guaranteed read on the patterns we are going to use during a
 * read test to ensure memory works
 */
static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
	uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
	uint32_t all_ranks)
{
	uint32_t r, vg;
	uint32_t correct_mask_vg;
	uint32_t tmp_bit_chk;
	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
	uint32_t addr;
	uint32_t base_rw_mgr;

	*bit_chk = param->read_correct_mask;
	correct_mask_vg = param->read_correct_mask_vg;

	for (r = rank_bgn; r < rank_end; r++) {
		if (param->skip_ranks[r])
			/* request to skip the rank */
			continue;

		/* set rank */
		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);

		/* Load up a constant bursts of read commands */
		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
		writel(RW_MGR_GUARANTEED_READ,
			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
		writel(RW_MGR_GUARANTEED_READ_CONT,
			&sdr_rw_load_jump_mgr_regs->load_jump_add1);

		tmp_bit_chk = 0;
		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
			/* reset the fifos to get pointers to known state */

			writel(0, &phy_mgr_cmd->fifo_reset);
			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
				  RW_MGR_RESET_READ_DATAPATH_OFFSET);

			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);

			addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
			writel(RW_MGR_GUARANTEED_READ, addr +
			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
				vg) << 2));

			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));

			if (vg == 0)
				break;
		}
		*bit_chk &= tmp_bit_chk;
	}

	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));

	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
	debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
		   %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
		   (long unsigned int)(*bit_chk == param->read_correct_mask));
	return *bit_chk == param->read_correct_mask;
}

static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
	(uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
{
	return rw_mgr_mem_calibrate_read_test_patterns(0, group,
		num_tries, bit_chk, 1);
}

/* load up the patterns we are going to use during a read test */
static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
	uint32_t all_ranks)
{
	uint32_t r;
	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);

	debug("%s:%d\n", __func__, __LINE__);
	for (r = rank_bgn; r < rank_end; r++) {
		if (param->skip_ranks[r])
			/* request to skip the rank */
			continue;

		/* set rank */
		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);

		/* Load up a constant bursts */
		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
	}

	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
}

/*
 * try a read and see if it returns correct data back. has dummy reads
 * inserted into the mix used to align dqs enable. has more thorough checks
 * than the regular read test.
 */
static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
	uint32_t all_groups, uint32_t all_ranks)
{
	uint32_t r, vg;
	uint32_t correct_mask_vg;
	uint32_t tmp_bit_chk;
	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
	uint32_t addr;
	uint32_t base_rw_mgr;

	*bit_chk = param->read_correct_mask;
	correct_mask_vg = param->read_correct_mask_vg;

	uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
		CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);

	for (r = rank_bgn; r < rank_end; r++) {
		if (param->skip_ranks[r])
			/* request to skip the rank */
			continue;

		/* set rank */
		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);

		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
		writel(RW_MGR_READ_B2B_WAIT1,
			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
		writel(RW_MGR_READ_B2B_WAIT2,
			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
			/* need at least two (1+1) reads to capture failures */
		else if (all_groups)
			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
		writel(RW_MGR_READ_B2B,
			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
		if (all_groups)
			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
			       &sdr_rw_load_mgr_regs->load_cntr3);
			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
		writel(RW_MGR_READ_B2B,
			&sdr_rw_load_jump_mgr_regs->load_jump_add3);

		tmp_bit_chk = 0;
		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
			/* reset the fifos to get pointers to known state */
			writel(0, &phy_mgr_cmd->fifo_reset);
			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
				  RW_MGR_RESET_READ_DATAPATH_OFFSET);

			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);

			if (all_groups)
				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
			else
				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;

			writel(RW_MGR_READ_B2B, addr +
			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
			       vg) << 2));

