Newer
Older
/*
* Copyright Altera Corporation (C) 2012-2015
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/sdram.h>
#include "sequencer.h"
#include "sequencer_auto.h"
#include "sequencer_auto_ac_init.h"
#include "sequencer_auto_inst_init.h"
#include "sequencer_defines.h"
static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
static struct socfpga_sdr_reg_file *sdr_reg_file =
(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
static struct socfpga_data_mgr *data_mgr =
(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
static struct socfpga_sdr_ctrl *sdr_ctrl =
(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#define DELTA_D 1
/*
* In order to reduce ROM size, most of the selectable calibration steps are
* decided at compile time based on the user's calibration mode selection,
* as captured by the STATIC_CALIB_STEPS selection below.
*
* However, to support simulation-time selection of fast simulation mode, where
* we skip everything except the bare minimum, we need a few of the steps to
* be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the
* check, which is based on the rtl-supplied value, or we dynamically compute
* the value to use based on the dynamically-chosen calibration mode
*/
#define DLEVEL 0
#define STATIC_IN_RTL_SIM 0
#define STATIC_SKIP_DELAY_LOOPS 0
#define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
STATIC_SKIP_DELAY_LOOPS)
/* calibration steps requested by the rtl */
uint16_t dyn_calib_steps;
/*
* To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
* instead of static, we use boolean logic to select between
* non-skip and skip values
*
* The mask is set to include all bits when not-skipping, but is
* zero when skipping
*/
uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */
#define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
((non_skip_value) & skip_delay_mask)
struct gbl_type *gbl;
struct param_type *param;
uint32_t curr_shadow_reg;
static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
uint32_t write_group, uint32_t use_dm,
uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
static void set_failing_group_stage(uint32_t group, uint32_t stage,
uint32_t substage)
{
/*
* Only set the global stage if there was not been any other
* failing group
*/
if (gbl->error_stage == CAL_STAGE_NIL) {
gbl->error_substage = substage;
gbl->error_stage = stage;
gbl->error_group = group;
}
}
static void reg_file_set_group(u16 set_group)
clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
static void reg_file_set_stage(u8 set_stage)
clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
static void reg_file_set_sub_stage(u8 set_sub_stage)
set_sub_stage &= 0xff;
clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
}
static void initialize(void)
{
debug("%s:%d\n", __func__, __LINE__);
/* USER calibration has control over path to memory */
/*
* In Hard PHY this is a 2-bit control:
* 0: AFI Mux Select
* 1: DDIO Mux Select
*/
writel(0x3, &phy_mgr_cfg->mux_sel);
/* USER memory clock is not stable we begin initialization */
writel(0, &phy_mgr_cfg->reset_mem_stbl);
/* USER calibration status all set to zero */
writel(0, &phy_mgr_cfg->cal_status);
writel(0, &phy_mgr_cfg->cal_debug_info);
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
param->read_correct_mask_vg = ((uint32_t)1 <<
(RW_MGR_MEM_DQ_PER_READ_DQS /
RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
param->write_correct_mask_vg = ((uint32_t)1 <<
(RW_MGR_MEM_DQ_PER_READ_DQS /
RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
param->read_correct_mask = ((uint32_t)1 <<
RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
param->write_correct_mask = ((uint32_t)1 <<
RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
param->dm_correct_mask = ((uint32_t)1 <<
(RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH))
- 1;
}
}
static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
{
uint32_t odt_mask_0 = 0;
uint32_t odt_mask_1 = 0;
uint32_t cs_and_odt_mask;
if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
/*
* 1 Rank
* Read: ODT = 0
* Write: ODT = 1
*/
odt_mask_0 = 0x0;
odt_mask_1 = 0x1;
} else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
/* 2 Ranks */
if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
/* - Dual-Slot , Single-Rank
* (1 chip-select per DIMM)
* OR
* - RDIMM, 4 total CS (2 CS per DIMM)
* means 2 DIMM
* Since MEM_NUMBER_OF_RANKS is 2 they are
* both single rank
* with 2 CS each (special for RDIMM)
* Read: Turn on ODT on the opposite rank
* Write: Turn on ODT on all ranks
*/
odt_mask_0 = 0x3 & ~(1 << rank);
odt_mask_1 = 0x3;
} else {
/*
* USER - Single-Slot , Dual-rank DIMMs
* (2 chip-selects per DIMM)
* USER Read: Turn on ODT off on all ranks
* USER Write: Turn on ODT on active rank
*/
odt_mask_0 = 0x0;
odt_mask_1 = 0x3 & (1 << rank);
}
/* 4 Ranks
* Read:
* ----------+-----------------------+
* | |
* | ODT |
* Read From +-----------------------+
* Rank | 3 | 2 | 1 | 0 |
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
* ----------+-----+-----+-----+-----+
* 0 | 0 | 1 | 0 | 0 |
* 1 | 1 | 0 | 0 | 0 |
* 2 | 0 | 0 | 0 | 1 |
* 3 | 0 | 0 | 1 | 0 |
* ----------+-----+-----+-----+-----+
*
* Write:
* ----------+-----------------------+
* | |
* | ODT |
* Write To +-----------------------+
* Rank | 3 | 2 | 1 | 0 |
* ----------+-----+-----+-----+-----+
* 0 | 0 | 1 | 0 | 1 |
* 1 | 1 | 0 | 1 | 0 |
* 2 | 0 | 1 | 0 | 1 |
* 3 | 1 | 0 | 1 | 0 |
* ----------+-----+-----+-----+-----+
*/
switch (rank) {
case 0:
odt_mask_0 = 0x4;
odt_mask_1 = 0x5;
break;
case 1:
odt_mask_0 = 0x8;
odt_mask_1 = 0xA;
break;
case 2:
odt_mask_0 = 0x1;
odt_mask_1 = 0x5;
break;
case 3:
odt_mask_0 = 0x2;
odt_mask_1 = 0xA;
break;
}
}
} else {
odt_mask_0 = 0x0;
odt_mask_1 = 0x0;
}
cs_and_odt_mask =
(0xFF & ~(1 << rank)) |
((0xFF & odt_mask_0) << 8) |
((0xFF & odt_mask_1) << 16);
writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
/**
* scc_mgr_set() - Set SCC Manager register
* @off: Base offset in SCC Manager space
* @grp: Read/Write group
* @val: Value to be set
*
* This function sets the SCC Manager (Scan Chain Control Manager) register.
*/
static void scc_mgr_set(u32 off, u32 grp, u32 val)
writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
}
/**
* scc_mgr_initialize() - Initialize SCC Manager registers
*
* Initialize SCC Manager registers.
*/
static void scc_mgr_initialize(void)
{
* Clear register file for HPS. 16 (2^4) is the size of the
* full register file in the scc mgr:
* RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
* MEM_IF_READ_DQS_WIDTH - 1);
for (i = 0; i < 16; i++) {
debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
__func__, __LINE__, i);
scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
{
scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
}
static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
{
scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
}
static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
{
scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
delay);
static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
}
static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
{
scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
delay);
}
static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
{
scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
delay);
}
/* load up dqs config settings */
static void scc_mgr_load_dqs(uint32_t dqs)
{
writel(dqs, &sdr_scc_mgr->dqs_ena);
}
/* load up dqs io config settings */
static void scc_mgr_load_dqs_io(void)
{
writel(0, &sdr_scc_mgr->dqs_io_ena);
}
/* load up dq config settings */
static void scc_mgr_load_dq(uint32_t dq_in_group)
{
writel(dq_in_group, &sdr_scc_mgr->dq_ena);
}
/* load up dm config settings */
static void scc_mgr_load_dm(uint32_t dm)
{
writel(dm, &sdr_scc_mgr->dm_ena);
/**
* scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
* @off: Base offset in SCC Manager space
* @grp: Read/Write group
* @val: Value to be set
* @update: If non-zero, trigger SCC Manager update for all ranks
*
* This function sets the SCC Manager (Scan Chain Control Manager) register
* and optionally triggers the SCC update for all ranks.
*/
static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
const int update)
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
scc_mgr_set(off, grp, val);
if (update || (r == 0)) {
writel(grp, &sdr_scc_mgr->dqs_ena);
writel(0, &sdr_scc_mgr->update);
static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
{
/*
* USER although the h/w doesn't support different phases per
* shadow register, for simplicity our scc manager modeling
* keeps different phase settings per shadow reg, and it's
* important for us to keep them in sync to match h/w.
* for efficiency, the scan chain update should occur only
* once to sr0.
*/
scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
read_group, phase, 0);
}
static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
uint32_t phase)
{
/*
* USER although the h/w doesn't support different phases per
* shadow register, for simplicity our scc manager modeling
* keeps different phase settings per shadow reg, and it's
* important for us to keep them in sync to match h/w.
* for efficiency, the scan chain update should occur only
* once to sr0.
*/
scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
write_group, phase, 0);
}
static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
uint32_t delay)
{
/*
* In shadow register mode, the T11 settings are stored in
* registers in the core, which are updated by the DQS_ENA
* signals. Not issuing the SCC_MGR_UPD command allows us to
* save lots of rank switching overhead, by calling
* select_shadow_regs_for_update with update_scan_chains
* set to 0.
*/
scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
read_group, delay, 1);
writel(0, &sdr_scc_mgr->update);
/**
* scc_mgr_set_oct_out1_delay() - Set OCT output delay
* @write_group: Write group
* @delay: Delay value
*
* This function sets the OCT output delay in SCC manager.
*/
static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
const int base = write_group * ratio;
int i;
/*
* Load the setting in the SCC manager
* Although OCT affects only write data, the OCT delay is controlled
* by the DQS logic block which is instantiated once per read group.
* For protocols where a write group consists of multiple read groups,
* the setting must be set multiple times.
*/
for (i = 0; i < ratio; i++)
scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
/**
* scc_mgr_set_hhp_extras() - Set HHP extras.
*
* Load the fixed setting in the SCC manager HHP extras.
