Skip to content
Snippets Groups Projects
bootm.c 24.4 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * (C) Copyright 2000-2009
     * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
     *
     * SPDX-License-Identifier:	GPL-2.0+
     */
    
    
    #ifndef USE_HOSTCC
    
    #include <common.h>
    
    #include <bootstage.h>
    
    #include <bzlib.h>
    
    #include <errno.h>
    
    #include <fdt_support.h>
    #include <lmb.h>
    #include <malloc.h>
    #include <asm/io.h>
    #include <linux/lzo.h>
    #include <lzma/LzmaTypes.h>
    #include <lzma/LzmaDec.h>
    #include <lzma/LzmaTools.h>
    #if defined(CONFIG_CMD_USB)
    #include <usb.h>
    #endif
    
    #else
    #include "mkimage.h"
    #endif
    
    #include <command.h>
    #include <bootm.h>
    #include <image.h>
    
    
    #ifndef CONFIG_SYS_BOOTM_LEN
    /* use 8MByte as default max gunzip size */
    #define CONFIG_SYS_BOOTM_LEN	0x800000
    #endif
    
    #define IH_INITRD_ARCH IH_ARCH_DEFAULT
    
    
    #ifndef USE_HOSTCC
    
    DECLARE_GLOBAL_DATA_PTR;
    
    
    static const void *boot_get_kernel(cmd_tbl_t *cmdtp, int flag, int argc,
    				   char * const argv[], bootm_headers_t *images,
    				   ulong *os_data, ulong *os_len);
    
    #ifdef CONFIG_LMB
    static void boot_start_lmb(bootm_headers_t *images)
    {
    	ulong		mem_start;
    	phys_size_t	mem_size;
    
    	lmb_init(&images->lmb);
    
    	mem_start = getenv_bootm_low();
    	mem_size = getenv_bootm_size();
    
    	lmb_add(&images->lmb, (phys_addr_t)mem_start, mem_size);
    
    	arch_lmb_reserve(&images->lmb);
    	board_lmb_reserve(&images->lmb);
    }
    #else
    #define lmb_reserve(lmb, base, size)
    static inline void boot_start_lmb(bootm_headers_t *images) { }
    #endif
    
    static int bootm_start(cmd_tbl_t *cmdtp, int flag, int argc,
    		       char * const argv[])
    {
    	memset((void *)&images, 0, sizeof(images));
    	images.verify = getenv_yesno("verify");
    
    	boot_start_lmb(&images);
    
    	bootstage_mark_name(BOOTSTAGE_ID_BOOTM_START, "bootm_start");
    	images.state = BOOTM_STATE_START;
    
    	return 0;
    }
    
    static int bootm_find_os(cmd_tbl_t *cmdtp, int flag, int argc,
    			 char * const argv[])
    {
    	const void *os_hdr;
    	bool ep_found = false;
    
    
    	/* get kernel image header, start address and length */
    	os_hdr = boot_get_kernel(cmdtp, flag, argc, argv,
    			&images, &images.os.image_start, &images.os.image_len);
    	if (images.os.image_len == 0) {
    		puts("ERROR: can't get kernel image!\n");
    		return 1;
    	}
    
    	/* get image parameters */
    	switch (genimg_get_format(os_hdr)) {
    #if defined(CONFIG_IMAGE_FORMAT_LEGACY)
    	case IMAGE_FORMAT_LEGACY:
    		images.os.type = image_get_type(os_hdr);
    		images.os.comp = image_get_comp(os_hdr);
    		images.os.os = image_get_os(os_hdr);
    
    		images.os.end = image_get_image_end(os_hdr);
    		images.os.load = image_get_load(os_hdr);
    
    		images.os.arch = image_get_arch(os_hdr);
    
    		break;
    #endif
    #if defined(CONFIG_FIT)
    	case IMAGE_FORMAT_FIT:
    		if (fit_image_get_type(images.fit_hdr_os,
    				       images.fit_noffset_os,
    				       &images.os.type)) {
    			puts("Can't get image type!\n");
    			bootstage_error(BOOTSTAGE_ID_FIT_TYPE);
    			return 1;
    		}
    
    		if (fit_image_get_comp(images.fit_hdr_os,
    				       images.fit_noffset_os,
    				       &images.os.comp)) {
    			puts("Can't get image compression!\n");
    			bootstage_error(BOOTSTAGE_ID_FIT_COMPRESSION);
    			return 1;
    		}
    