			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));

			if (vg == 0)
				break;
		}
		*bit_chk &= tmp_bit_chk;
	}

	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));

	if (all_correct) {
		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
			   (%u == %u) => %lu", __func__, __LINE__, group,
			   all_groups, *bit_chk, param->read_correct_mask,
			   (long unsigned int)(*bit_chk ==
			   param->read_correct_mask));
		return *bit_chk == param->read_correct_mask;
	} else	{
		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
			   (%u != %lu) => %lu\n", __func__, __LINE__,
			   group, all_groups, *bit_chk, (long unsigned int)0,
			   (long unsigned int)(*bit_chk != 0x00));
		return *bit_chk != 0x00;
	}
}

static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
	uint32_t all_groups)
{
	return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
					      bit_chk, all_groups, 1);
}

static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
{
	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
	(*v)++;
}

static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
{
	uint32_t i;

	for (i = 0; i < VFIFO_SIZE-1; i++)
		rw_mgr_incr_vfifo(grp, v);
}

static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
{
	uint32_t  v;
	uint32_t fail_cnt = 0;
	uint32_t test_status;

	for (v = 0; v < VFIFO_SIZE; ) {
		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
			   __func__, __LINE__, v);
		test_status = rw_mgr_mem_calibrate_read_test_all_ranks
			(grp, 1, PASS_ONE_BIT, bit_chk, 0);
		if (!test_status) {
			fail_cnt++;

			if (fail_cnt == 2)
				break;
		}

		/* fiddle with FIFO */
		rw_mgr_incr_vfifo(grp, &v);
	}

	if (v >= VFIFO_SIZE) {
		/* no failing read found!! Something must have gone wrong */
		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
			   __func__, __LINE__);
		return 0;
	} else {
		return v;
	}
}

static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
			      uint32_t dtaps_per_ptap, uint32_t *work_bgn,
			      uint32_t *v, uint32_t *d, uint32_t *p,
			      uint32_t *i, uint32_t *max_working_cnt)
{
	uint32_t found_begin = 0;
	uint32_t tmp_delay = 0;
	uint32_t test_status;

	for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
		*work_bgn = tmp_delay;
		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);

		for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
			for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
				IO_DELAY_PER_OPA_TAP) {
				scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);

				test_status =
				rw_mgr_mem_calibrate_read_test_all_ranks
				(*grp, 1, PASS_ONE_BIT, bit_chk, 0);

				if (test_status) {
					*max_working_cnt = 1;
					found_begin = 1;
					break;
				}
			}

			if (found_begin)
				break;

			if (*p > IO_DQS_EN_PHASE_MAX)
				/* fiddle with FIFO */
				rw_mgr_incr_vfifo(*grp, v);
		}

		if (found_begin)
			break;
	}

	if (*i >= VFIFO_SIZE) {
		/* cannot find working solution */
		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
			   ptap/dtap\n", __func__, __LINE__);
		return 0;
	} else {
		return 1;
	}
}

static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
			     uint32_t *p, uint32_t *max_working_cnt)
{
	uint32_t found_begin = 0;
	uint32_t tmp_delay;

	/* Special case code for backing up a phase */
	if (*p == 0) {
		*p = IO_DQS_EN_PHASE_MAX;
		rw_mgr_decr_vfifo(*grp, v);
	} else {
		(*p)--;
	}
	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
	scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);

	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
		(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);

		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
							     PASS_ONE_BIT,
							     bit_chk, 0)) {
			found_begin = 1;
			*work_bgn = tmp_delay;
			break;
		}
	}

	/* We have found a working dtap before the ptap found above */
	if (found_begin == 1)
		(*max_working_cnt)++;

	/*
	 * Restore VFIFO to old state before we decremented it
	 * (if needed).
	 */
	(*p)++;
	if (*p > IO_DQS_EN_PHASE_MAX) {
		*p = 0;
		rw_mgr_incr_vfifo(*grp, v);
	}

	scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
}

static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
			     uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
			     uint32_t *work_end)
{
	uint32_t found_end = 0;

