Newer
Older
/*
* Copyright Altera Corporation (C) 2012-2015
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/sdram.h>
#include <errno.h>
#include "sequencer.h"
#include "sequencer_auto.h"
#include "sequencer_auto_ac_init.h"
#include "sequencer_auto_inst_init.h"
#include "sequencer_defines.h"
static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
static struct socfpga_sdr_reg_file *sdr_reg_file =
(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
static struct socfpga_data_mgr *data_mgr =
(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
static struct socfpga_sdr_ctrl *sdr_ctrl =
(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#define DELTA_D 1
/*
* In order to reduce ROM size, most of the selectable calibration steps are
* decided at compile time based on the user's calibration mode selection,
* as captured by the STATIC_CALIB_STEPS selection below.
*
* However, to support simulation-time selection of fast simulation mode, where
* we skip everything except the bare minimum, we need a few of the steps to
* be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the
* check, which is based on the rtl-supplied value, or we dynamically compute
* the value to use based on the dynamically-chosen calibration mode
*/
#define DLEVEL 0
#define STATIC_IN_RTL_SIM 0
#define STATIC_SKIP_DELAY_LOOPS 0
#define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
STATIC_SKIP_DELAY_LOOPS)
/* calibration steps requested by the rtl */
uint16_t dyn_calib_steps;
/*
* To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
* instead of static, we use boolean logic to select between
* non-skip and skip values
*
* The mask is set to include all bits when not-skipping, but is
* zero when skipping
*/
uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */
#define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
((non_skip_value) & skip_delay_mask)
struct gbl_type *gbl;
struct param_type *param;
uint32_t curr_shadow_reg;
static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
uint32_t write_group, uint32_t use_dm,
uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
static void set_failing_group_stage(uint32_t group, uint32_t stage,
uint32_t substage)
{
/*
* Only set the global stage if there was not been any other
* failing group
*/
if (gbl->error_stage == CAL_STAGE_NIL) {
gbl->error_substage = substage;
gbl->error_stage = stage;
gbl->error_group = group;
}
}
static void reg_file_set_group(u16 set_group)
clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
static void reg_file_set_stage(u8 set_stage)
clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
static void reg_file_set_sub_stage(u8 set_sub_stage)
set_sub_stage &= 0xff;
clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
/**
* phy_mgr_initialize() - Initialize PHY Manager
*
* Initialize PHY Manager.
*/
static void phy_mgr_initialize(void)
debug("%s:%d\n", __func__, __LINE__);
/* Calibration has control over path to memory */
/*
* In Hard PHY this is a 2-bit control:
* 0: AFI Mux Select
* 1: DDIO Mux Select
*/
writel(0x3, &phy_mgr_cfg->mux_sel);
/* USER memory clock is not stable we begin initialization */
writel(0, &phy_mgr_cfg->reset_mem_stbl);
/* USER calibration status all set to zero */
writel(0, &phy_mgr_cfg->cal_status);
writel(0, &phy_mgr_cfg->cal_debug_info);
/* Init params only if we do NOT skip calibration. */
if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
return;
ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
param->read_correct_mask_vg = (1 << ratio) - 1;
param->write_correct_mask_vg = (1 << ratio) - 1;
param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
ratio = RW_MGR_MEM_DATA_WIDTH /
RW_MGR_MEM_DATA_MASK_WIDTH;
param->dm_correct_mask = (1 << ratio) - 1;
/**
* set_rank_and_odt_mask() - Set Rank and ODT mask
* @rank: Rank mask
* @odt_mode: ODT mode, OFF or READ_WRITE
*
* Set Rank and ODT mask (On-Die Termination).
*/
static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
u32 odt_mask_0 = 0;
u32 odt_mask_1 = 0;
u32 cs_and_odt_mask;
if (odt_mode == RW_MGR_ODT_MODE_OFF) {
odt_mask_0 = 0x0;
odt_mask_1 = 0x0;
} else { /* RW_MGR_ODT_MODE_READ_WRITE */
switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
case 1: /* 1 Rank */
/* Read: ODT = 0 ; Write: ODT = 1 */
odt_mask_0 = 0x0;
odt_mask_1 = 0x1;
break;
case 2: /* 2 Ranks */
if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
/*
* - Dual-Slot , Single-Rank (1 CS per DIMM)
* OR
* - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
*
* Since MEM_NUMBER_OF_RANKS is 2, they
* are both single rank with 2 CS each
* (special for RDIMM).