    		if (fit_image_get_os(images.fit_hdr_os, images.fit_noffset_os,
    				     &images.os.os)) {
    			puts("Can't get image OS!\n");
    			bootstage_error(BOOTSTAGE_ID_FIT_OS);
    			return 1;
    		}
    
    
    		if (fit_image_get_arch(images.fit_hdr_os,
    				       images.fit_noffset_os,
    				       &images.os.arch)) {
    			puts("Can't get image ARCH!\n");
    			return 1;
    		}
    
    
    		images.os.end = fit_get_end(images.fit_hdr_os);
    
    		if (fit_image_get_load(images.fit_hdr_os, images.fit_noffset_os,
    				       &images.os.load)) {
    			puts("Can't get image load address!\n");
    			bootstage_error(BOOTSTAGE_ID_FIT_LOADADDR);
    			return 1;
    		}
    		break;
    #endif
    #ifdef CONFIG_ANDROID_BOOT_IMAGE
    	case IMAGE_FORMAT_ANDROID:
    		images.os.type = IH_TYPE_KERNEL;
    		images.os.comp = IH_COMP_NONE;
    		images.os.os = IH_OS_LINUX;
    
    		images.os.end = android_image_get_end(os_hdr);
    		images.os.load = android_image_get_kload(os_hdr);
    
    		images.ep = images.os.load;
    		ep_found = true;
    
    		break;
    #endif
    	default:
    		puts("ERROR: unknown image format type!\n");
    		return 1;
    	}
    
    
    	/* If we have a valid setup.bin, we will use that for entry (x86) */
    
    	if (images.os.arch == IH_ARCH_I386 ||
    	    images.os.arch == IH_ARCH_X86_64) {
    
    		ulong len;
    
    		ret = boot_get_setup(&images, IH_ARCH_I386, &images.ep, &len);
    		if (ret < 0 && ret != -ENOENT) {
    			puts("Could not find a valid setup.bin for x86\n");
    			return 1;
    		}
    		/* Kernel entry point is the setup.bin */
    	} else if (images.legacy_hdr_valid) {
    
    		images.ep = image_get_ep(&images.legacy_hdr_os_copy);
    #if defined(CONFIG_FIT)
    	} else if (images.fit_uname_os) {
    		int ret;
    
    		ret = fit_image_get_entry(images.fit_hdr_os,
    					  images.fit_noffset_os, &images.ep);
    		if (ret) {
    			puts("Can't get entry point property!\n");
    			return 1;
    		}
    #endif
    	} else if (!ep_found) {
    		puts("Could not find kernel entry point!\n");
    		return 1;
    	}
    
    	if (images.os.type == IH_TYPE_KERNEL_NOLOAD) {
    		images.os.load = images.os.image_start;
    		images.ep += images.os.load;
    	}
    
    	images.os.start = (ulong)os_hdr;
    
    	return 0;
    }
    
    static int bootm_find_ramdisk(int flag, int argc, char * const argv[])
    {
    	int ret;
    
    	/* find ramdisk */
    	ret = boot_get_ramdisk(argc, argv, &images, IH_INITRD_ARCH,
    			       &images.rd_start, &images.rd_end);
    	if (ret) {
    		puts("Ramdisk image is corrupt or invalid\n");
    		return 1;
    	}
    
    	return 0;
    }
    
    #if defined(CONFIG_OF_LIBFDT)
    static int bootm_find_fdt(int flag, int argc, char * const argv[])
    {
    	int ret;
    
    	/* find flattened device tree */
    	ret = boot_get_fdt(flag, argc, argv, IH_ARCH_DEFAULT, &images,
    			   &images.ft_addr, &images.ft_len);
    	if (ret) {
    		puts("Could not find a valid device tree\n");
    		return 1;
    	}
    
    	set_working_fdt_addr(images.ft_addr);
    
    	return 0;
    }
    #endif
    
    int bootm_find_ramdisk_fdt(int flag, int argc, char * const argv[])
    {
    	if (bootm_find_ramdisk(flag, argc, argv))
    		return 1;
    