*/
static void scc_mgr_set_hhp_extras(void)
{
/*
* Load the fixed setting in the SCC manager
* bits: 0:0 = 1'b1 - DQS bypass
* bits: 1:1 = 1'b1 - DQ bypass
* bits: 4:2 = 3'b001 - rfifo_mode
* bits: 6:5 = 2'b01 - rfifo clock_select
* bits: 7:7 = 1'b0 - separate gating from ungating setting
* bits: 8:8 = 1'b0 - separate OE from Output delay setting
const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
(1 << 2) | (1 << 1) | (1 << 0);
const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
SCC_MGR_HHP_GLOBALS_OFFSET |
SCC_MGR_HHP_EXTRAS_OFFSET;
debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
__func__, __LINE__);
writel(value, addr);
debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
__func__, __LINE__);
/**
* scc_mgr_zero_all() - Zero all DQS config
*
* Zero all DQS config.
*/
static void scc_mgr_zero_all(void)
{
/*
* USER Zero all DQS config settings, across all groups and all
* shadow registers
*/
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
/*
* The phases actually don't exist on a per-rank basis,
* but there's no harm updating them several times, so
* let's keep the code simple.
*/
scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
scc_mgr_set_dqs_en_phase(i, 0);
scc_mgr_set_dqs_en_delay(i, 0);
}
for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
scc_mgr_set_dqdqs_output_phase(i, 0);
/* Arria V/Cyclone V don't have out2. */
scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
}
}
/* Multicast to all DQS group enables. */
writel(0xff, &sdr_scc_mgr->dqs_ena);
writel(0, &sdr_scc_mgr->update);
/**
* scc_set_bypass_mode() - Set bypass mode and trigger SCC update
* @write_group: Write group
*
* Set bypass mode and trigger SCC update.
*/
static void scc_set_bypass_mode(const u32 write_group)
/* Multicast to all DQ enables. */
writel(0xff, &sdr_scc_mgr->dq_ena);
writel(0xff, &sdr_scc_mgr->dm_ena);
/* Update current DQS IO enable. */
writel(0, &sdr_scc_mgr->dqs_io_ena);
writel(write_group, &sdr_scc_mgr->dqs_ena);
writel(0, &sdr_scc_mgr->update);
/**
* scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
* @write_group: Write group
*
* Load DQS settings for Write Group, do not trigger SCC update.
*/
static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
const int base = write_group * ratio;
int i;
* Load the setting in the SCC manager
* Although OCT affects only write data, the OCT delay is controlled
* by the DQS logic block which is instantiated once per read group.
* For protocols where a write group consists of multiple read groups,
* the setting must be set multiple times.
for (i = 0; i < ratio; i++)
writel(base + i, &sdr_scc_mgr->dqs_ena);
/**
* scc_mgr_zero_group() - Zero all configs for a group
*
* Zero DQ, DM, DQS and OCT configs for a group.
*/
static void scc_mgr_zero_group(const u32 write_group, const int out_only)
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
/* Zero all DQ config settings. */
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
scc_mgr_set_dq_out1_delay(i, 0);
scc_mgr_set_dq_in_delay(i, 0);
/* Multicast to all DQ enables. */
writel(0xff, &sdr_scc_mgr->dq_ena);
/* Zero all DM config settings. */
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
scc_mgr_set_dm_out1_delay(i, 0);
/* Multicast to all DM enables. */
writel(0xff, &sdr_scc_mgr->dm_ena);
/* Zero all DQS IO settings. */
scc_mgr_set_dqs_io_in_delay(0);
/* Arria V/Cyclone V don't have out2. */
scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
scc_mgr_load_dqs_for_write_group(write_group);
/* Multicast to all DQS IO enables (only 1 in total). */
writel(0, &sdr_scc_mgr->dqs_io_ena);
/* Hit update to zero everything. */
writel(0, &sdr_scc_mgr->update);
}
}
/*
* apply and load a particular input delay for the DQ pins in a group
* group_bgn is the index of the first dq pin (in the write group)
*/
static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
{
uint32_t i, p;
for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
scc_mgr_set_dq_in_delay(p, delay);
scc_mgr_load_dq(p);
}
}
/**
* scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
* @delay: Delay value
*
* Apply and load a particular output delay for the DQ pins in a group.
*/
static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
scc_mgr_set_dq_out1_delay(i, delay);
scc_mgr_load_dq(i);
}
}
/* apply and load a particular output delay for the DM pins in a group */
static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
{
uint32_t i;
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
scc_mgr_set_dm_out1_delay(i, delay1);
scc_mgr_load_dm(i);
}
}
/* apply and load delay on both DQS and OCT out1 */
static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
uint32_t delay)
{
scc_mgr_set_dqs_out1_delay(delay);
scc_mgr_load_dqs_io();
scc_mgr_set_oct_out1_delay(write_group, delay);
scc_mgr_load_dqs_for_write_group(write_group);
}
/**
* scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
* @write_group: Write group
* @delay: Delay value
*
* Apply a delay to the entire output side: DQ, DM, DQS, OCT.
*/
static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
const u32 delay)
{
u32 i, new_delay;
/* DQ shift */
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
scc_mgr_load_dq(i);
/* DM shift */
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
scc_mgr_load_dm(i);
/* DQS shift */
new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
if (new_delay > IO_IO_OUT2_DELAY_MAX) {
debug_cond(DLEVEL == 1,
"%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
__func__, __LINE__, write_group, delay, new_delay,
IO_IO_OUT2_DELAY_MAX,
new_delay - IO_IO_OUT2_DELAY_MAX);
new_delay -= IO_IO_OUT2_DELAY_MAX;
scc_mgr_set_dqs_out1_delay(new_delay);
}
scc_mgr_load_dqs_io();
/* OCT shift */
new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
if (new_delay > IO_IO_OUT2_DELAY_MAX) {
debug_cond(DLEVEL == 1,
"%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
__func__, __LINE__, write_group, delay,
new_delay, IO_IO_OUT2_DELAY_MAX,
new_delay - IO_IO_OUT2_DELAY_MAX);
new_delay -= IO_IO_OUT2_DELAY_MAX;
scc_mgr_set_oct_out1_delay(write_group, new_delay);
}
scc_mgr_load_dqs_for_write_group(write_group);
}
/**
* scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
* @write_group: Write group
* @delay: Delay value
*
* Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
static void
scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
const u32 delay)
int r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
scc_mgr_apply_group_all_out_delay_add(write_group, delay);
writel(0, &sdr_scc_mgr->update);
}
}
/* optimization used to recover some slots in ddr3 inst_rom */
/* could be applied to other protocols if we wanted to */
static void set_jump_as_return(void)
{
/*
* to save space, we replace return with jump to special shared
* RETURN instruction so we set the counter to large value so that
* we always jump
*/
writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
}
/*
* should always use constants as argument to ensure all computations are
* performed at compile time
*/
static void delay_for_n_mem_clocks(const uint32_t clocks)
{
uint32_t afi_clocks;
uint8_t inner = 0;
uint8_t outer = 0;
uint16_t c_loop = 0;
debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
/* scale (rounding up) to get afi clocks */
/*
* Note, we don't bother accounting for being off a little bit
* because of a few extra instructions in outer loops
* Note, the loops have a test at the end, and do the test before
* the decrement, and so always perform the loop
* 1 time more than the counter value
*/
if (afi_clocks == 0) {
;
} else if (afi_clocks <= 0x100) {
inner = afi_clocks-1;
outer = 0;
c_loop = 0;
} else if (afi_clocks <= 0x10000) {
inner = 0xff;
outer = (afi_clocks-1) >> 8;
c_loop = 0;
} else {
inner = 0xff;
outer = 0xff;
c_loop = (afi_clocks-1) >> 16;
}
/*
* rom instructions are structured as follows:
*
* IDLE_LOOP2: jnz cntr0, TARGET_A
* IDLE_LOOP1: jnz cntr1, TARGET_B
* return
*
* so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
* TARGET_B is set to IDLE_LOOP2 as well
*
* if we have no outer loop, though, then we can use IDLE_LOOP1 only,
* and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
*
* a little confusing, but it helps save precious space in the inst_rom
* and sequencer rom and keeps the delays more accurate and reduces
* overhead
*/
if (afi_clocks <= 0x100) {
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
&sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_IDLE_LOOP1,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
&sdr_rw_load_mgr_regs->load_cntr0);
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
&sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_IDLE_LOOP2,
&sdr_rw_load_jump_mgr_regs->load_jump_add0);
writel(RW_MGR_IDLE_LOOP2,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
/* hack to get around compiler not being smart enough */
if (afi_clocks <= 0x10000) {
/* only need to run once */
writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
writel(RW_MGR_IDLE_LOOP2,
SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
} while (c_loop-- != 0);
}
}
debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
}
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
/**
* rw_mgr_mem_init_load_regs() - Load instruction registers
* @cntr0: Counter 0 value
* @cntr1: Counter 1 value
* @cntr2: Counter 2 value
* @jump: Jump instruction value
*
* Load instruction registers.
*/
static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
{
uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET;
/* Load counters */
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
&sdr_rw_load_mgr_regs->load_cntr0);
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
&sdr_rw_load_mgr_regs->load_cntr1);
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
&sdr_rw_load_mgr_regs->load_cntr2);
/* Load jump address */
writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
/* Execute count instruction */
writel(jump, grpaddr);
}
static void rw_mgr_mem_initialize(void)
{
uint32_t r;
uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET;
debug("%s:%d\n", __func__, __LINE__);
/* The reset / cke part of initialization is broadcasted to all ranks */
writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
/*
* Here's how you load register for a loop
* Counters are located @ 0x800
* Jump address are located @ 0xC00
* For both, registers 0 to 3 are selected using bits 3 and 2, like
* in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
* I know this ain't pretty, but Avalon bus throws away the 2 least
* significant bits
*/
/* start with memory RESET activated */
/* tINIT = 200us */
/*
* 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
* If a and b are the number of iteration in 2 nested loops
* it takes the following number of cycles to complete the operation:
* number_of_cycles = ((2 + n) * a + 2) * b
* where n is the number of instruction in the inner loop
* One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
* b = 6A
*/
rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
SEQ_TINIT_CNTR2_VAL,
RW_MGR_INIT_RESET_0_CKE_0);
/* indicate that memory is stable */
writel(1, &phy_mgr_cfg->reset_mem_stbl);
/*
* transition the RESET to high
* Wait for 500us
*/
/*
* 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
* If a and b are the number of iteration in 2 nested loops
* it takes the following number of cycles to complete the operation
* number_of_cycles = ((2 + n) * a + 2) * b
* where n is the number of instruction in the inner loop
* One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
* b = FF
*/
rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
SEQ_TRESET_CNTR2_VAL,
RW_MGR_INIT_RESET_1_CKE_0);
/* bring up clock enable */
/* tXRP < 250 ck cycles */
delay_for_n_mem_clocks(250);
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
if (param->skip_ranks[r]) {
/* request to skip the rank */
continue;
}
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
/*
* USER Use Mirror-ed commands for odd ranks if address
* mirrorring is on
*/
if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
set_jump_as_return();
writel(RW_MGR_MRS2_MIRR, grpaddr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS3_MIRR, grpaddr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS1_MIRR, grpaddr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS0_DLL_RESET_MIRR, grpaddr);
} else {
set_jump_as_return();
writel(RW_MGR_MRS2, grpaddr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS3, grpaddr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS1, grpaddr);
set_jump_as_return();
writel(RW_MGR_MRS0_DLL_RESET, grpaddr);
}
set_jump_as_return();
writel(RW_MGR_ZQCL, grpaddr);
/* tZQinit = tDLLK = 512 ck cycles */
delay_for_n_mem_clocks(512);
}
}
/*
* At the end of calibration we have to program the user settings in, and
* USER hand off the memory to the user.