	(*p)++;
	*work_end += IO_DELAY_PER_OPA_TAP;
	if (*p > IO_DQS_EN_PHASE_MAX) {
		/* fiddle with FIFO */
		*p = 0;
		rw_mgr_incr_vfifo(*grp, v);
	}

	for (; *i < VFIFO_SIZE + 1; (*i)++) {
		for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
			+= IO_DELAY_PER_OPA_TAP) {
			scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);

			if (!rw_mgr_mem_calibrate_read_test_all_ranks
				(*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
				found_end = 1;
				break;
			} else {
				(*max_working_cnt)++;
			}
		}

		if (found_end)
			break;

		if (*p > IO_DQS_EN_PHASE_MAX) {
			/* fiddle with FIFO */
			rw_mgr_incr_vfifo(*grp, v);
			*p = 0;
		}
	}

	if (*i >= VFIFO_SIZE + 1) {
		/* cannot see edge of failing read */
		debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
			   failed\n", __func__, __LINE__);
		return 0;
	} else {
		return 1;
	}
}

static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
				  uint32_t *work_bgn, uint32_t *v, uint32_t *d,
				  uint32_t *p, uint32_t *work_mid,
				  uint32_t *work_end)
{
	int i;
	int tmp_delay = 0;

	*work_mid = (*work_bgn + *work_end) / 2;

	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
		   *work_bgn, *work_end, *work_mid);
	/* Get the middle delay to be less than a VFIFO delay */
	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
		;
	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
	while (*work_mid > tmp_delay)
		*work_mid -= tmp_delay;
	debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);

	tmp_delay = 0;
	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
		;
	tmp_delay -= IO_DELAY_PER_OPA_TAP;
	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
		;
	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);

	scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
	scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);

	/*
	 * push vfifo until we can successfully calibrate. We can do this
	 * because the largest possible margin in 1 VFIFO cycle.
	 */
	for (i = 0; i < VFIFO_SIZE; i++) {
		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
			   *v);
		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
							     PASS_ONE_BIT,
							     bit_chk, 0)) {
			break;
		}

		/* fiddle with FIFO */
		rw_mgr_incr_vfifo(*grp, v);
	}

	if (i >= VFIFO_SIZE) {
		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
			   failed\n", __func__, __LINE__);
		return 0;
	} else {
		return 1;
	}
}

/* find a good dqs enable to use */
static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
{
	uint32_t v, d, p, i;
	uint32_t max_working_cnt;
	uint32_t bit_chk;
	uint32_t dtaps_per_ptap;
	uint32_t work_bgn, work_mid, work_end;
	uint32_t found_passing_read, found_failing_read, initial_failing_dtap;

	debug("%s:%d %u\n", __func__, __LINE__, grp);

	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);

	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);

	/* ************************************************************** */
	/* * Step 0 : Determine number of delay taps for each phase tap * */
	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;

	/* ********************************************************* */
	/* * Step 1 : First push vfifo until we get a failing read * */
	v = find_vfifo_read(grp, &bit_chk);

	max_working_cnt = 0;

	/* ******************************************************** */
	/* * step 2: find first working phase, increment in ptaps * */
	work_bgn = 0;
	if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
				&p, &i, &max_working_cnt) == 0)
		return 0;

	work_end = work_bgn;

	/*
	 * If d is 0 then the working window covers a phase tap and
	 * we can follow the old procedure otherwise, we've found the beginning,
	 * and we need to increment the dtaps until we find the end.
	 */
	if (d == 0) {
		/* ********************************************************* */
		/* * step 3a: if we have room, back off by one and
		increment in dtaps * */

		sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
				 &max_working_cnt);

		/* ********************************************************* */
		/* * step 4a: go forward from working phase to non working
		phase, increment in ptaps * */
		if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
					 &i, &max_working_cnt, &work_end) == 0)
			return 0;

		/* ********************************************************* */
		/* * step 5a:  back off one from last, increment in dtaps  * */