    #if defined(CONFIG_OF_LIBFDT)
    	if (bootm_find_fdt(flag, argc, argv))
    		return 1;
    #endif
    
    	return 0;
    }
    
    static int bootm_find_other(cmd_tbl_t *cmdtp, int flag, int argc,
    			    char * const argv[])
    {
    	if (((images.os.type == IH_TYPE_KERNEL) ||
    	     (images.os.type == IH_TYPE_KERNEL_NOLOAD) ||
    	     (images.os.type == IH_TYPE_MULTI)) &&
    	    (images.os.os == IH_OS_LINUX ||
    		 images.os.os == IH_OS_VXWORKS))
    		return bootm_find_ramdisk_fdt(flag, argc, argv);
    
    	return 0;
    }
    
    /**
     * print_decomp_msg() - Print a suitable decompression/loading message
     *
     * @type:	OS type (IH_OS_...)
     * @comp_type:	Compression type being used (IH_COMP_...)
     * @is_xip:	true if the load address matches the image start
     */
    static void print_decomp_msg(int comp_type, int type, bool is_xip)
    
    	const char *name = genimg_get_type_name(type);
    
    	if (comp_type == IH_COMP_NONE)
    		printf("   %s %s ... ", is_xip ? "XIP" : "Loading", name);
    	else
    		printf("   Uncompressing %s ... ", name);
    
    /**
     * handle_decomp_error() - display a decompression error
     *
     * This function tries to produce a useful message. In the case where the
     * uncompressed size is the same as the available space, we can assume that
     * the image is too large for the buffer.
     *
     * @comp_type:		Compression type being used (IH_COMP_...)
     * @uncomp_size:	Number of bytes uncompressed
     * @unc_len:		Amount of space available for decompression
     * @ret:		Error code to report
     * @return BOOTM_ERR_RESET, indicating that the board must be reset
     */
    static int handle_decomp_error(int comp_type, size_t uncomp_size,
    			       size_t unc_len, int ret)
    
    	const char *name = genimg_get_comp_name(comp_type);
    
    	if (uncomp_size >= unc_len)
    		printf("Image too large: increase CONFIG_SYS_BOOTM_LEN\n");
    
    		printf("%s: uncompress error %d\n", name, ret);
    
    	/*
    	 * The decompression routines are now safe, so will not write beyond
    	 * their bounds. Probably it is not necessary to reset, but maintain
    	 * the current behaviour for now.
    	 */
    	printf("Must RESET board to recover\n");
    
    #ifndef USE_HOSTCC
    	bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE);
    #endif
    
    	return BOOTM_ERR_RESET;
    }
    
    int bootm_decomp_image(int comp, ulong load, ulong image_start, int type,
    		       void *load_buf, void *image_buf, ulong image_len,
    		       uint unc_len, ulong *load_end)
    
    	print_decomp_msg(comp, type, load == image_start);
    
    
    	/*
    	 * Load the image to the right place, decompressing if needed. After
    	 * this, image_len will be set to the number of uncompressed bytes
    	 * loaded, ret will be non-zero on error.
    	 */
    
    	switch (comp) {
    	case IH_COMP_NONE:
    
    		if (load == image_start)
    			break;
    		if (image_len <= unc_len)
    
    			memmove_wd(load_buf, image_buf, image_len, CHUNKSZ);
    
    		break;
    #ifdef CONFIG_GZIP
    
    	case IH_COMP_GZIP: {
    		ret = gunzip(load_buf, unc_len, image_buf, &image_len);
    
    #endif /* CONFIG_GZIP */
    #ifdef CONFIG_BZIP2
    
    		/*
    		 * If we've got less than 4 MB of malloc() space,
    		 * use slower decompression algorithm which requires
    		 * at most 2300 KB of memory.
    		 */
    
    		ret = BZ2_bzBuffToBuffDecompress(load_buf, &size,
    
    			image_buf, image_len,
    			CONFIG_SYS_MALLOC_LEN < (4096 * 1024), 0);
    