*/
static void rw_mgr_mem_handoff(void)
{
uint32_t r;
uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET;
debug("%s:%d\n", __func__, __LINE__);
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
if (param->skip_ranks[r])
/* request to skip the rank */
continue;
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
/* precharge all banks ... */
writel(RW_MGR_PRECHARGE_ALL, grpaddr);
/* load up MR settings specified by user */
/*
* Use Mirror-ed commands for odd ranks if address
* mirrorring is on
*/
if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
set_jump_as_return();
writel(RW_MGR_MRS2_MIRR, grpaddr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS3_MIRR, grpaddr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS1_MIRR, grpaddr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS0_USER_MIRR, grpaddr);
} else {
set_jump_as_return();
writel(RW_MGR_MRS2, grpaddr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS3, grpaddr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS1, grpaddr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS0_USER, grpaddr);
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
}
/*
* USER need to wait tMOD (12CK or 15ns) time before issuing
* other commands, but we will have plenty of NIOS cycles before
* actual handoff so its okay.
*/
}
}
/*
* performs a guaranteed read on the patterns we are going to use during a
* read test to ensure memory works
*/
static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
uint32_t all_ranks)
{
uint32_t r, vg;
uint32_t correct_mask_vg;
uint32_t tmp_bit_chk;
uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
uint32_t addr;
uint32_t base_rw_mgr;
*bit_chk = param->read_correct_mask;
correct_mask_vg = param->read_correct_mask_vg;
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r])
/* request to skip the rank */
continue;
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
/* Load up a constant bursts of read commands */
writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
writel(RW_MGR_GUARANTEED_READ,
&sdr_rw_load_jump_mgr_regs->load_jump_add0);
writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_GUARANTEED_READ_CONT,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
tmp_bit_chk = 0;
for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
/* reset the fifos to get pointers to known state */
writel(0, &phy_mgr_cmd->fifo_reset);
writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RESET_READ_DATAPATH_OFFSET);
tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
writel(RW_MGR_GUARANTEED_READ, addr +
((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
vg) << 2));
base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
if (vg == 0)
break;
}
*bit_chk &= tmp_bit_chk;
}
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
%lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
(long unsigned int)(*bit_chk == param->read_correct_mask));
return *bit_chk == param->read_correct_mask;
}
static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
(uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
{
return rw_mgr_mem_calibrate_read_test_patterns(0, group,
num_tries, bit_chk, 1);
}
/* load up the patterns we are going to use during a read test */
static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
uint32_t all_ranks)
{
uint32_t r;
uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
debug("%s:%d\n", __func__, __LINE__);
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r])
/* request to skip the rank */
continue;
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
/* Load up a constant bursts */
writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
&sdr_rw_load_jump_mgr_regs->load_jump_add0);
writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
}
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
}
/*
* try a read and see if it returns correct data back. has dummy reads
* inserted into the mix used to align dqs enable. has more thorough checks
* than the regular read test.
*/
static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
uint32_t all_groups, uint32_t all_ranks)
{
uint32_t r, vg;
uint32_t correct_mask_vg;
uint32_t tmp_bit_chk;
uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
uint32_t addr;
uint32_t base_rw_mgr;
*bit_chk = param->read_correct_mask;
correct_mask_vg = param->read_correct_mask_vg;
uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r])
/* request to skip the rank */
continue;
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_READ_B2B_WAIT1,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
writel(RW_MGR_READ_B2B_WAIT2,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
if (quick_read_mode)
writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
/* need at least two (1+1) reads to capture failures */
else if (all_groups)
writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
writel(RW_MGR_READ_B2B,
&sdr_rw_load_jump_mgr_regs->load_jump_add0);
if (all_groups)
writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
&sdr_rw_load_mgr_regs->load_cntr3);
writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
writel(RW_MGR_READ_B2B,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
tmp_bit_chk = 0;
for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
/* reset the fifos to get pointers to known state */
writel(0, &phy_mgr_cmd->fifo_reset);
writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RESET_READ_DATAPATH_OFFSET);
tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
if (all_groups)
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
else
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
writel(RW_MGR_READ_B2B, addr +
((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
vg) << 2));
base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
if (vg == 0)
break;
}
*bit_chk &= tmp_bit_chk;
}
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
if (all_correct) {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
(%u == %u) => %lu", __func__, __LINE__, group,
all_groups, *bit_chk, param->read_correct_mask,
(long unsigned int)(*bit_chk ==
param->read_correct_mask));
return *bit_chk == param->read_correct_mask;
} else {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
(%u != %lu) => %lu\n", __func__, __LINE__,
group, all_groups, *bit_chk, (long unsigned int)0,
(long unsigned int)(*bit_chk != 0x00));
return *bit_chk != 0x00;
}
}
static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
uint32_t all_groups)
{
return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
bit_chk, all_groups, 1);
}
static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
{
writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
(*v)++;
}
static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
{
uint32_t i;
for (i = 0; i < VFIFO_SIZE-1; i++)
rw_mgr_incr_vfifo(grp, v);
}
static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
{
uint32_t v;
uint32_t fail_cnt = 0;
uint32_t test_status;
for (v = 0; v < VFIFO_SIZE; ) {
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
__func__, __LINE__, v);
test_status = rw_mgr_mem_calibrate_read_test_all_ranks
(grp, 1, PASS_ONE_BIT, bit_chk, 0);
if (!test_status) {
fail_cnt++;
if (fail_cnt == 2)
break;
}
/* fiddle with FIFO */
rw_mgr_incr_vfifo(grp, &v);
}
if (v >= VFIFO_SIZE) {
/* no failing read found!! Something must have gone wrong */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
__func__, __LINE__);
return 0;
} else {
return v;
}
}
static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
uint32_t dtaps_per_ptap, uint32_t *work_bgn,
uint32_t *v, uint32_t *d, uint32_t *p,
uint32_t *i, uint32_t *max_working_cnt)
{
uint32_t found_begin = 0;
uint32_t tmp_delay = 0;
uint32_t test_status;
for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
*work_bgn = tmp_delay;
scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
IO_DELAY_PER_OPA_TAP) {
scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
test_status =
rw_mgr_mem_calibrate_read_test_all_ranks
(*grp, 1, PASS_ONE_BIT, bit_chk, 0);
if (test_status) {
*max_working_cnt = 1;
found_begin = 1;
break;
}
}
if (found_begin)
break;
if (*p > IO_DQS_EN_PHASE_MAX)
/* fiddle with FIFO */
rw_mgr_incr_vfifo(*grp, v);
}
if (found_begin)
break;
}
if (*i >= VFIFO_SIZE) {
/* cannot find working solution */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
ptap/dtap\n", __func__, __LINE__);
return 0;
} else {
return 1;
}
}
static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
uint32_t *work_bgn, uint32_t *v, uint32_t *d,
uint32_t *p, uint32_t *max_working_cnt)
{
uint32_t found_begin = 0;
uint32_t tmp_delay;
/* Special case code for backing up a phase */
if (*p == 0) {
*p = IO_DQS_EN_PHASE_MAX;
rw_mgr_decr_vfifo(*grp, v);
} else {
(*p)--;
}
tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
PASS_ONE_BIT,
bit_chk, 0)) {
found_begin = 1;
*work_bgn = tmp_delay;
break;
}
}
/* We have found a working dtap before the ptap found above */
if (found_begin == 1)
(*max_working_cnt)++;
/*
* Restore VFIFO to old state before we decremented it
* (if needed).
*/
(*p)++;
if (*p > IO_DQS_EN_PHASE_MAX) {
*p = 0;
rw_mgr_incr_vfifo(*grp, v);
}
scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
}
static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
uint32_t *work_bgn, uint32_t *v, uint32_t *d,
uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
uint32_t *work_end)
{
uint32_t found_end = 0;
(*p)++;
*work_end += IO_DELAY_PER_OPA_TAP;
if (*p > IO_DQS_EN_PHASE_MAX) {
/* fiddle with FIFO */
*p = 0;
rw_mgr_incr_vfifo(*grp, v);
}
for (; *i < VFIFO_SIZE + 1; (*i)++) {
for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
+= IO_DELAY_PER_OPA_TAP) {
scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
if (!rw_mgr_mem_calibrate_read_test_all_ranks
(*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
found_end = 1;
break;
} else {
(*max_working_cnt)++;
}
}
if (found_end)
break;
if (*p > IO_DQS_EN_PHASE_MAX) {
/* fiddle with FIFO */
rw_mgr_incr_vfifo(*grp, v);
*p = 0;
}
}
if (*i >= VFIFO_SIZE + 1) {
/* cannot see edge of failing read */
debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
failed\n", __func__, __LINE__);
return 0;
} else {
return 1;
}
}
static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
uint32_t *work_bgn, uint32_t *v, uint32_t *d,
uint32_t *p, uint32_t *work_mid,
uint32_t *work_end)
{
int i;
int tmp_delay = 0;
*work_mid = (*work_bgn + *work_end) / 2;
debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
*work_bgn, *work_end, *work_mid);
/* Get the middle delay to be less than a VFIFO delay */
for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
;
debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
while (*work_mid > tmp_delay)
*work_mid -= tmp_delay;
debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
tmp_delay = 0;
for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
;
tmp_delay -= IO_DELAY_PER_OPA_TAP;
debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
;
debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
/*
* push vfifo until we can successfully calibrate. We can do this
* because the largest possible margin in 1 VFIFO cycle.