		/* Special case code for backing up a phase */
		if (p == 0) {
			p = IO_DQS_EN_PHASE_MAX;
			rw_mgr_decr_vfifo(grp, &v);
		} else {
			p = p - 1;
		}

		work_end -= IO_DELAY_PER_OPA_TAP;
		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);

		/* * The actual increment of dtaps is done outside of
		the if/else loop to share code */
		d = 0;

		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
			   vfifo=%u ptap=%u\n", __func__, __LINE__,
			   v, p);
	} else {
		/* ******************************************************* */
		/* * step 3-5b:  Find the right edge of the window using
		delay taps   * */
		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
			   ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
			   v, p, d, work_bgn);

		work_end = work_bgn;

		/* * The actual increment of dtaps is done outside of the
		if/else loop to share code */

		/* Only here to counterbalance a subtract later on which is
		not needed if this branch of the algorithm is taken */
		max_working_cnt++;
	}

	/* The dtap increment to find the failing edge is done here */
	for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
				   end-2: dtap=%u\n", __func__, __LINE__, d);
			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);

			if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
								      PASS_ONE_BIT,
								      &bit_chk, 0)) {
				break;
			}
	}

	/* Go back to working dtap */
	if (d != 0)
		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;

	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
		   ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
		   v, p, d-1, work_end);

	if (work_end < work_bgn) {
		/* nil range */
		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
			   failed\n", __func__, __LINE__);
		return 0;
	}

	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
		   __func__, __LINE__, work_bgn, work_end);

	/* *************************************************************** */
	/*
	 * * We need to calculate the number of dtaps that equal a ptap
	 * * To do that we'll back up a ptap and re-find the edge of the
	 * * window using dtaps
	 */

	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
		   for tracking\n", __func__, __LINE__);

	/* Special case code for backing up a phase */
	if (p == 0) {
		p = IO_DQS_EN_PHASE_MAX;
		rw_mgr_decr_vfifo(grp, &v);
		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
			   cycle/phase: v=%u p=%u\n", __func__, __LINE__,
			   v, p);
	} else {
		p = p - 1;
		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
			   phase only: v=%u p=%u", __func__, __LINE__,
			   v, p);
	}

	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);

	/*
	 * Increase dtap until we first see a passing read (in case the
	 * window is smaller than a ptap),
	 * and then a failing read to mark the edge of the window again
	 */

	/* Find a passing read */
	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
		   __func__, __LINE__);
	found_passing_read = 0;
	found_failing_read = 0;
	initial_failing_dtap = d;
	for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
			   read d=%u\n", __func__, __LINE__, d);
		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);

		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
							     PASS_ONE_BIT,
							     &bit_chk, 0)) {
			found_passing_read = 1;
			break;
		}
	}

	if (found_passing_read) {
		/* Find a failing read */
		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
			   read\n", __func__, __LINE__);
		for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
				   testing read d=%u\n", __func__, __LINE__, d);
			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);

			if (!rw_mgr_mem_calibrate_read_test_all_ranks
				(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
				found_failing_read = 1;
				break;
			}
		}
	} else {
		debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
			   calculate dtaps", __func__, __LINE__);
		debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
	}

	/*
	 * The dynamically calculated dtaps_per_ptap is only valid if we
	 * found a passing/failing read. If we didn't, it means d hit the max
	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
	 * statically calculated value.
	 */
	if (found_passing_read && found_failing_read)
		dtaps_per_ptap = d - initial_failing_dtap;

	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
		   - %u = %u",  __func__, __LINE__, d,
		   initial_failing_dtap, dtaps_per_ptap);

	/* ******************************************** */
	/* * step 6:  Find the centre of the window   * */
	if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
				   &work_mid, &work_end) == 0)
		return 0;

	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
		   vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
		   v, p-1, d);
	return 1;
}

/*
 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
 * dq_in_delay values
 */
static uint32_t
rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
(uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
{
	uint32_t found;
	uint32_t i;
	uint32_t p;
	uint32_t d;
	uint32_t r;

	const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
		(RW_MGR_MEM_DQ_PER_READ_DQS-1);
		/* we start at zero, so have one less dq to devide among */

	debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
	      test_bgn);

