Skip to content
Snippets Groups Projects
bootm.c 22.3 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * (C) Copyright 2000-2009
     * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
     *
     * SPDX-License-Identifier:	GPL-2.0+
     */
    
    
    #ifndef USE_HOSTCC
    
    #include <common.h>
    
    #include <bootstage.h>
    
    #include <bzlib.h>
    #include <fdt_support.h>
    #include <lmb.h>
    #include <malloc.h>
    #include <asm/io.h>
    #include <linux/lzo.h>
    #include <lzma/LzmaTypes.h>
    #include <lzma/LzmaDec.h>
    #include <lzma/LzmaTools.h>
    #if defined(CONFIG_CMD_USB)
    #include <usb.h>
    #endif
    
    #else
    #include "mkimage.h"
    #endif
    
    #include <command.h>
    #include <bootm.h>
    #include <image.h>
    
    
    #ifndef CONFIG_SYS_BOOTM_LEN
    /* use 8MByte as default max gunzip size */
    #define CONFIG_SYS_BOOTM_LEN	0x800000
    #endif
    
    #define IH_INITRD_ARCH IH_ARCH_DEFAULT
    
    
    #ifndef USE_HOSTCC
    
    DECLARE_GLOBAL_DATA_PTR;
    
    
    static const void *boot_get_kernel(cmd_tbl_t *cmdtp, int flag, int argc,
    				   char * const argv[], bootm_headers_t *images,
    				   ulong *os_data, ulong *os_len);
    
    #ifdef CONFIG_LMB
    static void boot_start_lmb(bootm_headers_t *images)
    {
    	ulong		mem_start;
    	phys_size_t	mem_size;
    
    	lmb_init(&images->lmb);
    
    	mem_start = getenv_bootm_low();
    	mem_size = getenv_bootm_size();
    
    	lmb_add(&images->lmb, (phys_addr_t)mem_start, mem_size);
    
    	arch_lmb_reserve(&images->lmb);
    	board_lmb_reserve(&images->lmb);
    }
    #else
    #define lmb_reserve(lmb, base, size)
    static inline void boot_start_lmb(bootm_headers_t *images) { }
    #endif
    
    static int bootm_start(cmd_tbl_t *cmdtp, int flag, int argc,
    		       char * const argv[])
    {
    	memset((void *)&images, 0, sizeof(images));
    	images.verify = getenv_yesno("verify");
    
    	boot_start_lmb(&images);
    
    	bootstage_mark_name(BOOTSTAGE_ID_BOOTM_START, "bootm_start");
    	images.state = BOOTM_STATE_START;
    
    	return 0;
    }
    
    static int bootm_find_os(cmd_tbl_t *cmdtp, int flag, int argc,
    			 char * const argv[])
    {
    	const void *os_hdr;
    	bool ep_found = false;
    
    	/* get kernel image header, start address and length */
    	os_hdr = boot_get_kernel(cmdtp, flag, argc, argv,
    			&images, &images.os.image_start, &images.os.image_len);
    	if (images.os.image_len == 0) {
    		puts("ERROR: can't get kernel image!\n");
    		return 1;
    	}
    
    	/* get image parameters */
    	switch (genimg_get_format(os_hdr)) {
    #if defined(CONFIG_IMAGE_FORMAT_LEGACY)
    	case IMAGE_FORMAT_LEGACY:
    		images.os.type = image_get_type(os_hdr);
    		images.os.comp = image_get_comp(os_hdr);
    		images.os.os = image_get_os(os_hdr);
    
    		images.os.end = image_get_image_end(os_hdr);
    		images.os.load = image_get_load(os_hdr);
    		break;
    #endif
    #if defined(CONFIG_FIT)
    	case IMAGE_FORMAT_FIT:
    		if (fit_image_get_type(images.fit_hdr_os,
    				       images.fit_noffset_os,
    				       &images.os.type)) {
    			puts("Can't get image type!\n");
    			bootstage_error(BOOTSTAGE_ID_FIT_TYPE);
    			return 1;
    		}
    