*
* Read: Turn on ODT on the opposite rank
* Write: Turn on ODT on all ranks
*/
odt_mask_0 = 0x3 & ~(1 << rank);
odt_mask_1 = 0x3;
} else {
/*
* - Single-Slot , Dual-Rank (2 CS per DIMM)
*
* Read: Turn on ODT off on all ranks
* Write: Turn on ODT on active rank
*/
odt_mask_0 = 0x0;
odt_mask_1 = 0x3 & (1 << rank);
}
break;
case 4: /* 4 Ranks */
/* Read:
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
* ----------+-----------------------+
* | ODT |
* Read From +-----------------------+
* Rank | 3 | 2 | 1 | 0 |
* ----------+-----+-----+-----+-----+
* 0 | 0 | 1 | 0 | 0 |
* 1 | 1 | 0 | 0 | 0 |
* 2 | 0 | 0 | 0 | 1 |
* 3 | 0 | 0 | 1 | 0 |
* ----------+-----+-----+-----+-----+
*
* Write:
* ----------+-----------------------+
* | ODT |
* Write To +-----------------------+
* Rank | 3 | 2 | 1 | 0 |
* ----------+-----+-----+-----+-----+
* 0 | 0 | 1 | 0 | 1 |
* 1 | 1 | 0 | 1 | 0 |
* 2 | 0 | 1 | 0 | 1 |
* 3 | 1 | 0 | 1 | 0 |
* ----------+-----+-----+-----+-----+
*/
switch (rank) {
case 0:
odt_mask_0 = 0x4;
odt_mask_1 = 0x5;
break;
case 1:
odt_mask_0 = 0x8;
odt_mask_1 = 0xA;
break;
case 2:
odt_mask_0 = 0x1;
odt_mask_1 = 0x5;
break;
case 3:
odt_mask_0 = 0x2;
odt_mask_1 = 0xA;
break;
}
cs_and_odt_mask = (0xFF & ~(1 << rank)) |
((0xFF & odt_mask_0) << 8) |
((0xFF & odt_mask_1) << 16);
writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
/**
* scc_mgr_set() - Set SCC Manager register
* @off: Base offset in SCC Manager space
* @grp: Read/Write group
* @val: Value to be set
*
* This function sets the SCC Manager (Scan Chain Control Manager) register.
*/
static void scc_mgr_set(u32 off, u32 grp, u32 val)
writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
}
/**
* scc_mgr_initialize() - Initialize SCC Manager registers
*
* Initialize SCC Manager registers.
*/
static void scc_mgr_initialize(void)
{
* Clear register file for HPS. 16 (2^4) is the size of the
* full register file in the scc mgr:
* RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
* MEM_IF_READ_DQS_WIDTH - 1);
for (i = 0; i < 16; i++) {
debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
__func__, __LINE__, i);
scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
{
scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
}
static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
{
scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
}
static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
{
scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
delay);
static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
}
static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
{
scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
delay);
}
static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
{
scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
delay);
}
/* load up dqs config settings */
static void scc_mgr_load_dqs(uint32_t dqs)
{
writel(dqs, &sdr_scc_mgr->dqs_ena);
}
/* load up dqs io config settings */
static void scc_mgr_load_dqs_io(void)
{
writel(0, &sdr_scc_mgr->dqs_io_ena);
}
/* load up dq config settings */
static void scc_mgr_load_dq(uint32_t dq_in_group)
{
writel(dq_in_group, &sdr_scc_mgr->dq_ena);
}
/* load up dm config settings */
static void scc_mgr_load_dm(uint32_t dm)
{
writel(dm, &sdr_scc_mgr->dm_ena);
/**
* scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
* @off: Base offset in SCC Manager space
* @grp: Read/Write group
* @val: Value to be set
* @update: If non-zero, trigger SCC Manager update for all ranks
*
* This function sets the SCC Manager (Scan Chain Control Manager) register
* and optionally triggers the SCC update for all ranks.
*/
static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
const int update)
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
scc_mgr_set(off, grp, val);
if (update || (r == 0)) {
writel(grp, &sdr_scc_mgr->dqs_ena);
writel(0, &sdr_scc_mgr->update);
static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
{
/*
* USER although the h/w doesn't support different phases per
* shadow register, for simplicity our scc manager modeling
* keeps different phase settings per shadow reg, and it's
* important for us to keep them in sync to match h/w.
* for efficiency, the scan chain update should occur only
* once to sr0.