*/
for (i = 0; i < VFIFO_SIZE; i++) {
debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
*v);
if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
PASS_ONE_BIT,
bit_chk, 0)) {
break;
}
/* fiddle with FIFO */
rw_mgr_incr_vfifo(*grp, v);
}
if (i >= VFIFO_SIZE) {
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
failed\n", __func__, __LINE__);
return 0;
} else {
return 1;
}
}
/* find a good dqs enable to use */
static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
{
uint32_t v, d, p, i;
uint32_t max_working_cnt;
uint32_t bit_chk;
uint32_t dtaps_per_ptap;
uint32_t work_bgn, work_mid, work_end;
uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
debug("%s:%d %u\n", __func__, __LINE__, grp);
reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
/* ************************************************************** */
/* * Step 0 : Determine number of delay taps for each phase tap * */
dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
/* ********************************************************* */
/* * Step 1 : First push vfifo until we get a failing read * */
v = find_vfifo_read(grp, &bit_chk);
max_working_cnt = 0;
/* ******************************************************** */
/* * step 2: find first working phase, increment in ptaps * */
work_bgn = 0;
if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
&p, &i, &max_working_cnt) == 0)
return 0;
work_end = work_bgn;
/*
* If d is 0 then the working window covers a phase tap and
* we can follow the old procedure otherwise, we've found the beginning,
* and we need to increment the dtaps until we find the end.
*/
if (d == 0) {
/* ********************************************************* */
/* * step 3a: if we have room, back off by one and
increment in dtaps * */
sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
&max_working_cnt);
/* ********************************************************* */
/* * step 4a: go forward from working phase to non working
phase, increment in ptaps * */
if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
&i, &max_working_cnt, &work_end) == 0)
return 0;
/* ********************************************************* */
/* * step 5a: back off one from last, increment in dtaps * */
/* Special case code for backing up a phase */
if (p == 0) {
p = IO_DQS_EN_PHASE_MAX;
rw_mgr_decr_vfifo(grp, &v);
} else {
p = p - 1;
}
work_end -= IO_DELAY_PER_OPA_TAP;
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
/* * The actual increment of dtaps is done outside of
the if/else loop to share code */
d = 0;
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
vfifo=%u ptap=%u\n", __func__, __LINE__,
v, p);
} else {
/* ******************************************************* */
/* * step 3-5b: Find the right edge of the window using
delay taps * */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
v, p, d, work_bgn);
work_end = work_bgn;
/* * The actual increment of dtaps is done outside of the
if/else loop to share code */
/* Only here to counterbalance a subtract later on which is
not needed if this branch of the algorithm is taken */
max_working_cnt++;
}
/* The dtap increment to find the failing edge is done here */
for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
end-2: dtap=%u\n", __func__, __LINE__, d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
PASS_ONE_BIT,
&bit_chk, 0)) {
break;
}
}
/* Go back to working dtap */
if (d != 0)
work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
v, p, d-1, work_end);
if (work_end < work_bgn) {
/* nil range */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
failed\n", __func__, __LINE__);
return 0;
}
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
__func__, __LINE__, work_bgn, work_end);
/* *************************************************************** */
/*
* * We need to calculate the number of dtaps that equal a ptap
* * To do that we'll back up a ptap and re-find the edge of the
* * window using dtaps
*/
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
for tracking\n", __func__, __LINE__);
/* Special case code for backing up a phase */
if (p == 0) {
p = IO_DQS_EN_PHASE_MAX;
rw_mgr_decr_vfifo(grp, &v);
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
cycle/phase: v=%u p=%u\n", __func__, __LINE__,
v, p);
} else {
p = p - 1;
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
phase only: v=%u p=%u", __func__, __LINE__,
v, p);
}
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
/*
* Increase dtap until we first see a passing read (in case the
* window is smaller than a ptap),
* and then a failing read to mark the edge of the window again
*/
/* Find a passing read */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
__func__, __LINE__);
found_passing_read = 0;
found_failing_read = 0;
initial_failing_dtap = d;
for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
read d=%u\n", __func__, __LINE__, d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
PASS_ONE_BIT,
&bit_chk, 0)) {
found_passing_read = 1;
break;
}
}
if (found_passing_read) {
/* Find a failing read */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
read\n", __func__, __LINE__);
for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
testing read d=%u\n", __func__, __LINE__, d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (!rw_mgr_mem_calibrate_read_test_all_ranks
(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
found_failing_read = 1;
break;
}
}
} else {
debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
calculate dtaps", __func__, __LINE__);
debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
}
/*
* The dynamically calculated dtaps_per_ptap is only valid if we
* found a passing/failing read. If we didn't, it means d hit the max
* (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
* statically calculated value.
*/
if (found_passing_read && found_failing_read)
dtaps_per_ptap = d - initial_failing_dtap;
writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
- %u = %u", __func__, __LINE__, d,
initial_failing_dtap, dtaps_per_ptap);
/* ******************************************** */
/* * step 6: Find the centre of the window * */
if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
&work_mid, &work_end) == 0)
return 0;
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
v, p-1, d);
return 1;
}
/*
* Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
* dq_in_delay values
*/
static uint32_t
rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
(uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
{
uint32_t found;
uint32_t i;
uint32_t p;
uint32_t d;
uint32_t r;
const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
(RW_MGR_MEM_DQ_PER_READ_DQS-1);
/* we start at zero, so have one less dq to devide among */
debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
test_bgn);
/* try different dq_in_delays since the dq path is shorter than dqs */
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) {
debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
vfifo_find_dqs_", __func__, __LINE__);
debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
write_group, read_group);
debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
scc_mgr_set_dq_in_delay(p, d);
scc_mgr_load_dq(p);
}
writel(0, &sdr_scc_mgr->update);
}
found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
en_phase_sweep_dq", __func__, __LINE__);
debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
chain to zero\n", write_group, read_group, found);
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
i++, p++) {
scc_mgr_set_dq_in_delay(p, 0);
scc_mgr_load_dq(p);
}
writel(0, &sdr_scc_mgr->update);
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
}
return found;
}
/* per-bit deskew DQ and center */
static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
uint32_t use_read_test, uint32_t update_fom)
{
uint32_t i, p, d, min_index;
/*
* Store these as signed since there are comparisons with
* signed numbers.
*/
uint32_t bit_chk;
uint32_t sticky_bit_chk;
int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
int32_t mid;
int32_t orig_mid_min, mid_min;
int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
final_dqs_en;
int32_t dq_margin, dqs_margin;
uint32_t stop;
uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
uint32_t addr;
debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
start_dqs = readl(addr + (read_group << 2));
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
start_dqs_en = readl(addr + ((read_group << 2)
- IO_DQS_EN_DELAY_OFFSET));
/* set the left and right edge of each bit to an illegal value */
/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
sticky_bit_chk = 0;
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
left_edge[i] = IO_IO_IN_DELAY_MAX + 1;
right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
}
/* Search for the left edge of the window for each bit */
for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
writel(0, &sdr_scc_mgr->update);
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
/*
* Stop searching when the read test doesn't pass AND when
* we've seen a passing read on every bit.
*/
if (use_read_test) {
stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
&bit_chk, 0, 0);
} else {
rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
0, PASS_ONE_BIT,
&bit_chk, 0);
bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
(read_group - (write_group *
RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
stop = (bit_chk == 0);
}
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->read_correct_mask);
debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
&& %u", __func__, __LINE__, d,
sticky_bit_chk,
param->read_correct_mask, stop);
if (stop == 1) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
if (bit_chk & 1) {
/* Remember a passing test as the
left_edge */
left_edge[i] = d;
} else {
/* If a left edge has not been seen yet,
then a future passing test will mark
this edge as the right edge */
if (left_edge[i] ==
IO_IO_IN_DELAY_MAX + 1) {
right_edge[i] = -(d + 1);
}
}
bit_chk = bit_chk >> 1;
}
}
}
/* Reset DQ delay chains to 0 */
scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
sticky_bit_chk = 0;
for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
%d right_edge[%u]: %d\n", __func__, __LINE__,
i, left_edge[i], i, right_edge[i]);
/*
* Check for cases where we haven't found the left edge,
* which makes our assignment of the the right edge invalid.
* Reset it to the illegal value.
*/
if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
right_edge[%u]: %d\n", __func__, __LINE__,
i, right_edge[i]);
}
/*
* Reset sticky bit (except for bits where we have seen
* both the left and right edge).
*/
sticky_bit_chk = sticky_bit_chk << 1;
if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
(right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
sticky_bit_chk = sticky_bit_chk | 1;
}
if (i == 0)
break;
}
/* Search for the right edge of the window for each bit */
for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
uint32_t delay = d + start_dqs_en;
if (delay > IO_DQS_EN_DELAY_MAX)
delay = IO_DQS_EN_DELAY_MAX;
scc_mgr_set_dqs_en_delay(read_group, delay);
}
scc_mgr_load_dqs(read_group);
writel(0, &sdr_scc_mgr->update);
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
/*
* Stop searching when the read test doesn't pass AND when
* we've seen a passing read on every bit.
*/
if (use_read_test) {
stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
&bit_chk, 0, 0);
} else {
rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
0, PASS_ONE_BIT,
&bit_chk, 0);
bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
(read_group - (write_group *
RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
stop = (bit_chk == 0);
}
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->read_correct_mask);
debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
%u && %u", __func__, __LINE__, d,
sticky_bit_chk, param->read_correct_mask, stop);
if (stop == 1) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
if (bit_chk & 1) {
/* Remember a passing test as
the right_edge */
right_edge[i] = d;
} else {
if (d != 0) {
/* If a right edge has not been
seen yet, then a future passing
test will mark this edge as the
left edge */
if (right_edge[i] ==
IO_IO_IN_DELAY_MAX + 1) {
left_edge[i] = -(d + 1);
}
} else {
/* d = 0 failed, but it passed
when testing the left edge,
so it must be marginal,
set it to -1 */
if (right_edge[i] ==
IO_IO_IN_DELAY_MAX + 1 &&
left_edge[i] !=
IO_IO_IN_DELAY_MAX
+ 1) {
right_edge[i] = -1;
}
/* If a right edge has not been
seen yet, then a future passing
test will mark this edge as the
left edge */
else if (right_edge[i] ==
IO_IO_IN_DELAY_MAX +
1) {
left_edge[i] = -(d + 1);
}
}
}
debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
d=%u]: ", __func__, __LINE__, d);
debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
(int)(bit_chk & 1), i, left_edge[i]);
debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
right_edge[i]);
bit_chk = bit_chk >> 1;
}
}
}
/* Check that all bits have a window */
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
%d right_edge[%u]: %d", __func__, __LINE__,
i, left_edge[i], i, right_edge[i]);
if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
== IO_IO_IN_DELAY_MAX + 1)) {
/*
* Restore delay chain settings before letting the loop
* in rw_mgr_mem_calibrate_vfifo to retry different
* dqs/ck relationships.