    		if (fit_image_get_comp(images.fit_hdr_os,
    				       images.fit_noffset_os,
    				       &images.os.comp)) {
    			puts("Can't get image compression!\n");
    			bootstage_error(BOOTSTAGE_ID_FIT_COMPRESSION);
    			return 1;
    		}
    
    		if (fit_image_get_os(images.fit_hdr_os, images.fit_noffset_os,
    				     &images.os.os)) {
    			puts("Can't get image OS!\n");
    			bootstage_error(BOOTSTAGE_ID_FIT_OS);
    			return 1;
    		}
    
    		images.os.end = fit_get_end(images.fit_hdr_os);
    
    		if (fit_image_get_load(images.fit_hdr_os, images.fit_noffset_os,
    				       &images.os.load)) {
    			puts("Can't get image load address!\n");
    			bootstage_error(BOOTSTAGE_ID_FIT_LOADADDR);
    			return 1;
    		}
    		break;
    #endif
    #ifdef CONFIG_ANDROID_BOOT_IMAGE
    	case IMAGE_FORMAT_ANDROID:
    		images.os.type = IH_TYPE_KERNEL;
    		images.os.comp = IH_COMP_NONE;
    		images.os.os = IH_OS_LINUX;
    		images.ep = images.os.load;
    		ep_found = true;
    
    		images.os.end = android_image_get_end(os_hdr);
    		images.os.load = android_image_get_kload(os_hdr);
    		break;
    #endif
    	default:
    		puts("ERROR: unknown image format type!\n");
    		return 1;
    	}
    
    	/* find kernel entry point */
    	if (images.legacy_hdr_valid) {
    		images.ep = image_get_ep(&images.legacy_hdr_os_copy);
    #if defined(CONFIG_FIT)
    	} else if (images.fit_uname_os) {
    		int ret;
    
    		ret = fit_image_get_entry(images.fit_hdr_os,
    					  images.fit_noffset_os, &images.ep);
    		if (ret) {
    			puts("Can't get entry point property!\n");
    			return 1;
    		}
    #endif
    	} else if (!ep_found) {
    		puts("Could not find kernel entry point!\n");
    		return 1;
    	}
    
    	if (images.os.type == IH_TYPE_KERNEL_NOLOAD) {
    		images.os.load = images.os.image_start;
    		images.ep += images.os.load;
    	}
    
    	images.os.start = (ulong)os_hdr;
    
    	return 0;
    }
    
    static int bootm_find_ramdisk(int flag, int argc, char * const argv[])
    {
    	int ret;
    
    	/* find ramdisk */
    	ret = boot_get_ramdisk(argc, argv, &images, IH_INITRD_ARCH,
    			       &images.rd_start, &images.rd_end);
    	if (ret) {
    		puts("Ramdisk image is corrupt or invalid\n");
    		return 1;
    	}
    
    	return 0;
    }
    
    #if defined(CONFIG_OF_LIBFDT)
    static int bootm_find_fdt(int flag, int argc, char * const argv[])
    {
    	int ret;
    
    	/* find flattened device tree */
    	ret = boot_get_fdt(flag, argc, argv, IH_ARCH_DEFAULT, &images,
    			   &images.ft_addr, &images.ft_len);
    	if (ret) {
    		puts("Could not find a valid device tree\n");
    		return 1;
    	}
    
    	set_working_fdt_addr(images.ft_addr);
    
    	return 0;
    }
    #endif
    
    int bootm_find_ramdisk_fdt(int flag, int argc, char * const argv[])
    {
    	if (bootm_find_ramdisk(flag, argc, argv))
    		return 1;
    