	/* try different dq_in_delays since the dq path is shorter than dqs */

	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
	     r += NUM_RANKS_PER_SHADOW_REG) {
		for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) {
			debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
				   vfifo_find_dqs_", __func__, __LINE__);
			debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
			       write_group, read_group);
			debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
			scc_mgr_set_dq_in_delay(p, d);
		writel(0, &sdr_scc_mgr->update);
	}

	found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);

	debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
		   en_phase_sweep_dq", __func__, __LINE__);
	debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
		   chain to zero\n", write_group, read_group, found);

	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
	     r += NUM_RANKS_PER_SHADOW_REG) {
		for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
			i++, p++) {
			scc_mgr_set_dq_in_delay(p, 0);
		writel(0, &sdr_scc_mgr->update);
	}

	return found;
}

/* per-bit deskew DQ and center */
static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
	uint32_t use_read_test, uint32_t update_fom)
{
	uint32_t i, p, d, min_index;
	/*
	 * Store these as signed since there are comparisons with
	 * signed numbers.
	 */
	uint32_t bit_chk;
	uint32_t sticky_bit_chk;
	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
	int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
	int32_t mid;
	int32_t orig_mid_min, mid_min;
	int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
		final_dqs_en;
	int32_t dq_margin, dqs_margin;
	uint32_t stop;
	uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
	uint32_t addr;

	debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);

	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
	start_dqs = readl(addr + (read_group << 2));
	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
		start_dqs_en = readl(addr + ((read_group << 2)
				     - IO_DQS_EN_DELAY_OFFSET));

	/* set the left and right edge of each bit to an illegal value */
	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
	sticky_bit_chk = 0;
	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
	}

	/* Search for the left edge of the window for each bit */
	for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
		scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);

		writel(0, &sdr_scc_mgr->update);

		/*
		 * Stop searching when the read test doesn't pass AND when
		 * we've seen a passing read on every bit.
		 */
		if (use_read_test) {
			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
				&bit_chk, 0, 0);
		} else {
			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
							0, PASS_ONE_BIT,
							&bit_chk, 0);
			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
				(read_group - (write_group *
					RW_MGR_MEM_IF_READ_DQS_WIDTH /
					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
			stop = (bit_chk == 0);
		}
		sticky_bit_chk = sticky_bit_chk | bit_chk;
		stop = stop && (sticky_bit_chk == param->read_correct_mask);
		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
			   && %u", __func__, __LINE__, d,
			   sticky_bit_chk,
			param->read_correct_mask, stop);

		if (stop == 1) {
			break;
		} else {
			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
				if (bit_chk & 1) {
					/* Remember a passing test as the
					left_edge */
					left_edge[i] = d;
				} else {
					/* If a left edge has not been seen yet,
					then a future passing test will mark
					this edge as the right edge */
					if (left_edge[i] ==
						IO_IO_IN_DELAY_MAX + 1) {
						right_edge[i] = -(d + 1);
					}
				}
				bit_chk = bit_chk >> 1;
			}
		}
	}

	/* Reset DQ delay chains to 0 */
	scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
	sticky_bit_chk = 0;
	for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
			   %d right_edge[%u]: %d\n", __func__, __LINE__,
			   i, left_edge[i], i, right_edge[i]);

		/*
		 * Check for cases where we haven't found the left edge,
		 * which makes our assignment of the the right edge invalid.
		 * Reset it to the illegal value.
		 */
		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
			right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
			right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
			debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
				   right_edge[%u]: %d\n", __func__, __LINE__,
				   i, right_edge[i]);
		}