*/
scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
scc_mgr_set_dqs_en_delay(read_group,
start_dqs_en);
}
scc_mgr_load_dqs(read_group);
writel(0, &sdr_scc_mgr->update);
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
find edge [%u]: %d %d", __func__, __LINE__,
i, left_edge[i], right_edge[i]);
if (use_read_test) {
set_failing_group_stage(read_group *
RW_MGR_MEM_DQ_PER_READ_DQS + i,
CAL_STAGE_VFIFO,
CAL_SUBSTAGE_VFIFO_CENTER);
} else {
set_failing_group_stage(read_group *
RW_MGR_MEM_DQ_PER_READ_DQS + i,
CAL_STAGE_VFIFO_AFTER_WRITES,
CAL_SUBSTAGE_VFIFO_CENTER);
}
return 0;
}
}
/* Find middle of window for each DQ bit */
mid_min = left_edge[0] - right_edge[0];
min_index = 0;
for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
mid = left_edge[i] - right_edge[i];
if (mid < mid_min) {
mid_min = mid;
min_index = i;
}
}
/*
* -mid_min/2 represents the amount that we need to move DQS.
* If mid_min is odd and positive we'll need to add one to
* make sure the rounding in further calculations is correct
* (always bias to the right), so just add 1 for all positive values.
*/
if (mid_min > 0)
mid_min++;
mid_min = mid_min / 2;
debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
__func__, __LINE__, mid_min, min_index);
/* Determine the amount we can change DQS (which is -mid_min) */
orig_mid_min = mid_min;
new_dqs = start_dqs - mid_min;
if (new_dqs > IO_DQS_IN_DELAY_MAX)
new_dqs = IO_DQS_IN_DELAY_MAX;
else if (new_dqs < 0)
new_dqs = 0;
mid_min = start_dqs - new_dqs;
debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
mid_min, new_dqs);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
else if (start_dqs_en - mid_min < 0)
mid_min += start_dqs_en - mid_min;
}
new_dqs = start_dqs - mid_min;
debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
new_dqs=%d mid_min=%d\n", start_dqs,
IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
new_dqs, mid_min);
/* Initialize data for export structures */
dqs_margin = IO_IO_IN_DELAY_MAX + 1;
dq_margin = IO_IO_IN_DELAY_MAX + 1;
/* add delay to bring centre of all DQ windows to the same "level" */
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
/* Use values before divide by 2 to reduce round off error */
shift_dq = (left_edge[i] - right_edge[i] -
(left_edge[min_index] - right_edge[min_index]))/2 +
(orig_mid_min - mid_min);
debug_cond(DLEVEL == 2, "vfifo_center: before: \
shift_dq[%u]=%d\n", i, shift_dq);
addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
temp_dq_in_delay1 = readl(addr + (p << 2));
temp_dq_in_delay2 = readl(addr + (i << 2));
if (shift_dq + (int32_t)temp_dq_in_delay1 >
(int32_t)IO_IO_IN_DELAY_MAX) {
shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
shift_dq = -(int32_t)temp_dq_in_delay1;
}
debug_cond(DLEVEL == 2, "vfifo_center: after: \
shift_dq[%u]=%d\n", i, shift_dq);
final_dq[i] = temp_dq_in_delay1 + shift_dq;
scc_mgr_set_dq_in_delay(p, final_dq[i]);
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
scc_mgr_load_dq(p);
debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
left_edge[i] - shift_dq + (-mid_min),
right_edge[i] + shift_dq - (-mid_min));
/* To determine values for export structures */
if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
dq_margin = left_edge[i] - shift_dq + (-mid_min);
if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
dqs_margin = right_edge[i] + shift_dq - (-mid_min);
}
final_dqs = new_dqs;
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
final_dqs_en = start_dqs_en - mid_min;
/* Move DQS-en */
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
scc_mgr_load_dqs(read_group);
}
/* Move DQS */
scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
scc_mgr_load_dqs(read_group);
debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
dqs_margin=%d", __func__, __LINE__,
dq_margin, dqs_margin);
/*
* Do not remove this line as it makes sure all of our decisions
* have been applied. Apply the update bit.
*/
writel(0, &sdr_scc_mgr->update);
return (dq_margin >= 0) && (dqs_margin >= 0);
}
/*
* calibrate the read valid prediction FIFO.
*
* - read valid prediction will consist of finding a good DQS enable phase,
* DQS enable delay, DQS input phase, and DQS input delay.
* - we also do a per-bit deskew on the DQ lines.
*/
static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
uint32_t test_bgn)
{
uint32_t p, d, rank_bgn, sr;
uint32_t dtaps_per_ptap;
uint32_t tmp_delay;
uint32_t bit_chk;
uint32_t grp_calibrated;
uint32_t write_group, write_test_bgn;
uint32_t failed_substage;
debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn);
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
/* update info for sims */
reg_file_set_stage(CAL_STAGE_VFIFO);
write_group = read_group;
write_test_bgn = test_bgn;
/* USER Determine number of delay taps for each phase tap */
dtaps_per_ptap = 0;
tmp_delay = 0;
while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
dtaps_per_ptap++;
tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
}
dtaps_per_ptap--;
tmp_delay = 0;
/* update info for sims */
reg_file_set_group(read_group);
grp_calibrated = 0;
reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
/*
* In RLDRAMX we may be messing the delay of pins in
* the same write group but outside of the current read
* the group, but that's ok because we haven't
* calibrated output side yet.
*/
if (d > 0) {
scc_mgr_apply_group_all_out_delay_add_all_ranks(
write_group, d);
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
}
for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
p++) {
/* set a particular dqdqs phase */
scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
p=%u d=%u\n", __func__, __LINE__,
read_group, p, d);
/*
* Load up the patterns used by read calibration
* using current DQDQS phase.
*/
rw_mgr_mem_calibrate_read_load_patterns(0, 1);
if (!(gbl->phy_debug_mode_flags &
PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
(read_group, 1, &bit_chk)) {
debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
__func__, __LINE__);
debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
read_group, p, d);
break;
}
}
/* case:56390 */
grp_calibrated = 1;
if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
(write_group, read_group, test_bgn)) {
/*
* USER Read per-bit deskew can be done on a
* per shadow register basis.
*/
for (rank_bgn = 0, sr = 0;
rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
rank_bgn += NUM_RANKS_PER_SHADOW_REG,
++sr) {
/*
* Determine if this set of ranks
* should be skipped entirely.
*/
if (!param->skip_shadow_regs[sr]) {
/*
* If doing read after write
* calibration, do not update
* FOM, now - do it then.
*/
if (!rw_mgr_mem_calibrate_vfifo_center
(rank_bgn, write_group,
read_group, test_bgn, 1, 0)) {
grp_calibrated = 0;
failed_substage =
CAL_SUBSTAGE_VFIFO_CENTER;
}
}
}
} else {
grp_calibrated = 0;
failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
}
}
}
if (grp_calibrated == 0) {
set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
failed_substage);
return 0;
}
/*
* Reset the delay chains back to zero if they have moved > 1
* (check for > 1 because loop will increase d even when pass in
* first case).
*/
if (d > 2)
scc_mgr_zero_group(write_group, 1);
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
return 1;
}
/* VFIFO Calibration -- Read Deskew Calibration after write deskew */
static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
uint32_t test_bgn)
{
uint32_t rank_bgn, sr;
uint32_t grp_calibrated;
uint32_t write_group;
debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
/* update info for sims */
reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
write_group = read_group;
/* update info for sims */
reg_file_set_group(read_group);
grp_calibrated = 1;
/* Read per-bit deskew can be done on a per shadow register basis */
for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
/* Determine if this set of ranks should be skipped entirely */
if (!param->skip_shadow_regs[sr]) {
/* This is the last calibration round, update FOM here */
if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
write_group,
read_group,
test_bgn, 0,
1)) {
grp_calibrated = 0;
}
}
}
if (grp_calibrated == 0) {
set_failing_group_stage(write_group,
CAL_STAGE_VFIFO_AFTER_WRITES,
CAL_SUBSTAGE_VFIFO_CENTER);
return 0;
}
return 1;
}
/* Calibrate LFIFO to find smallest read latency */
static uint32_t rw_mgr_mem_calibrate_lfifo(void)
{
uint32_t found_one;
uint32_t bit_chk;
debug("%s:%d\n", __func__, __LINE__);
/* update info for sims */
reg_file_set_stage(CAL_STAGE_LFIFO);
reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
/* Load up the patterns used by read calibration for all ranks */
rw_mgr_mem_calibrate_read_load_patterns(0, 1);
found_one = 0;
do {
writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
__func__, __LINE__, gbl->curr_read_lat);
if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
NUM_READ_TESTS,
PASS_ALL_BITS,
&bit_chk, 1)) {
break;
}
found_one = 1;
/* reduce read latency and see if things are working */
/* correctly */
gbl->curr_read_lat--;
} while (gbl->curr_read_lat > 0);
/* reset the fifos to get pointers to known state */
writel(0, &phy_mgr_cmd->fifo_reset);
if (found_one) {
/* add a fudge factor to the read latency that was determined */
gbl->curr_read_lat += 2;
writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
read_lat=%u\n", __func__, __LINE__,
gbl->curr_read_lat);
return 1;
} else {
set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
CAL_SUBSTAGE_READ_LATENCY);
debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
read_lat=%u\n", __func__, __LINE__,
gbl->curr_read_lat);
return 0;
}
}
/*
* issue write test command.
* two variants are provided. one that just tests a write pattern and
* another that tests datamask functionality.