    #if defined(CONFIG_OF_LIBFDT)
    	if (bootm_find_fdt(flag, argc, argv))
    		return 1;
    #endif
    
    	return 0;
    }
    
    static int bootm_find_other(cmd_tbl_t *cmdtp, int flag, int argc,
    			    char * const argv[])
    {
    	if (((images.os.type == IH_TYPE_KERNEL) ||
    	     (images.os.type == IH_TYPE_KERNEL_NOLOAD) ||
    	     (images.os.type == IH_TYPE_MULTI)) &&
    	    (images.os.os == IH_OS_LINUX ||
    		 images.os.os == IH_OS_VXWORKS))
    		return bootm_find_ramdisk_fdt(flag, argc, argv);
    
    	return 0;
    }
    
    
    /**
     * decomp_image() - decompress the operating system
     *
     * @comp:	Compression algorithm that is used (IH_COMP_...)
     * @load:	Destination load address in U-Boot memory
     * @image_start Image start address (where we are decompressing from)
     * @type:	OS type (IH_OS_...)
     * @load_bug:	Place to decompress to
     * @image_buf:	Address to decompress from
     * @return 0 if OK, -ve on error (BOOTM_ERR_...)
     */
    static int decomp_image(int comp, ulong load, ulong image_start, int type,
    			void *load_buf, void *image_buf, ulong image_len,
    			ulong *load_end)
    
    	const char *type_name = genimg_get_type_name(type);
    	__attribute__((unused)) uint unc_len = CONFIG_SYS_BOOTM_LEN;
    
    	switch (comp) {
    	case IH_COMP_NONE:
    		if (load == image_start) {
    			printf("   XIP %s ... ", type_name);
    		} else {
    			printf("   Loading %s ... ", type_name);
    			memmove_wd(load_buf, image_buf, image_len, CHUNKSZ);
    		}
    		*load_end = load + image_len;
    		break;
    #ifdef CONFIG_GZIP
    	case IH_COMP_GZIP:
    		printf("   Uncompressing %s ... ", type_name);
    		if (gunzip(load_buf, unc_len, image_buf, &image_len) != 0) {
    			puts("GUNZIP: uncompress, out-of-mem or overwrite error - must RESET board to recover\n");
    			return BOOTM_ERR_RESET;
    		}
    
    		*load_end = load + image_len;
    		break;
    #endif /* CONFIG_GZIP */
    #ifdef CONFIG_BZIP2
    	case IH_COMP_BZIP2:
    		printf("   Uncompressing %s ... ", type_name);
    		/*
    		 * If we've got less than 4 MB of malloc() space,
    		 * use slower decompression algorithm which requires
    		 * at most 2300 KB of memory.
    		 */
    		int i = BZ2_bzBuffToBuffDecompress(load_buf, &unc_len,
    			image_buf, image_len,
    			CONFIG_SYS_MALLOC_LEN < (4096 * 1024), 0);
    		if (i != BZ_OK) {
    			printf("BUNZIP2: uncompress or overwrite error %d - must RESET board to recover\n",
    			       i);
    			return BOOTM_ERR_RESET;
    		}
    
    		*load_end = load + unc_len;
    		break;
    #endif /* CONFIG_BZIP2 */
    #ifdef CONFIG_LZMA
    	case IH_COMP_LZMA: {
    		SizeT lzma_len = unc_len;
    
    		printf("   Uncompressing %s ... ", type_name);
    
    		ret = lzmaBuffToBuffDecompress(load_buf, &lzma_len,
    					       image_buf, image_len);
    		unc_len = lzma_len;
    		if (ret != SZ_OK) {
    			printf("LZMA: uncompress or overwrite error %d - must RESET board to recover\n",
    			       ret);
    			bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE);
    			return BOOTM_ERR_RESET;
    		}
    		*load_end = load + unc_len;
    		break;
    	}
    #endif /* CONFIG_LZMA */
    #ifdef CONFIG_LZO
    	case IH_COMP_LZO: {
    		size_t size = unc_len;
    
    
    		printf("   Uncompressing %s ... ", type_name);
    
    		ret = lzop_decompress(image_buf, image_len, load_buf, &size);
    		if (ret != LZO_E_OK) {
    			printf("LZO: uncompress or overwrite error %d - must RESET board to recover\n",
    			       ret);
    			return BOOTM_ERR_RESET;
    		}
    