		/*
		 * Reset sticky bit (except for bits where we have seen
		 * both the left and right edge).
		 */
		sticky_bit_chk = sticky_bit_chk << 1;
		if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
		    (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
			sticky_bit_chk = sticky_bit_chk | 1;
		}

		if (i == 0)
			break;
	}

	/* Search for the right edge of the window for each bit */
	for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
		scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
			uint32_t delay = d + start_dqs_en;
			if (delay > IO_DQS_EN_DELAY_MAX)
				delay = IO_DQS_EN_DELAY_MAX;
			scc_mgr_set_dqs_en_delay(read_group, delay);
		}
		scc_mgr_load_dqs(read_group);

		writel(0, &sdr_scc_mgr->update);

		/*
		 * Stop searching when the read test doesn't pass AND when
		 * we've seen a passing read on every bit.
		 */
		if (use_read_test) {
			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
				&bit_chk, 0, 0);
		} else {
			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
							0, PASS_ONE_BIT,
							&bit_chk, 0);
			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
				(read_group - (write_group *
					RW_MGR_MEM_IF_READ_DQS_WIDTH /
					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
			stop = (bit_chk == 0);
		}
		sticky_bit_chk = sticky_bit_chk | bit_chk;
		stop = stop && (sticky_bit_chk == param->read_correct_mask);

		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
			   %u && %u", __func__, __LINE__, d,
			   sticky_bit_chk, param->read_correct_mask, stop);

		if (stop == 1) {
			break;
		} else {
			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
				if (bit_chk & 1) {
					/* Remember a passing test as
					the right_edge */
					right_edge[i] = d;
				} else {
					if (d != 0) {
						/* If a right edge has not been
						seen yet, then a future passing
						test will mark this edge as the
						left edge */
						if (right_edge[i] ==
						IO_IO_IN_DELAY_MAX + 1) {
							left_edge[i] = -(d + 1);
						}
					} else {
						/* d = 0 failed, but it passed
						when testing the left edge,
						so it must be marginal,
						set it to -1 */
						if (right_edge[i] ==
							IO_IO_IN_DELAY_MAX + 1 &&
							left_edge[i] !=
							IO_IO_IN_DELAY_MAX
							+ 1) {
							right_edge[i] = -1;
						}
						/* If a right edge has not been
						seen yet, then a future passing
						test will mark this edge as the
						left edge */
						else if (right_edge[i] ==
							IO_IO_IN_DELAY_MAX +
							1) {
							left_edge[i] = -(d + 1);
						}
					}
				}

				debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
					   d=%u]: ", __func__, __LINE__, d);
				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
					   (int)(bit_chk & 1), i, left_edge[i]);
				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
					   right_edge[i]);
				bit_chk = bit_chk >> 1;
			}
		}
	}

	/* Check that all bits have a window */
	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
			   %d right_edge[%u]: %d", __func__, __LINE__,
			   i, left_edge[i], i, right_edge[i]);
		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
			== IO_IO_IN_DELAY_MAX + 1)) {
			/*
			 * Restore delay chain settings before letting the loop
			 * in rw_mgr_mem_calibrate_vfifo to retry different
			 * dqs/ck relationships.
			 */
			scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
				scc_mgr_set_dqs_en_delay(read_group,
							 start_dqs_en);
			}
			scc_mgr_load_dqs(read_group);
			writel(0, &sdr_scc_mgr->update);

			debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
				   find edge [%u]: %d %d", __func__, __LINE__,
				   i, left_edge[i], right_edge[i]);
			if (use_read_test) {
				set_failing_group_stage(read_group *
					RW_MGR_MEM_DQ_PER_READ_DQS + i,
					CAL_STAGE_VFIFO,
					CAL_SUBSTAGE_VFIFO_CENTER);
			} else {
				set_failing_group_stage(read_group *
					RW_MGR_MEM_DQ_PER_READ_DQS + i,
					CAL_STAGE_VFIFO_AFTER_WRITES,
					CAL_SUBSTAGE_VFIFO_CENTER);
			}
			return 0;
		}
	}