*/
static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
uint32_t test_dm)
{
uint32_t mcc_instruction;
uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
ENABLE_SUPER_QUICK_CALIBRATION);
uint32_t rw_wl_nop_cycles;
uint32_t addr;
/*
* Set counter and jump addresses for the right
* number of NOP cycles.
* The number of supported NOP cycles can range from -1 to infinity
* Three different cases are handled:
*
* 1. For a number of NOP cycles greater than 0, the RW Mgr looping
* mechanism will be used to insert the right number of NOPs
*
* 2. For a number of NOP cycles equals to 0, the micro-instruction
* issuing the write command will jump straight to the
* micro-instruction that turns on DQS (for DDRx), or outputs write
* data (for RLD), skipping
* the NOP micro-instruction all together
*
* 3. A number of NOP cycles equal to -1 indicates that DQS must be
* turned on in the same micro-instruction that issues the write
* command. Then we need
* to directly jump to the micro-instruction that sends out the data
*
* NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
* (2 and 3). One jump-counter (0) is used to perform multiple
* write-read operations.
* one counter left to issue this command in "multiple-group" mode
*/
rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
if (rw_wl_nop_cycles == -1) {
/*
* CNTR 2 - We want to execute the special write operation that
* turns on DQS right away and then skip directly to the
* instruction that sends out the data. We set the counter to a
* large number so that the jump is always taken.
*/
writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
/* CNTR 3 - Not used */
if (test_dm) {
mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
} else {
mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
}
} else if (rw_wl_nop_cycles == 0) {
/*
* CNTR 2 - We want to skip the NOP operation and go straight
* to the DQS enable instruction. We set the counter to a large
* number so that the jump is always taken.
*/
writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
/* CNTR 3 - Not used */
if (test_dm) {
mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
} else {
mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
}
} else {
/*
* CNTR 2 - In this case we want to execute the next instruction
* and NOT take the jump. So we set the counter to 0. The jump
* address doesn't count.
*/
writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
/*
* CNTR 3 - Set the nop counter to the number of cycles we
* need to loop for, minus 1.
*/
writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
if (test_dm) {
mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
} else {
mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RESET_READ_DATAPATH_OFFSET);
if (quick_write_mode)
writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
/*
* CNTR 1 - This is used to ensure enough time elapses
* for read data to come back.
*/
writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
writel(mcc_instruction, addr + (group << 2));
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
}
/* Test writes, can check for a single bit pass or multiple bit pass */
static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
uint32_t *bit_chk, uint32_t all_ranks)
{
uint32_t r;
uint32_t correct_mask_vg;
uint32_t tmp_bit_chk;
uint32_t vg;
uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
uint32_t addr_rw_mgr;
uint32_t base_rw_mgr;
*bit_chk = param->write_correct_mask;
correct_mask_vg = param->write_correct_mask_vg;
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r]) {
/* request to skip the rank */
continue;
}
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
tmp_bit_chk = 0;
addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
/* reset the fifos to get pointers to known state */
writel(0, &phy_mgr_cmd->fifo_reset);
tmp_bit_chk = tmp_bit_chk <<
(RW_MGR_MEM_DQ_PER_WRITE_DQS /
RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
rw_mgr_mem_calibrate_write_test_issue(write_group *
RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
use_dm);
base_rw_mgr = readl(addr_rw_mgr);
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
if (vg == 0)
break;
}
*bit_chk &= tmp_bit_chk;
}
if (all_correct) {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
%u => %lu", write_group, use_dm,
*bit_chk, param->write_correct_mask,
(long unsigned int)(*bit_chk ==
param->write_correct_mask));
return *bit_chk == param->write_correct_mask;
} else {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
write_group, use_dm, *bit_chk);
debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
(long unsigned int)(*bit_chk != 0));
return *bit_chk != 0x00;
}
}
/*
* center all windows. do per-bit-deskew to possibly increase size of
* certain windows.
*/
static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
uint32_t write_group, uint32_t test_bgn)
{
uint32_t i, p, min_index;
int32_t d;
/*
* Store these as signed since there are comparisons with
* signed numbers.
*/
uint32_t bit_chk;
uint32_t sticky_bit_chk;
int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
int32_t mid;
int32_t mid_min, orig_mid_min;
int32_t new_dqs, start_dqs, shift_dq;
int32_t dq_margin, dqs_margin, dm_margin;
uint32_t stop;
uint32_t temp_dq_out1_delay;
uint32_t addr;
debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
dm_margin = 0;
addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
start_dqs = readl(addr +
(RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
/* per-bit deskew */
/*
* set the left and right edge of each bit to an illegal value
* use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
*/
sticky_bit_chk = 0;
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
}
/* Search for the left edge of the window for each bit */
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
scc_mgr_apply_group_dq_out1_delay(write_group, d);
writel(0, &sdr_scc_mgr->update);
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
/*
* Stop searching when the read test doesn't pass AND when
* we've seen a passing read on every bit.
*/
stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
0, PASS_ONE_BIT, &bit_chk, 0);
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->write_correct_mask);
debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
== %u && %u [bit_chk= %u ]\n",
d, sticky_bit_chk, param->write_correct_mask,
stop, bit_chk);
if (stop == 1) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
if (bit_chk & 1) {
/*
* Remember a passing test as the
* left_edge.
*/
left_edge[i] = d;
} else {
/*
* If a left edge has not been seen
* yet, then a future passing test will
* mark this edge as the right edge.
*/
if (left_edge[i] ==
IO_IO_OUT1_DELAY_MAX + 1) {
right_edge[i] = -(d + 1);
}
}
debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
(int)(bit_chk & 1), i, left_edge[i]);
debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
right_edge[i]);
bit_chk = bit_chk >> 1;
}
}
}
/* Reset DQ delay chains to 0 */
scc_mgr_apply_group_dq_out1_delay(0);
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
sticky_bit_chk = 0;
for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
%d right_edge[%u]: %d\n", __func__, __LINE__,
i, left_edge[i], i, right_edge[i]);
/*
* Check for cases where we haven't found the left edge,
* which makes our assignment of the the right edge invalid.
* Reset it to the illegal value.
*/
if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
(right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
right_edge[%u]: %d\n", __func__, __LINE__,
i, right_edge[i]);
}
/*
* Reset sticky bit (except for bits where we have
* seen the left edge).
*/
sticky_bit_chk = sticky_bit_chk << 1;
if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
sticky_bit_chk = sticky_bit_chk | 1;
if (i == 0)
break;
}
/* Search for the right edge of the window for each bit */
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
d + start_dqs);
writel(0, &sdr_scc_mgr->update);
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
/*
* Stop searching when the read test doesn't pass AND when
* we've seen a passing read on every bit.
*/
stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
0, PASS_ONE_BIT, &bit_chk, 0);
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->write_correct_mask);
debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
%u && %u\n", d, sticky_bit_chk,
param->write_correct_mask, stop);
if (stop == 1) {
if (d == 0) {
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
i++) {
/* d = 0 failed, but it passed when
testing the left edge, so it must be
marginal, set it to -1 */
if (right_edge[i] ==
IO_IO_OUT1_DELAY_MAX + 1 &&
left_edge[i] !=
IO_IO_OUT1_DELAY_MAX + 1) {
right_edge[i] = -1;
}
}
}
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
if (bit_chk & 1) {
/*
* Remember a passing test as
* the right_edge.
*/
right_edge[i] = d;
} else {
if (d != 0) {
/*
* If a right edge has not
* been seen yet, then a future
* passing test will mark this
* edge as the left edge.
*/
if (right_edge[i] ==
IO_IO_OUT1_DELAY_MAX + 1)
left_edge[i] = -(d + 1);
} else {
/*
* d = 0 failed, but it passed
* when testing the left edge,
* so it must be marginal, set
* it to -1.
*/
if (right_edge[i] ==
IO_IO_OUT1_DELAY_MAX + 1 &&
left_edge[i] !=
IO_IO_OUT1_DELAY_MAX + 1)
right_edge[i] = -1;
/*
* If a right edge has not been
* seen yet, then a future
* passing test will mark this
* edge as the left edge.
*/
else if (right_edge[i] ==
IO_IO_OUT1_DELAY_MAX +
1)
left_edge[i] = -(d + 1);
}
}
debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
(int)(bit_chk & 1), i, left_edge[i]);
debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
right_edge[i]);
bit_chk = bit_chk >> 1;
}
}
}
/* Check that all bits have a window */
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
%d right_edge[%u]: %d", __func__, __LINE__,
i, left_edge[i], i, right_edge[i]);
if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
(right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
set_failing_group_stage(test_bgn + i,
CAL_STAGE_WRITES,
CAL_SUBSTAGE_WRITES_CENTER);
return 0;
}
}
/* Find middle of window for each DQ bit */
mid_min = left_edge[0] - right_edge[0];
min_index = 0;
for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
mid = left_edge[i] - right_edge[i];
if (mid < mid_min) {
mid_min = mid;
min_index = i;
}
}
/*
* -mid_min/2 represents the amount that we need to move DQS.
* If mid_min is odd and positive we'll need to add one to
* make sure the rounding in further calculations is correct
* (always bias to the right), so just add 1 for all positive values.
*/
if (mid_min > 0)
mid_min++;
mid_min = mid_min / 2;
debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
__LINE__, mid_min);
/* Determine the amount we can change DQS (which is -mid_min) */
orig_mid_min = mid_min;
new_dqs = start_dqs;
mid_min = 0;
debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
/* Initialize data for export structures */
dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
dq_margin = IO_IO_OUT1_DELAY_MAX + 1;
/* add delay to bring centre of all DQ windows to the same "level" */
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
/* Use values before divide by 2 to reduce round off error */
shift_dq = (left_edge[i] - right_edge[i] -
(left_edge[min_index] - right_edge[min_index]))/2 +
(orig_mid_min - mid_min);
debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
[%u]=%d\n", __func__, __LINE__, i, shift_dq);
addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
temp_dq_out1_delay = readl(addr + (i << 2));
if (shift_dq + (int32_t)temp_dq_out1_delay >
(int32_t)IO_IO_OUT1_DELAY_MAX) {
shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
shift_dq = -(int32_t)temp_dq_out1_delay;
}
debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
i, shift_dq);
scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
scc_mgr_load_dq(i);
debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
left_edge[i] - shift_dq + (-mid_min),
right_edge[i] + shift_dq - (-mid_min));
/* To determine values for export structures */
if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
dq_margin = left_edge[i] - shift_dq + (-mid_min);
if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
dqs_margin = right_edge[i] + shift_dq - (-mid_min);
}
/* Move DQS */
scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
writel(0, &sdr_scc_mgr->update);
/* Centre DM */
debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
/*
* set the left and right edge of each bit to an illegal value,
* use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
*/
left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
int32_t win_best = 0;
/* Search for the/part of the window with DM shift */
for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
scc_mgr_apply_group_dm_out1_delay(d);
writel(0, &sdr_scc_mgr->update);
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
PASS_ALL_BITS, &bit_chk,
0)) {
/* USE Set current end of the window */
end_curr = -d;
/*
* If a starting edge of our window has not been seen
* this is our current start of the DM window.