    		*load_end = load + size;
    		break;
    	}
    #endif /* CONFIG_LZO */
    	default:
    		printf("Unimplemented compression type %d\n", comp);
    		return BOOTM_ERR_UNIMPLEMENTED;
    	}
    
    
    	puts("OK\n");
    
    	return 0;
    }
    
    static int bootm_load_os(bootm_headers_t *images, unsigned long *load_end,
    			 int boot_progress)
    {
    	image_info_t os = images->os;
    	ulong load = os.load;
    	ulong blob_start = os.start;
    	ulong blob_end = os.end;
    	ulong image_start = os.image_start;
    	ulong image_len = os.image_len;
    	bool no_overlap;
    	void *load_buf, *image_buf;
    	int err;
    
    	load_buf = map_sysmem(load, 0);
    	image_buf = map_sysmem(os.image_start, image_len);
    	err = decomp_image(os.comp, load, os.image_start, os.type, load_buf,
    			   image_buf, image_len, load_end);
    	if (err) {
    		bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE);
    		return err;
    	}
    
    	flush_cache(load, (*load_end - load) * sizeof(ulong));
    
    	debug("   kernel loaded at 0x%08lx, end = 0x%08lx\n", load, *load_end);
    	bootstage_mark(BOOTSTAGE_ID_KERNEL_LOADED);
    
    
    	no_overlap = (os.comp == IH_COMP_NONE && load == image_start);
    
    
    384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
    	if (!no_overlap && (load < blob_end) && (*load_end > blob_start)) {
    		debug("images.os.start = 0x%lX, images.os.end = 0x%lx\n",
    		      blob_start, blob_end);
    		debug("images.os.load = 0x%lx, load_end = 0x%lx\n", load,
    		      *load_end);
    
    		/* Check what type of image this is. */
    		if (images->legacy_hdr_valid) {
    			if (image_get_type(&images->legacy_hdr_os_copy)
    					== IH_TYPE_MULTI)
    				puts("WARNING: legacy format multi component image overwritten\n");
    			return BOOTM_ERR_OVERLAP;
    		} else {
    			puts("ERROR: new format image overwritten - must RESET the board to recover\n");
    			bootstage_error(BOOTSTAGE_ID_OVERWRITTEN);
    			return BOOTM_ERR_RESET;
    		}
    	}
    
    	return 0;
    }
    
    /**
     * bootm_disable_interrupts() - Disable interrupts in preparation for load/boot
     *
     * @return interrupt flag (0 if interrupts were disabled, non-zero if they were
     *	enabled)
     */
    ulong bootm_disable_interrupts(void)
    {
    	ulong iflag;
    
    	/*
    	 * We have reached the point of no return: we are going to
    	 * overwrite all exception vector code, so we cannot easily
    	 * recover from any failures any more...
    	 */
    	iflag = disable_interrupts();
    #ifdef CONFIG_NETCONSOLE
    	/* Stop the ethernet stack if NetConsole could have left it up */
    	eth_halt();
    	eth_unregister(eth_get_dev());
    #endif
    
    #if defined(CONFIG_CMD_USB)
    	/*
    	 * turn off USB to prevent the host controller from writing to the
    	 * SDRAM while Linux is booting. This could happen (at least for OHCI
    	 * controller), because the HCCA (Host Controller Communication Area)
    	 * lies within the SDRAM and the host controller writes continously to
    	 * this area (as busmaster!). The HccaFrameNumber is for example
    	 * updated every 1 ms within the HCCA structure in SDRAM! For more
    	 * details see the OpenHCI specification.
    	 */
    	usb_stop();
    #endif
    	return iflag;
    }
    
    #if defined(CONFIG_SILENT_CONSOLE) && !defined(CONFIG_SILENT_U_BOOT_ONLY)
    