    #endif /* CONFIG_BZIP2 */
    #ifdef CONFIG_LZMA
    	case IH_COMP_LZMA: {
    		SizeT lzma_len = unc_len;
    
    		ret = lzmaBuffToBuffDecompress(load_buf, &lzma_len,
    					       image_buf, image_len);
    
    		break;
    	}
    #endif /* CONFIG_LZMA */
    #ifdef CONFIG_LZO
    	case IH_COMP_LZO: {
    		size_t size = unc_len;
    
    		ret = lzop_decompress(image_buf, image_len, load_buf, &size);
    
    		break;
    	}
    #endif /* CONFIG_LZO */
    	default:
    		printf("Unimplemented compression type %d\n", comp);
    		return BOOTM_ERR_UNIMPLEMENTED;
    	}
    
    
    	if (ret)
    		return handle_decomp_error(comp, image_len, unc_len, ret);
    	*load_end = load + image_len;
    
    
    #ifndef USE_HOSTCC
    
    static int bootm_load_os(bootm_headers_t *images, unsigned long *load_end,
    			 int boot_progress)
    {
    	image_info_t os = images->os;
    	ulong load = os.load;
    	ulong blob_start = os.start;
    	ulong blob_end = os.end;
    	ulong image_start = os.image_start;
    	ulong image_len = os.image_len;
    	bool no_overlap;
    	void *load_buf, *image_buf;
    	int err;
    
    	load_buf = map_sysmem(load, 0);
    	image_buf = map_sysmem(os.image_start, image_len);
    
    	err = bootm_decomp_image(os.comp, load, os.image_start, os.type,
    				 load_buf, image_buf, image_len,
    				 CONFIG_SYS_BOOTM_LEN, load_end);
    
    	if (err) {
    		bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE);
    		return err;
    	}
    
    	flush_cache(load, (*load_end - load) * sizeof(ulong));
    
    	debug("   kernel loaded at 0x%08lx, end = 0x%08lx\n", load, *load_end);
    	bootstage_mark(BOOTSTAGE_ID_KERNEL_LOADED);
    
    
    	no_overlap = (os.comp == IH_COMP_NONE && load == image_start);
    
    
    	if (!no_overlap && (load < blob_end) && (*load_end > blob_start)) {
    		debug("images.os.start = 0x%lX, images.os.end = 0x%lx\n",
    		      blob_start, blob_end);
    		debug("images.os.load = 0x%lx, load_end = 0x%lx\n", load,
    		      *load_end);
    
    		/* Check what type of image this is. */
    		if (images->legacy_hdr_valid) {
    			if (image_get_type(&images->legacy_hdr_os_copy)
    					== IH_TYPE_MULTI)
    				puts("WARNING: legacy format multi component image overwritten\n");
    			return BOOTM_ERR_OVERLAP;
    		} else {
    			puts("ERROR: new format image overwritten - must RESET the board to recover\n");
    			bootstage_error(BOOTSTAGE_ID_OVERWRITTEN);
    			return BOOTM_ERR_RESET;
    		}
    	}
    
    	return 0;
    }
    
    /**
     * bootm_disable_interrupts() - Disable interrupts in preparation for load/boot
     *
     * @return interrupt flag (0 if interrupts were disabled, non-zero if they were
     *	enabled)
     */
    ulong bootm_disable_interrupts(void)
    {
    	ulong iflag;
    
    	/*
    	 * We have reached the point of no return: we are going to
    	 * overwrite all exception vector code, so we cannot easily
    	 * recover from any failures any more...
    	 */
    	iflag = disable_interrupts();
    #ifdef CONFIG_NETCONSOLE
    	/* Stop the ethernet stack if NetConsole could have left it up */
    	eth_halt();
    	eth_unregister(eth_get_dev());
    #endif
    
    #if defined(CONFIG_CMD_USB)
    	/*
    	 * turn off USB to prevent the host controller from writing to the
    	 * SDRAM while Linux is booting. This could happen (at least for OHCI
    	 * controller), because the HCCA (Host Controller Communication Area)
    	 * lies within the SDRAM and the host controller writes continously to
    	 * this area (as busmaster!). The HccaFrameNumber is for example
    	 * updated every 1 ms within the HCCA structure in SDRAM! For more
    	 * details see the OpenHCI specification.
    	 */
    	usb_stop();
    #endif
    	return iflag;
    }
    
    #if defined(CONFIG_SILENT_CONSOLE) && !defined(CONFIG_SILENT_U_BOOT_ONLY)
    
    #define CONSOLE_ARG     "console="
    #define CONSOLE_ARG_LEN (sizeof(CONSOLE_ARG) - 1)
    
    static void fixup_silent_linux(void)
    {
    	char *buf;
    	const char *env_val;
    	char *cmdline = getenv("bootargs");
    	int want_silent;
    