*/
if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
bgn_curr = -d;
/*
* If current window is bigger than best seen.
* Set best seen to be current window.
*/
if ((end_curr-bgn_curr+1) > win_best) {
win_best = end_curr-bgn_curr+1;
bgn_best = bgn_curr;
end_best = end_curr;
}
} else {
/* We just saw a failing test. Reset temp edge */
bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
end_curr = IO_IO_OUT1_DELAY_MAX + 1;
}
}
/* Reset DM delay chains to 0 */
scc_mgr_apply_group_dm_out1_delay(0);
/*
* Check to see if the current window nudges up aganist 0 delay.
* If so we need to continue the search by shifting DQS otherwise DQS
* search begins as a new search. */
if (end_curr != 0) {
bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
end_curr = IO_IO_OUT1_DELAY_MAX + 1;
}
/* Search for the/part of the window with DQS shifts */
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
/*
* Note: This only shifts DQS, so are we limiting ourselve to
* width of DQ unnecessarily.
*/
scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
d + new_dqs);
writel(0, &sdr_scc_mgr->update);
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
PASS_ALL_BITS, &bit_chk,
0)) {
/* USE Set current end of the window */
end_curr = d;
/*
* If a beginning edge of our window has not been seen
* this is our current begin of the DM window.
*/
if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
bgn_curr = d;
/*
* If current window is bigger than best seen. Set best
* seen to be current window.
*/
if ((end_curr-bgn_curr+1) > win_best) {
win_best = end_curr-bgn_curr+1;
bgn_best = bgn_curr;
end_best = end_curr;
}
} else {
/* We just saw a failing test. Reset temp edge */
bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
end_curr = IO_IO_OUT1_DELAY_MAX + 1;
/* Early exit optimization: if ther remaining delay
chain space is less than already seen largest window
we can exit */
if ((win_best-1) >
(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
break;
}
}
}
/* assign left and right edge for cal and reporting; */
left_edge[0] = -1*bgn_best;
right_edge[0] = end_best;
debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
__LINE__, left_edge[0], right_edge[0]);
/* Move DQS (back to orig) */
scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
/* Move DM */
/* Find middle of window for the DM bit */
mid = (left_edge[0] - right_edge[0]) / 2;
/* only move right, since we are not moving DQS/DQ */
if (mid < 0)
mid = 0;
/* dm_marign should fail if we never find a window */
if (win_best == 0)
dm_margin = -1;
else
dm_margin = left_edge[0] - mid;
scc_mgr_apply_group_dm_out1_delay(mid);
writel(0, &sdr_scc_mgr->update);
debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
dm_margin=%d\n", __func__, __LINE__, left_edge[0],
right_edge[0], mid, dm_margin);
/* Export values */
gbl->fom_out += dq_margin + dqs_margin;
debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
dq_margin, dqs_margin, dm_margin);
/*
* Do not remove this line as it makes sure all of our
* decisions have been applied.
*/
writel(0, &sdr_scc_mgr->update);
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
}
/* calibrate the write operations */
static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
uint32_t test_bgn)
{
/* update info for sims */
debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
reg_file_set_stage(CAL_STAGE_WRITES);
reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
reg_file_set_group(g);
if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
set_failing_group_stage(g, CAL_STAGE_WRITES,
CAL_SUBSTAGE_WRITES_CENTER);
return 0;
}
return 1;
}
/* precharge all banks and activate row 0 in bank "000..." and bank "111..." */
static void mem_precharge_and_activate(void)
{
uint32_t r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
if (param->skip_ranks[r]) {
/* request to skip the rank */
continue;
}
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
/* precharge all banks ... */
writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
&sdr_rw_load_jump_mgr_regs->load_jump_add0);
writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
/* activate rows */
writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
}
}
/* Configure various memory related parameters. */
static void mem_config(void)
{
uint32_t rlat, wlat;
uint32_t rw_wl_nop_cycles;
uint32_t max_latency;
debug("%s:%d\n", __func__, __LINE__);
/* read in write and read latency */
wlat = readl(&data_mgr->t_wl_add);
wlat += readl(&data_mgr->mem_t_add);
/* WL for hard phy does not include additive latency */
/*
* add addtional write latency to offset the address/command extra
* clock cycle. We change the AC mux setting causing AC to be delayed
* by one mem clock cycle. Only do this for DDR3
*/
wlat = wlat + 1;
rlat = readl(&data_mgr->t_rl_add);
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
rw_wl_nop_cycles = wlat - 2;
gbl->rw_wl_nop_cycles = rw_wl_nop_cycles;
/*
* For AV/CV, lfifo is hardened and always runs at full rate so
* max latency in AFI clocks, used here, is correspondingly smaller.
*/
max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1;
/* configure for a burst length of 8 */
/* write latency */
/* Adjust Write Latency for Hard PHY */
wlat = wlat + 1;
/* set a pretty high read latency initially */
gbl->curr_read_lat = rlat + 16;
if (gbl->curr_read_lat > max_latency)
gbl->curr_read_lat = max_latency;
writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
/* advertise write latency */
gbl->curr_write_lat = wlat;
writel(wlat - 2, &phy_mgr_cfg->afi_wlat);
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
/* initialize bit slips */
mem_precharge_and_activate();
}
/* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */
static void mem_skip_calibrate(void)
{
uint32_t vfifo_offset;
uint32_t i, j, r;
debug("%s:%d\n", __func__, __LINE__);
/* Need to update every shadow register set used by the interface */
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
/*
* Set output phase alignment settings appropriate for
* skip calibration.
*/
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
scc_mgr_set_dqs_en_phase(i, 0);
#if IO_DLL_CHAIN_LENGTH == 6
scc_mgr_set_dqdqs_output_phase(i, 6);
#else
scc_mgr_set_dqdqs_output_phase(i, 7);
#endif
/*
* Case:33398
*
* Write data arrives to the I/O two cycles before write
* latency is reached (720 deg).
* -> due to bit-slip in a/c bus
* -> to allow board skew where dqs is longer than ck
* -> how often can this happen!?
* -> can claim back some ptaps for high freq
* support if we can relax this, but i digress...
*
* The write_clk leads mem_ck by 90 deg
* The minimum ptap of the OPA is 180 deg
* Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
* The write_clk is always delayed by 2 ptaps
*
* Hence, to make DQS aligned to CK, we need to delay
* DQS by:
* (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
*
* Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
* gives us the number of ptaps, which simplies to:
*
* (1.25 * IO_DLL_CHAIN_LENGTH - 2)
*/
scc_mgr_set_dqdqs_output_phase(i, (1.25 *
IO_DLL_CHAIN_LENGTH - 2));
}
writel(0xff, &sdr_scc_mgr->dqs_ena);
writel(0xff, &sdr_scc_mgr->dqs_io_ena);
for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
SCC_MGR_GROUP_COUNTER_OFFSET);
writel(0xff, &sdr_scc_mgr->dq_ena);
writel(0xff, &sdr_scc_mgr->dm_ena);
writel(0, &sdr_scc_mgr->update);
}
/* Compensate for simulation model behaviour */
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
scc_mgr_set_dqs_bus_in_delay(i, 10);
scc_mgr_load_dqs(i);
}
writel(0, &sdr_scc_mgr->update);
/*
* ArriaV has hard FIFOs that can only be initialized by incrementing
* in sequencer.
*/
vfifo_offset = CALIB_VFIFO_OFFSET;
for (j = 0; j < vfifo_offset; j++) {
writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
writel(0, &phy_mgr_cmd->fifo_reset);
/*
* For ACV with hard lfifo, we get the skip-cal setting from
* generation-time constant.
*/
gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
}
/* Memory calibration entry point */
static uint32_t mem_calibrate(void)
{
uint32_t i;
uint32_t rank_bgn, sr;
uint32_t write_group, write_test_bgn;
uint32_t read_group, read_test_bgn;
uint32_t run_groups, current_run;
uint32_t failing_groups = 0;
uint32_t group_failed = 0;
uint32_t sr_failed = 0;
debug("%s:%d\n", __func__, __LINE__);
/* Initialize the data settings */
gbl->error_substage = CAL_SUBSTAGE_NIL;
gbl->error_stage = CAL_STAGE_NIL;
gbl->error_group = 0xff;
gbl->fom_in = 0;
gbl->fom_out = 0;
mem_config();
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
SCC_MGR_GROUP_COUNTER_OFFSET);
/* Only needed once to set all groups, pins, DQ, DQS, DM. */
if (i == 0)
scc_mgr_set_hhp_extras();
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
}
if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
/*
* Set VFIFO and LFIFO to instant-on settings in skip
* calibration mode.
*/
mem_skip_calibrate();
} else {
for (i = 0; i < NUM_CALIB_REPEAT; i++) {
/*
* Zero all delay chain/phase settings for all
* groups and all shadow register sets.