    #define CONSOLE_ARG     "console="
    #define CONSOLE_ARG_LEN (sizeof(CONSOLE_ARG) - 1)
    
    static void fixup_silent_linux(void)
    {
    	char *buf;
    	const char *env_val;
    	char *cmdline = getenv("bootargs");
    	int want_silent;
    
    	/*
    	 * Only fix cmdline when requested. The environment variable can be:
    	 *
    	 *	no - we never fixup
    	 *	yes - we always fixup
    	 *	unset - we rely on the console silent flag
    	 */
    	want_silent = getenv_yesno("silent_linux");
    	if (want_silent == 0)
    		return;
    	else if (want_silent == -1 && !(gd->flags & GD_FLG_SILENT))
    		return;
    
    	debug("before silent fix-up: %s\n", cmdline);
    	if (cmdline && (cmdline[0] != '\0')) {
    		char *start = strstr(cmdline, CONSOLE_ARG);
    
    		/* Allocate space for maximum possible new command line */
    		buf = malloc(strlen(cmdline) + 1 + CONSOLE_ARG_LEN + 1);
    		if (!buf) {
    			debug("%s: out of memory\n", __func__);
    			return;
    		}
    
    		if (start) {
    			char *end = strchr(start, ' ');
    			int num_start_bytes = start - cmdline + CONSOLE_ARG_LEN;
    
    			strncpy(buf, cmdline, num_start_bytes);
    			if (end)
    				strcpy(buf + num_start_bytes, end);
    			else
    				buf[num_start_bytes] = '\0';
    		} else {
    			sprintf(buf, "%s %s", cmdline, CONSOLE_ARG);
    		}
    		env_val = buf;
    	} else {
    		buf = NULL;
    		env_val = CONSOLE_ARG;
    	}
    
    	setenv("bootargs", env_val);
    	debug("after silent fix-up: %s\n", env_val);
    	free(buf);
    }
    #endif /* CONFIG_SILENT_CONSOLE */
    
    /**
     * Execute selected states of the bootm command.
     *
     * Note the arguments to this state must be the first argument, Any 'bootm'
     * or sub-command arguments must have already been taken.
     *
     * Note that if states contains more than one flag it MUST contain
     * BOOTM_STATE_START, since this handles and consumes the command line args.
     *
     * Also note that aside from boot_os_fn functions and bootm_load_os no other
     * functions we store the return value of in 'ret' may use a negative return
     * value, without special handling.
     *
     * @param cmdtp		Pointer to bootm command table entry
     * @param flag		Command flags (CMD_FLAG_...)
     * @param argc		Number of subcommand arguments (0 = no arguments)
     * @param argv		Arguments
     * @param states	Mask containing states to run (BOOTM_STATE_...)
     * @param images	Image header information
     * @param boot_progress 1 to show boot progress, 0 to not do this
     * @return 0 if ok, something else on error. Some errors will cause this
     *	function to perform a reboot! If states contains BOOTM_STATE_OS_GO
     *	then the intent is to boot an OS, so this function will not return
     *	unless the image type is standalone.
     */
    int do_bootm_states(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[],
    		    int states, bootm_headers_t *images, int boot_progress)
    {
    	boot_os_fn *boot_fn;
    	ulong iflag = 0;
    	int ret = 0, need_boot_fn;
    
    	images->state |= states;
    
    	/*
    	 * Work through the states and see how far we get. We stop on
    	 * any error.
    	 */
    	if (states & BOOTM_STATE_START)
    		ret = bootm_start(cmdtp, flag, argc, argv);
    
    	if (!ret && (states & BOOTM_STATE_FINDOS))
    		ret = bootm_find_os(cmdtp, flag, argc, argv);
    
    	if (!ret && (states & BOOTM_STATE_FINDOTHER)) {
    		ret = bootm_find_other(cmdtp, flag, argc, argv);
    		argc = 0;	/* consume the args */
    	}
    