    	/*
    	 * Only fix cmdline when requested. The environment variable can be:
    	 *
    	 *	no - we never fixup
    	 *	yes - we always fixup
    	 *	unset - we rely on the console silent flag
    	 */
    	want_silent = getenv_yesno("silent_linux");
    	if (want_silent == 0)
    		return;
    	else if (want_silent == -1 && !(gd->flags & GD_FLG_SILENT))
    		return;
    
    	debug("before silent fix-up: %s\n", cmdline);
    	if (cmdline && (cmdline[0] != '\0')) {
    		char *start = strstr(cmdline, CONSOLE_ARG);
    
    		/* Allocate space for maximum possible new command line */
    		buf = malloc(strlen(cmdline) + 1 + CONSOLE_ARG_LEN + 1);
    		if (!buf) {
    			debug("%s: out of memory\n", __func__);
    			return;
    		}
    
    		if (start) {
    			char *end = strchr(start, ' ');
    			int num_start_bytes = start - cmdline + CONSOLE_ARG_LEN;
    
    			strncpy(buf, cmdline, num_start_bytes);
    			if (end)
    				strcpy(buf + num_start_bytes, end);
    			else
    				buf[num_start_bytes] = '\0';
    		} else {
    			sprintf(buf, "%s %s", cmdline, CONSOLE_ARG);
    		}
    		env_val = buf;
    	} else {
    		buf = NULL;
    		env_val = CONSOLE_ARG;
    	}
    
    	setenv("bootargs", env_val);
    	debug("after silent fix-up: %s\n", env_val);
    	free(buf);
    }
    #endif /* CONFIG_SILENT_CONSOLE */
    
    /**
     * Execute selected states of the bootm command.
     *
     * Note the arguments to this state must be the first argument, Any 'bootm'
     * or sub-command arguments must have already been taken.
     *
     * Note that if states contains more than one flag it MUST contain
     * BOOTM_STATE_START, since this handles and consumes the command line args.
     *
     * Also note that aside from boot_os_fn functions and bootm_load_os no other
     * functions we store the return value of in 'ret' may use a negative return
     * value, without special handling.
     *
     * @param cmdtp		Pointer to bootm command table entry
     * @param flag		Command flags (CMD_FLAG_...)
     * @param argc		Number of subcommand arguments (0 = no arguments)
     * @param argv		Arguments
     * @param states	Mask containing states to run (BOOTM_STATE_...)
     * @param images	Image header information
     * @param boot_progress 1 to show boot progress, 0 to not do this
     * @return 0 if ok, something else on error. Some errors will cause this
     *	function to perform a reboot! If states contains BOOTM_STATE_OS_GO
     *	then the intent is to boot an OS, so this function will not return
     *	unless the image type is standalone.
     */
    int do_bootm_states(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[],
    		    int states, bootm_headers_t *images, int boot_progress)
    {
    	boot_os_fn *boot_fn;
    	ulong iflag = 0;
    	int ret = 0, need_boot_fn;
    
    	images->state |= states;
    
    	/*
    	 * Work through the states and see how far we get. We stop on
    	 * any error.
    	 */
    	if (states & BOOTM_STATE_START)
    		ret = bootm_start(cmdtp, flag, argc, argv);
    
    	if (!ret && (states & BOOTM_STATE_FINDOS))
    		ret = bootm_find_os(cmdtp, flag, argc, argv);
    
    	if (!ret && (states & BOOTM_STATE_FINDOTHER)) {
    		ret = bootm_find_other(cmdtp, flag, argc, argv);
    		argc = 0;	/* consume the args */
    	}
    
    	/* Load the OS */
    	if (!ret && (states & BOOTM_STATE_LOADOS)) {
    		ulong load_end;
    
    		iflag = bootm_disable_interrupts();
    		ret = bootm_load_os(images, &load_end, 0);
    		if (ret == 0)
    			lmb_reserve(&images->lmb, images->os.load,
    				    (load_end - images->os.load));
    		else if (ret && ret != BOOTM_ERR_OVERLAP)
    			goto err;
    		else if (ret == BOOTM_ERR_OVERLAP)
    			ret = 0;
    #if defined(CONFIG_SILENT_CONSOLE) && !defined(CONFIG_SILENT_U_BOOT_ONLY)
    		if (images->os.os == IH_OS_LINUX)
    			fixup_silent_linux();
    #endif
    	}
    