*/
scc_mgr_zero_all();
run_groups = ~param->skip_groups;
for (write_group = 0, write_test_bgn = 0; write_group
< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
/* Initialized the group failure */
group_failed = 0;
current_run = run_groups & ((1 <<
RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
run_groups = run_groups >>
RW_MGR_NUM_DQS_PER_WRITE_GROUP;
if (current_run == 0)
continue;
writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
SCC_MGR_GROUP_COUNTER_OFFSET);
scc_mgr_zero_group(write_group, 0);
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
for (read_group = write_group *
RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
read_test_bgn = 0;
read_group < (write_group + 1) *
RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
group_failed == 0;
read_group++, read_test_bgn +=
RW_MGR_MEM_DQ_PER_READ_DQS) {
/* Calibrate the VFIFO */
if (!((STATIC_CALIB_STEPS) &
CALIB_SKIP_VFIFO)) {
if (!rw_mgr_mem_calibrate_vfifo
(read_group,
read_test_bgn)) {
group_failed = 1;
if (!(gbl->
phy_debug_mode_flags &
PHY_DEBUG_SWEEP_ALL_GROUPS)) {
return 0;
}
}
}
}
/* Calibrate the output side */
if (group_failed == 0) {
for (rank_bgn = 0, sr = 0; rank_bgn
< RW_MGR_MEM_NUMBER_OF_RANKS;
rank_bgn +=
NUM_RANKS_PER_SHADOW_REG,
++sr) {
sr_failed = 0;
if (!((STATIC_CALIB_STEPS) &
CALIB_SKIP_WRITES)) {
if ((STATIC_CALIB_STEPS)
& CALIB_SKIP_DELAY_SWEEPS) {
/* not needed in quick mode! */
} else {
/*
* Determine if this set of
* ranks should be skipped
* entirely.
*/
if (!param->skip_shadow_regs[sr]) {
if (!rw_mgr_mem_calibrate_writes
(rank_bgn, write_group,
write_test_bgn)) {
sr_failed = 1;
if (!(gbl->
phy_debug_mode_flags &
PHY_DEBUG_SWEEP_ALL_GROUPS)) {
return 0;
}
}
}
}
}
if (sr_failed != 0)
group_failed = 1;
}
}
if (group_failed == 0) {
for (read_group = write_group *
RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
read_test_bgn = 0;
read_group < (write_group + 1)
* RW_MGR_MEM_IF_READ_DQS_WIDTH
/ RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
group_failed == 0;
read_group++, read_test_bgn +=
RW_MGR_MEM_DQ_PER_READ_DQS) {
if (!((STATIC_CALIB_STEPS) &
CALIB_SKIP_WRITES)) {
if (!rw_mgr_mem_calibrate_vfifo_end
(read_group, read_test_bgn)) {
group_failed = 1;
if (!(gbl->phy_debug_mode_flags
& PHY_DEBUG_SWEEP_ALL_GROUPS)) {
return 0;
}
}
}
}
}
if (group_failed != 0)
failing_groups++;
}
/*
* USER If there are any failing groups then report
* the failure.
*/
if (failing_groups != 0)
return 0;
/* Calibrate the LFIFO */
if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
/*
* If we're skipping groups as part of debug,
* don't calibrate LFIFO.
*/
if (param->skip_groups == 0) {
if (!rw_mgr_mem_calibrate_lfifo())
return 0;
}
}
}
}
/*
* Do not remove this line as it makes sure all of our decisions
* have been applied.
*/
writel(0, &sdr_scc_mgr->update);
return 1;
}
static uint32_t run_mem_calibrate(void)
{
uint32_t pass;
uint32_t debug_info;
debug("%s:%d\n", __func__, __LINE__);
/* Reset pass/fail status shown on afi_cal_success/fail */
writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
/* stop tracking manger */
uint32_t ctrlcfg = readl(&sdr_ctrl->ctrl_cfg);
writel(ctrlcfg & 0xFFBFFFFF, &sdr_ctrl->ctrl_cfg);
initialize();
rw_mgr_mem_initialize();
pass = mem_calibrate();
mem_precharge_and_activate();
writel(0, &phy_mgr_cmd->fifo_reset);
/*
* Handoff:
* Don't return control of the PHY back to AFI when in debug mode.
*/
if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) {
rw_mgr_mem_handoff();
/*
* In Hard PHY this is a 2-bit control:
* 0: AFI Mux Select
* 1: DDIO Mux Select
*/
writel(0x2, &phy_mgr_cfg->mux_sel);
writel(ctrlcfg, &sdr_ctrl->ctrl_cfg);
if (pass) {
printf("%s: CALIBRATION PASSED\n", __FILE__);
gbl->fom_in /= 2;
gbl->fom_out /= 2;
if (gbl->fom_in > 0xff)
gbl->fom_in = 0xff;
if (gbl->fom_out > 0xff)
gbl->fom_out = 0xff;
/* Update the FOM in the register file */
debug_info = gbl->fom_in;
debug_info |= gbl->fom_out << 8;
writel(debug_info, &sdr_reg_file->fom);
writel(debug_info, &phy_mgr_cfg->cal_debug_info);
writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
} else {
printf("%s: CALIBRATION FAILED\n", __FILE__);
debug_info = gbl->error_stage;
debug_info |= gbl->error_substage << 8;
debug_info |= gbl->error_group << 16;
writel(debug_info, &sdr_reg_file->failing_stage);
writel(debug_info, &phy_mgr_cfg->cal_debug_info);
writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
/* Update the failing group/stage in the register file */
debug_info = gbl->error_stage;
debug_info |= gbl->error_substage << 8;
debug_info |= gbl->error_group << 16;
writel(debug_info, &sdr_reg_file->failing_stage);
}
return pass;
}
/**
* hc_initialize_rom_data() - Initialize ROM data
*
* Initialize ROM data.
*/
static void hc_initialize_rom_data(void)
{
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
writel(inst_rom_init[i], addr + (i << 2));
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
writel(ac_rom_init[i], addr + (i << 2));
/**
* initialize_reg_file() - Initialize SDR register file
*
* Initialize SDR register file.
*/
static void initialize_reg_file(void)
{
/* Initialize the register file with the correct data */
writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
writel(0, &sdr_reg_file->debug_data_addr);
writel(0, &sdr_reg_file->cur_stage);
writel(0, &sdr_reg_file->fom);
writel(0, &sdr_reg_file->failing_stage);
writel(0, &sdr_reg_file->debug1);
writel(0, &sdr_reg_file->debug2);
/**
* initialize_hps_phy() - Initialize HPS PHY
*
* Initialize HPS PHY.
*/
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
static void initialize_hps_phy(void)
{
uint32_t reg;
/*
* Tracking also gets configured here because it's in the
* same register.
*/
uint32_t trk_sample_count = 7500;
uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
/*
* Format is number of outer loops in the 16 MSB, sample
* count in 16 LSB.
*/
reg = 0;
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
/*
* This field selects the intrinsic latency to RDATA_EN/FULL path.
* 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
*/
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
trk_sample_count);
writel(reg, &sdr_ctrl->phy_ctrl0);
reg = 0;
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
trk_sample_count >>
SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
trk_long_idle_sample_count);
writel(reg, &sdr_ctrl->phy_ctrl1);
reg = 0;
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
trk_long_idle_sample_count >>
SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
writel(reg, &sdr_ctrl->phy_ctrl2);
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
}
static void initialize_tracking(void)
{
uint32_t concatenated_longidle = 0x0;
uint32_t concatenated_delays = 0x0;
uint32_t concatenated_rw_addr = 0x0;
uint32_t concatenated_refresh = 0x0;
uint32_t trk_sample_count = 7500;
uint32_t dtaps_per_ptap;
uint32_t tmp_delay;
/*
* compute usable version of value in case we skip full
* computation later
*/
dtaps_per_ptap = 0;
tmp_delay = 0;
while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
dtaps_per_ptap++;
tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
}
dtaps_per_ptap--;
concatenated_longidle = concatenated_longidle ^ 10;
/*longidle outer loop */
concatenated_longidle = concatenated_longidle << 16;
concatenated_longidle = concatenated_longidle ^ 100;
/*longidle sample count */
concatenated_delays = concatenated_delays ^ 243;
/* trfc, worst case of 933Mhz 4Gb */
concatenated_delays = concatenated_delays << 8;
concatenated_delays = concatenated_delays ^ 14;
/* trcd, worst case */
concatenated_delays = concatenated_delays << 8;
concatenated_delays = concatenated_delays ^ 10;
/* vfifo wait */
concatenated_delays = concatenated_delays << 8;
concatenated_delays = concatenated_delays ^ 4;
/* mux delay */
concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE;
concatenated_rw_addr = concatenated_rw_addr << 8;
concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1;
concatenated_rw_addr = concatenated_rw_addr << 8;
concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ;
concatenated_rw_addr = concatenated_rw_addr << 8;
concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL;
concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL;
concatenated_refresh = concatenated_refresh << 24;
concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */
/* Initialize the register file with the correct data */
writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
writel(trk_sample_count, &sdr_reg_file->trk_sample_count);
writel(concatenated_longidle, &sdr_reg_file->trk_longidle);
writel(concatenated_delays, &sdr_reg_file->delays);
writel(concatenated_rw_addr, &sdr_reg_file->trk_rw_mgr_addr);
writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, &sdr_reg_file->trk_read_dqs_width);
writel(concatenated_refresh, &sdr_reg_file->trk_rfsh);
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
}
int sdram_calibration_full(void)
{
struct param_type my_param;
struct gbl_type my_gbl;
uint32_t pass;
uint32_t i;
param = &my_param;
gbl = &my_gbl;
/* Initialize the debug mode flags */
gbl->phy_debug_mode_flags = 0;
/* Set the calibration enabled by default */
gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
/*
* Only sweep all groups (regardless of fail state) by default
* Set enabled read test by default.
*/
#if DISABLE_GUARANTEED_READ
gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
#endif
/* Initialize the register file */
initialize_reg_file();
/* Initialize any PHY CSR */
initialize_hps_phy();
scc_mgr_initialize();
initialize_tracking();
/* USER Enable all ranks, groups */
for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++)
param->skip_ranks[i] = 0;
for (i = 0; i < NUM_SHADOW_REGS; ++i)
param->skip_shadow_regs[i] = 0;
param->skip_groups = 0;
printf("%s: Preparing to start memory calibration\n", __FILE__);
debug("%s:%d\n", __func__, __LINE__);
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
debug_cond(DLEVEL == 1,
"DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
debug_cond(DLEVEL == 1,
"dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
IO_IO_OUT2_DELAY_MAX);
debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
hc_initialize_rom_data();
/* update info for sims */
reg_file_set_stage(CAL_STAGE_NIL);
reg_file_set_group(0);
/*
* Load global needed for those actions that require
* some dynamic calibration support.
*/
dyn_calib_steps = STATIC_CALIB_STEPS;
/*
* Load global to allow dynamic selection of delay loop settings
* based on calibration mode.
*/
if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
skip_delay_mask = 0xff;
else
skip_delay_mask = 0x0;
pass = run_mem_calibrate();
printf("%s: Calibration complete\n", __FILE__);
return pass;
}