    	/* Load the OS */
    	if (!ret && (states & BOOTM_STATE_LOADOS)) {
    		ulong load_end;
    
    		iflag = bootm_disable_interrupts();
    		ret = bootm_load_os(images, &load_end, 0);
    		if (ret == 0)
    			lmb_reserve(&images->lmb, images->os.load,
    				    (load_end - images->os.load));
    		else if (ret && ret != BOOTM_ERR_OVERLAP)
    			goto err;
    		else if (ret == BOOTM_ERR_OVERLAP)
    			ret = 0;
    #if defined(CONFIG_SILENT_CONSOLE) && !defined(CONFIG_SILENT_U_BOOT_ONLY)
    		if (images->os.os == IH_OS_LINUX)
    			fixup_silent_linux();
    #endif
    	}
    
    	/* Relocate the ramdisk */
    #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH
    	if (!ret && (states & BOOTM_STATE_RAMDISK)) {
    		ulong rd_len = images->rd_end - images->rd_start;
    
    		ret = boot_ramdisk_high(&images->lmb, images->rd_start,
    			rd_len, &images->initrd_start, &images->initrd_end);
    		if (!ret) {
    			setenv_hex("initrd_start", images->initrd_start);
    			setenv_hex("initrd_end", images->initrd_end);
    		}
    	}
    #endif
    #if defined(CONFIG_OF_LIBFDT) && defined(CONFIG_LMB)
    	if (!ret && (states & BOOTM_STATE_FDT)) {
    		boot_fdt_add_mem_rsv_regions(&images->lmb, images->ft_addr);
    		ret = boot_relocate_fdt(&images->lmb, &images->ft_addr,
    					&images->ft_len);
    	}
    #endif
    
    	/* From now on, we need the OS boot function */
    	if (ret)
    		return ret;
    	boot_fn = bootm_os_get_boot_func(images->os.os);
    	need_boot_fn = states & (BOOTM_STATE_OS_CMDLINE |
    			BOOTM_STATE_OS_BD_T | BOOTM_STATE_OS_PREP |
    			BOOTM_STATE_OS_FAKE_GO | BOOTM_STATE_OS_GO);
    	if (boot_fn == NULL && need_boot_fn) {
    		if (iflag)
    			enable_interrupts();
    		printf("ERROR: booting os '%s' (%d) is not supported\n",
    		       genimg_get_os_name(images->os.os), images->os.os);
    		bootstage_error(BOOTSTAGE_ID_CHECK_BOOT_OS);
    		return 1;
    	}
    
    	/* Call various other states that are not generally used */
    	if (!ret && (states & BOOTM_STATE_OS_CMDLINE))
    		ret = boot_fn(BOOTM_STATE_OS_CMDLINE, argc, argv, images);
    	if (!ret && (states & BOOTM_STATE_OS_BD_T))
    		ret = boot_fn(BOOTM_STATE_OS_BD_T, argc, argv, images);
    	if (!ret && (states & BOOTM_STATE_OS_PREP))
    		ret = boot_fn(BOOTM_STATE_OS_PREP, argc, argv, images);
    
    #ifdef CONFIG_TRACE
    	/* Pretend to run the OS, then run a user command */
    	if (!ret && (states & BOOTM_STATE_OS_FAKE_GO)) {
    		char *cmd_list = getenv("fakegocmd");
    
    		ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_FAKE_GO,
    				images, boot_fn);
    		if (!ret && cmd_list)
    			ret = run_command_list(cmd_list, -1, flag);
    	}
    #endif
    
    	/* Check for unsupported subcommand. */
    	if (ret) {
    		puts("subcommand not supported\n");
    		return ret;
    	}
    
    	/* Now run the OS! We hope this doesn't return */
    	if (!ret && (states & BOOTM_STATE_OS_GO))
    		ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_GO,
    				images, boot_fn);
    