    	/* Relocate the ramdisk */
    #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH
    	if (!ret && (states & BOOTM_STATE_RAMDISK)) {
    		ulong rd_len = images->rd_end - images->rd_start;
    
    		ret = boot_ramdisk_high(&images->lmb, images->rd_start,
    			rd_len, &images->initrd_start, &images->initrd_end);
    		if (!ret) {
    			setenv_hex("initrd_start", images->initrd_start);
    			setenv_hex("initrd_end", images->initrd_end);
    		}
    	}
    #endif
    #if defined(CONFIG_OF_LIBFDT) && defined(CONFIG_LMB)
    	if (!ret && (states & BOOTM_STATE_FDT)) {
    		boot_fdt_add_mem_rsv_regions(&images->lmb, images->ft_addr);
    		ret = boot_relocate_fdt(&images->lmb, &images->ft_addr,
    					&images->ft_len);
    	}
    #endif
    
    	/* From now on, we need the OS boot function */
    	if (ret)
    		return ret;
    	boot_fn = bootm_os_get_boot_func(images->os.os);
    	need_boot_fn = states & (BOOTM_STATE_OS_CMDLINE |
    			BOOTM_STATE_OS_BD_T | BOOTM_STATE_OS_PREP |
    			BOOTM_STATE_OS_FAKE_GO | BOOTM_STATE_OS_GO);
    	if (boot_fn == NULL && need_boot_fn) {
    		if (iflag)
    			enable_interrupts();
    		printf("ERROR: booting os '%s' (%d) is not supported\n",
    		       genimg_get_os_name(images->os.os), images->os.os);
    		bootstage_error(BOOTSTAGE_ID_CHECK_BOOT_OS);
    		return 1;
    	}
    
    	/* Call various other states that are not generally used */
    	if (!ret && (states & BOOTM_STATE_OS_CMDLINE))
    		ret = boot_fn(BOOTM_STATE_OS_CMDLINE, argc, argv, images);
    	if (!ret && (states & BOOTM_STATE_OS_BD_T))
    		ret = boot_fn(BOOTM_STATE_OS_BD_T, argc, argv, images);
    	if (!ret && (states & BOOTM_STATE_OS_PREP))
    		ret = boot_fn(BOOTM_STATE_OS_PREP, argc, argv, images);
    
    #ifdef CONFIG_TRACE
    	/* Pretend to run the OS, then run a user command */
    	if (!ret && (states & BOOTM_STATE_OS_FAKE_GO)) {
    		char *cmd_list = getenv("fakegocmd");
    
    		ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_FAKE_GO,
    				images, boot_fn);
    		if (!ret && cmd_list)
    			ret = run_command_list(cmd_list, -1, flag);
    	}
    #endif
    
    	/* Check for unsupported subcommand. */
    	if (ret) {
    		puts("subcommand not supported\n");
    		return ret;
    	}
    
    	/* Now run the OS! We hope this doesn't return */
    	if (!ret && (states & BOOTM_STATE_OS_GO))
    		ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_GO,
    				images, boot_fn);
    
    	/* Deal with any fallout */
    err:
    	if (iflag)
    		enable_interrupts();
    
    	if (ret == BOOTM_ERR_UNIMPLEMENTED)
    		bootstage_error(BOOTSTAGE_ID_DECOMP_UNIMPL);
    	else if (ret == BOOTM_ERR_RESET)
    		do_reset(cmdtp, flag, argc, argv);
    
    	return ret;
    }
    
    #if defined(CONFIG_IMAGE_FORMAT_LEGACY)
    /**
     * image_get_kernel - verify legacy format kernel image
     * @img_addr: in RAM address of the legacy format image to be verified
     * @verify: data CRC verification flag
     *
     * image_get_kernel() verifies legacy image integrity and returns pointer to
     * legacy image header if image verification was completed successfully.
     *
     * returns:
     *     pointer to a legacy image header if valid image was found
     *     otherwise return NULL
     */
    static image_header_t *image_get_kernel(ulong img_addr, int verify)
    {
    	image_header_t *hdr = (image_header_t *)img_addr;
    