	/* Find middle of window for each DQ bit */
	mid_min = left_edge[0] - right_edge[0];
	min_index = 0;
	for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
		mid = left_edge[i] - right_edge[i];
		if (mid < mid_min) {
			mid_min = mid;
			min_index = i;
		}
	}

	/*
	 * -mid_min/2 represents the amount that we need to move DQS.
	 * If mid_min is odd and positive we'll need to add one to
	 * make sure the rounding in further calculations is correct
	 * (always bias to the right), so just add 1 for all positive values.
	 */
	if (mid_min > 0)
		mid_min++;

	mid_min = mid_min / 2;

	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
		   __func__, __LINE__, mid_min, min_index);

	/* Determine the amount we can change DQS (which is -mid_min) */
	orig_mid_min = mid_min;
	new_dqs = start_dqs - mid_min;
	if (new_dqs > IO_DQS_IN_DELAY_MAX)
		new_dqs = IO_DQS_IN_DELAY_MAX;
	else if (new_dqs < 0)
		new_dqs = 0;

	mid_min = start_dqs - new_dqs;
	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
		   mid_min, new_dqs);

	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
		else if (start_dqs_en - mid_min < 0)
			mid_min += start_dqs_en - mid_min;
	}
	new_dqs = start_dqs - mid_min;

	debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
		   new_dqs=%d mid_min=%d\n", start_dqs,
		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
		   new_dqs, mid_min);

	/* Initialize data for export structures */
	dqs_margin = IO_IO_IN_DELAY_MAX + 1;
	dq_margin  = IO_IO_IN_DELAY_MAX + 1;

	/* add delay to bring centre of all DQ windows to the same "level" */
	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
		/* Use values before divide by 2 to reduce round off error */
		shift_dq = (left_edge[i] - right_edge[i] -
			(left_edge[min_index] - right_edge[min_index]))/2  +
			(orig_mid_min - mid_min);

		debug_cond(DLEVEL == 2, "vfifo_center: before: \
			   shift_dq[%u]=%d\n", i, shift_dq);

		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
		temp_dq_in_delay1 = readl(addr + (p << 2));
		temp_dq_in_delay2 = readl(addr + (i << 2));

		if (shift_dq + (int32_t)temp_dq_in_delay1 >
			(int32_t)IO_IO_IN_DELAY_MAX) {
			shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
		} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
			shift_dq = -(int32_t)temp_dq_in_delay1;
		}
		debug_cond(DLEVEL == 2, "vfifo_center: after: \
			   shift_dq[%u]=%d\n", i, shift_dq);
		final_dq[i] = temp_dq_in_delay1 + shift_dq;
		scc_mgr_set_dq_in_delay(p, final_dq[i]);
		scc_mgr_load_dq(p);

		debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
			   left_edge[i] - shift_dq + (-mid_min),
			   right_edge[i] + shift_dq - (-mid_min));
		/* To determine values for export structures */
		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
			dq_margin = left_edge[i] - shift_dq + (-mid_min);

		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
	}

	final_dqs = new_dqs;
	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
		final_dqs_en = start_dqs_en - mid_min;

	/* Move DQS-en */
	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
		scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
		scc_mgr_load_dqs(read_group);
	}

	/* Move DQS */
	scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
	scc_mgr_load_dqs(read_group);
	debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
		   dqs_margin=%d", __func__, __LINE__,
		   dq_margin, dqs_margin);

	/*
	 * Do not remove this line as it makes sure all of our decisions
	 * have been applied. Apply the update bit.
	 */
	writel(0, &sdr_scc_mgr->update);

	return (dq_margin >= 0) && (dqs_margin >= 0);
}

/*
 * calibrate the read valid prediction FIFO.
 *
 *  - read valid prediction will consist of finding a good DQS enable phase,
 * DQS enable delay, DQS input phase, and DQS input delay.
 *  - we also do a per-bit deskew on the DQ lines.
Loading
Loading full blame...