    	/* Deal with any fallout */
    err:
    	if (iflag)
    		enable_interrupts();
    
    	if (ret == BOOTM_ERR_UNIMPLEMENTED)
    		bootstage_error(BOOTSTAGE_ID_DECOMP_UNIMPL);
    	else if (ret == BOOTM_ERR_RESET)
    		do_reset(cmdtp, flag, argc, argv);
    
    	return ret;
    }
    
    #if defined(CONFIG_IMAGE_FORMAT_LEGACY)
    /**
     * image_get_kernel - verify legacy format kernel image
     * @img_addr: in RAM address of the legacy format image to be verified
     * @verify: data CRC verification flag
     *
     * image_get_kernel() verifies legacy image integrity and returns pointer to
     * legacy image header if image verification was completed successfully.
     *
     * returns:
     *     pointer to a legacy image header if valid image was found
     *     otherwise return NULL
     */
    static image_header_t *image_get_kernel(ulong img_addr, int verify)
    {
    	image_header_t *hdr = (image_header_t *)img_addr;
    
    	if (!image_check_magic(hdr)) {
    		puts("Bad Magic Number\n");
    		bootstage_error(BOOTSTAGE_ID_CHECK_MAGIC);
    		return NULL;
    	}
    	bootstage_mark(BOOTSTAGE_ID_CHECK_HEADER);
    
    	if (!image_check_hcrc(hdr)) {
    		puts("Bad Header Checksum\n");
    		bootstage_error(BOOTSTAGE_ID_CHECK_HEADER);
    		return NULL;
    	}
    
    	bootstage_mark(BOOTSTAGE_ID_CHECK_CHECKSUM);
    	image_print_contents(hdr);
    
    	if (verify) {
    		puts("   Verifying Checksum ... ");
    		if (!image_check_dcrc(hdr)) {
    			printf("Bad Data CRC\n");
    			bootstage_error(BOOTSTAGE_ID_CHECK_CHECKSUM);
    			return NULL;
    		}
    		puts("OK\n");
    	}
    	bootstage_mark(BOOTSTAGE_ID_CHECK_ARCH);
    
    	if (!image_check_target_arch(hdr)) {
    		printf("Unsupported Architecture 0x%x\n", image_get_arch(hdr));
    		bootstage_error(BOOTSTAGE_ID_CHECK_ARCH);
    		return NULL;
    	}
    	return hdr;
    }
    #endif
    
    /**
     * boot_get_kernel - find kernel image
     * @os_data: pointer to a ulong variable, will hold os data start address
     * @os_len: pointer to a ulong variable, will hold os data length
     *
     * boot_get_kernel() tries to find a kernel image, verifies its integrity
     * and locates kernel data.
     *
     * returns:
     *     pointer to image header if valid image was found, plus kernel start
     *     address and length, otherwise NULL
     */
    static const void *boot_get_kernel(cmd_tbl_t *cmdtp, int flag, int argc,
    				   char * const argv[], bootm_headers_t *images,
    				   ulong *os_data, ulong *os_len)
    {
    #if defined(CONFIG_IMAGE_FORMAT_LEGACY)
    	image_header_t	*hdr;
    #endif
    	ulong		img_addr;
    	const void *buf;
    #if defined(CONFIG_FIT)
    	const char	*fit_uname_config = NULL;
    	const char	*fit_uname_kernel = NULL;
    	int		os_noffset;
    #endif
    
    	/* find out kernel image address */
    	if (argc < 1) {
    		img_addr = load_addr;
    		debug("*  kernel: default image load address = 0x%08lx\n",
    		      load_addr);
    #if defined(CONFIG_FIT)
    	} else if (fit_parse_conf(argv[0], load_addr, &img_addr,
    				  &fit_uname_config)) {
    		debug("*  kernel: config '%s' from image at 0x%08lx\n",
    		      fit_uname_config, img_addr);
    	} else if (fit_parse_subimage(argv[0], load_addr, &img_addr,
    				     &fit_uname_kernel)) {
    		debug("*  kernel: subimage '%s' from image at 0x%08lx\n",
    		      fit_uname_kernel, img_addr);
    #endif
    	} else {
    		img_addr = simple_strtoul(argv[0], NULL, 16);
    		debug("*  kernel: cmdline image address = 0x%08lx\n",
    		      img_addr);
    	}
    
    	bootstage_mark(BOOTSTAGE_ID_CHECK_MAGIC);
    