    	if (!image_check_magic(hdr)) {
    		puts("Bad Magic Number\n");
    		bootstage_error(BOOTSTAGE_ID_CHECK_MAGIC);
    		return NULL;
    	}
    	bootstage_mark(BOOTSTAGE_ID_CHECK_HEADER);
    
    	if (!image_check_hcrc(hdr)) {
    		puts("Bad Header Checksum\n");
    		bootstage_error(BOOTSTAGE_ID_CHECK_HEADER);
    		return NULL;
    	}
    
    	bootstage_mark(BOOTSTAGE_ID_CHECK_CHECKSUM);
    	image_print_contents(hdr);
    
    	if (verify) {
    		puts("   Verifying Checksum ... ");
    		if (!image_check_dcrc(hdr)) {
    			printf("Bad Data CRC\n");
    			bootstage_error(BOOTSTAGE_ID_CHECK_CHECKSUM);
    			return NULL;
    		}
    		puts("OK\n");
    	}
    	bootstage_mark(BOOTSTAGE_ID_CHECK_ARCH);
    
    	if (!image_check_target_arch(hdr)) {
    		printf("Unsupported Architecture 0x%x\n", image_get_arch(hdr));
    		bootstage_error(BOOTSTAGE_ID_CHECK_ARCH);
    		return NULL;
    	}
    	return hdr;
    }
    #endif
    
    /**
     * boot_get_kernel - find kernel image
     * @os_data: pointer to a ulong variable, will hold os data start address
     * @os_len: pointer to a ulong variable, will hold os data length
     *
     * boot_get_kernel() tries to find a kernel image, verifies its integrity
     * and locates kernel data.
     *
     * returns:
     *     pointer to image header if valid image was found, plus kernel start
     *     address and length, otherwise NULL
     */
    static const void *boot_get_kernel(cmd_tbl_t *cmdtp, int flag, int argc,
    				   char * const argv[], bootm_headers_t *images,
    				   ulong *os_data, ulong *os_len)
    {
    #if defined(CONFIG_IMAGE_FORMAT_LEGACY)
    	image_header_t	*hdr;
    #endif
    	ulong		img_addr;
    	const void *buf;
    	const char	*fit_uname_config = NULL;
    	const char	*fit_uname_kernel = NULL;
    
    #if defined(CONFIG_FIT)
    
    	int		os_noffset;
    #endif
    
    
    	img_addr = genimg_get_kernel_addr_fit(argc < 1 ? NULL : argv[0],
    					      &fit_uname_config,
    					      &fit_uname_kernel);
    
    
    	bootstage_mark(BOOTSTAGE_ID_CHECK_MAGIC);
    
    	/* copy from dataflash if needed */
    	img_addr = genimg_get_image(img_addr);
    
    	/* check image type, for FIT images get FIT kernel node */
    	*os_data = *os_len = 0;
    	buf = map_sysmem(img_addr, 0);
    	switch (genimg_get_format(buf)) {
    #if defined(CONFIG_IMAGE_FORMAT_LEGACY)
    	case IMAGE_FORMAT_LEGACY:
    		printf("## Booting kernel from Legacy Image at %08lx ...\n",
    		       img_addr);
    		hdr = image_get_kernel(img_addr, images->verify);
    		if (!hdr)
    			return NULL;
    		bootstage_mark(BOOTSTAGE_ID_CHECK_IMAGETYPE);
    
    		/* get os_data and os_len */
    		switch (image_get_type(hdr)) {
    		case IH_TYPE_KERNEL:
    		case IH_TYPE_KERNEL_NOLOAD:
    			*os_data = image_get_data(hdr);
    			*os_len = image_get_data_size(hdr);
    			break;
    		case IH_TYPE_MULTI:
    			image_multi_getimg(hdr, 0, os_data, os_len);
    			break;
    		case IH_TYPE_STANDALONE:
    			*os_data = image_get_data(hdr);
    			*os_len = image_get_data_size(hdr);
    			break;
    		default:
    			printf("Wrong Image Type for %s command\n",
    			       cmdtp->name);
    			bootstage_error(BOOTSTAGE_ID_CHECK_IMAGETYPE);
    			return NULL;
    		}
    
    		/*
    		 * copy image header to allow for image overwrites during
    		 * kernel decompression.
    		 */
    		memmove(&images->legacy_hdr_os_copy, hdr,
    			sizeof(image_header_t));
    
    		/* save pointer to image header */
    		images->legacy_hdr_os = hdr;
    
    		images->legacy_hdr_valid = 1;
    		bootstage_mark(BOOTSTAGE_ID_DECOMP_IMAGE);
    		break;
    #endif
    #if defined(CONFIG_FIT)
    	case IMAGE_FORMAT_FIT:
    
    		os_noffset = fit_image_load(images, img_addr,
    
    				&fit_uname_kernel, &fit_uname_config,
    				IH_ARCH_DEFAULT, IH_TYPE_KERNEL,
    				BOOTSTAGE_ID_FIT_KERNEL_START,
    				FIT_LOAD_IGNORED, os_data, os_len);
    		if (os_noffset < 0)
    			return NULL;
    
    		images->fit_hdr_os = map_sysmem(img_addr, 0);
    		images->fit_uname_os = fit_uname_kernel;
    		images->fit_uname_cfg = fit_uname_config;
    		images->fit_noffset_os = os_noffset;
    		break;
    #endif
    #ifdef CONFIG_ANDROID_BOOT_IMAGE
    	case IMAGE_FORMAT_ANDROID:
    		printf("## Booting Android Image at 0x%08lx ...\n", img_addr);
    
    		if (android_image_get_kernel(buf, images->verify,
    
    					     os_data, os_len))
    			return NULL;
    		break;
    #endif
    	default:
    		printf("Wrong Image Format for %s command\n", cmdtp->name);
    		bootstage_error(BOOTSTAGE_ID_FIT_KERNEL_INFO);
    		return NULL;
    	}
    
    	debug("   kernel data at 0x%08lx, len = 0x%08lx (%ld)\n",
    	      *os_data, *os_len, *os_len);
    
    	return buf;
    }
    
    #else /* USE_HOSTCC */
    
    void memmove_wd(void *to, void *from, size_t len, ulong chunksz)
    {
    	memmove(to, from, len);
    }
    
    static int bootm_host_load_image(const void *fit, int req_image_type)
    {
    	const char *fit_uname_config = NULL;
    	ulong data, len;
    	bootm_headers_t images;
    	int noffset;
    	ulong load_end;
    	uint8_t image_type;
    	uint8_t imape_comp;
    	void *load_buf;
    	int ret;
    
    	memset(&images, '\0', sizeof(images));
    	images.verify = 1;
    	noffset = fit_image_load(&images, (ulong)fit,
    		NULL, &fit_uname_config,
    		IH_ARCH_DEFAULT, req_image_type, -1,
    		FIT_LOAD_IGNORED, &data, &len);
    	if (noffset < 0)
    		return noffset;
    	if (fit_image_get_type(fit, noffset, &image_type)) {
    		puts("Can't get image type!\n");
    		return -EINVAL;
    	}
    
    	if (fit_image_get_comp(fit, noffset, &imape_comp)) {
    		puts("Can't get image compression!\n");
    		return -EINVAL;
    	}
    
    	/* Allow the image to expand by a factor of 4, should be safe */
    	load_buf = malloc((1 << 20) + len * 4);
    
    	ret = bootm_decomp_image(imape_comp, 0, data, image_type, load_buf,
    				 (void *)data, len, CONFIG_SYS_BOOTM_LEN,
    				 &load_end);
    
    	free(load_buf);
    
    	if (ret && ret != BOOTM_ERR_UNIMPLEMENTED)
    		return ret;
    
    	return 0;
    }
    
    int bootm_host_load_images(const void *fit, int cfg_noffset)
    {
    	static uint8_t image_types[] = {
    		IH_TYPE_KERNEL,
    		IH_TYPE_FLATDT,
    		IH_TYPE_RAMDISK,
    	};
    	int err = 0;
    	int i;
    
    	for (i = 0; i < ARRAY_SIZE(image_types); i++) {
    		int ret;
    
    		ret = bootm_host_load_image(fit, image_types[i]);
    		if (!err && ret && ret != -ENOENT)
    			err = ret;
    	}
    
    	/* Return the first error we found */
    	return err;
    }
    
    
    #endif /* ndef USE_HOSTCC */