    	/* copy from dataflash if needed */
    	img_addr = genimg_get_image(img_addr);
    
    	/* check image type, for FIT images get FIT kernel node */
    	*os_data = *os_len = 0;
    	buf = map_sysmem(img_addr, 0);
    	switch (genimg_get_format(buf)) {
    #if defined(CONFIG_IMAGE_FORMAT_LEGACY)
    	case IMAGE_FORMAT_LEGACY:
    		printf("## Booting kernel from Legacy Image at %08lx ...\n",
    		       img_addr);
    		hdr = image_get_kernel(img_addr, images->verify);
    		if (!hdr)
    			return NULL;
    		bootstage_mark(BOOTSTAGE_ID_CHECK_IMAGETYPE);
    
    		/* get os_data and os_len */
    		switch (image_get_type(hdr)) {
    		case IH_TYPE_KERNEL:
    		case IH_TYPE_KERNEL_NOLOAD:
    			*os_data = image_get_data(hdr);
    			*os_len = image_get_data_size(hdr);
    			break;
    		case IH_TYPE_MULTI:
    			image_multi_getimg(hdr, 0, os_data, os_len);
    			break;
    		case IH_TYPE_STANDALONE:
    			*os_data = image_get_data(hdr);
    			*os_len = image_get_data_size(hdr);
    			break;
    		default:
    			printf("Wrong Image Type for %s command\n",
    			       cmdtp->name);
    			bootstage_error(BOOTSTAGE_ID_CHECK_IMAGETYPE);
    			return NULL;
    		}
    
    		/*
    		 * copy image header to allow for image overwrites during
    		 * kernel decompression.
    		 */
    		memmove(&images->legacy_hdr_os_copy, hdr,
    			sizeof(image_header_t));
    
    		/* save pointer to image header */
    		images->legacy_hdr_os = hdr;
    
    		images->legacy_hdr_valid = 1;
    		bootstage_mark(BOOTSTAGE_ID_DECOMP_IMAGE);
    		break;
    #endif
    #if defined(CONFIG_FIT)
    	case IMAGE_FORMAT_FIT:
    
    		os_noffset = fit_image_load(images, img_addr,
    
    				&fit_uname_kernel, &fit_uname_config,
    				IH_ARCH_DEFAULT, IH_TYPE_KERNEL,
    				BOOTSTAGE_ID_FIT_KERNEL_START,
    				FIT_LOAD_IGNORED, os_data, os_len);
    		if (os_noffset < 0)
    			return NULL;
    
    		images->fit_hdr_os = map_sysmem(img_addr, 0);
    		images->fit_uname_os = fit_uname_kernel;
    		images->fit_uname_cfg = fit_uname_config;
    		images->fit_noffset_os = os_noffset;
    		break;
    #endif
    #ifdef CONFIG_ANDROID_BOOT_IMAGE
    	case IMAGE_FORMAT_ANDROID:
    		printf("## Booting Android Image at 0x%08lx ...\n", img_addr);
    
    		if (android_image_get_kernel(buf, images->verify,
    
    					     os_data, os_len))
    			return NULL;
    		break;
    #endif
    	default:
    		printf("Wrong Image Format for %s command\n", cmdtp->name);
    		bootstage_error(BOOTSTAGE_ID_FIT_KERNEL_INFO);
    		return NULL;
    	}
    
    	debug("   kernel data at 0x%08lx, len = 0x%08lx (%ld)\n",
    	      *os_data, *os_len, *os_len);
    
    	return buf;
    }
    
    
    #endif /* ndef USE_HOSTCC */