*/
scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
read_group, phase, 0);
}
static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
uint32_t phase)
{
/*
* USER although the h/w doesn't support different phases per
* shadow register, for simplicity our scc manager modeling
* keeps different phase settings per shadow reg, and it's
* important for us to keep them in sync to match h/w.
* for efficiency, the scan chain update should occur only
* once to sr0.
*/
scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
write_group, phase, 0);
}
static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
uint32_t delay)
{
/*
* In shadow register mode, the T11 settings are stored in
* registers in the core, which are updated by the DQS_ENA
* signals. Not issuing the SCC_MGR_UPD command allows us to
* save lots of rank switching overhead, by calling
* select_shadow_regs_for_update with update_scan_chains
* set to 0.
*/
scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
read_group, delay, 1);
writel(0, &sdr_scc_mgr->update);
/**
* scc_mgr_set_oct_out1_delay() - Set OCT output delay
* @write_group: Write group
* @delay: Delay value
*
* This function sets the OCT output delay in SCC manager.
*/
static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
const int base = write_group * ratio;
int i;
/*
* Load the setting in the SCC manager
* Although OCT affects only write data, the OCT delay is controlled
* by the DQS logic block which is instantiated once per read group.
* For protocols where a write group consists of multiple read groups,
* the setting must be set multiple times.
*/
for (i = 0; i < ratio; i++)
scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
/**
* scc_mgr_set_hhp_extras() - Set HHP extras.
*
* Load the fixed setting in the SCC manager HHP extras.
*/
static void scc_mgr_set_hhp_extras(void)
{
/*
* Load the fixed setting in the SCC manager
* bits: 0:0 = 1'b1 - DQS bypass
* bits: 1:1 = 1'b1 - DQ bypass
* bits: 4:2 = 3'b001 - rfifo_mode
* bits: 6:5 = 2'b01 - rfifo clock_select
* bits: 7:7 = 1'b0 - separate gating from ungating setting
* bits: 8:8 = 1'b0 - separate OE from Output delay setting
const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
(1 << 2) | (1 << 1) | (1 << 0);
const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
SCC_MGR_HHP_GLOBALS_OFFSET |
SCC_MGR_HHP_EXTRAS_OFFSET;
debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
__func__, __LINE__);
writel(value, addr);
debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
__func__, __LINE__);
/**
* scc_mgr_zero_all() - Zero all DQS config
*
* Zero all DQS config.
*/
static void scc_mgr_zero_all(void)
{
/*
* USER Zero all DQS config settings, across all groups and all
* shadow registers
*/
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
/*
* The phases actually don't exist on a per-rank basis,
* but there's no harm updating them several times, so
* let's keep the code simple.
*/
scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
scc_mgr_set_dqs_en_phase(i, 0);
scc_mgr_set_dqs_en_delay(i, 0);
}
for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
scc_mgr_set_dqdqs_output_phase(i, 0);
/* Arria V/Cyclone V don't have out2. */
scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
}
}
/* Multicast to all DQS group enables. */
writel(0xff, &sdr_scc_mgr->dqs_ena);
writel(0, &sdr_scc_mgr->update);
/**
* scc_set_bypass_mode() - Set bypass mode and trigger SCC update
* @write_group: Write group
*
* Set bypass mode and trigger SCC update.
*/
static void scc_set_bypass_mode(const u32 write_group)
/* Multicast to all DQ enables. */
writel(0xff, &sdr_scc_mgr->dq_ena);
writel(0xff, &sdr_scc_mgr->dm_ena);
/* Update current DQS IO enable. */
writel(0, &sdr_scc_mgr->dqs_io_ena);
writel(write_group, &sdr_scc_mgr->dqs_ena);
writel(0, &sdr_scc_mgr->update);
/**
* scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
* @write_group: Write group
*
* Load DQS settings for Write Group, do not trigger SCC update.
*/
static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
const int base = write_group * ratio;
int i;
* Load the setting in the SCC manager
* Although OCT affects only write data, the OCT delay is controlled
* by the DQS logic block which is instantiated once per read group.
* For protocols where a write group consists of multiple read groups,
* the setting must be set multiple times.
for (i = 0; i < ratio; i++)
writel(base + i, &sdr_scc_mgr->dqs_ena);
/**
* scc_mgr_zero_group() - Zero all configs for a group
*
* Zero DQ, DM, DQS and OCT configs for a group.
*/
static void scc_mgr_zero_group(const u32 write_group, const int out_only)
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
/* Zero all DQ config settings. */
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
scc_mgr_set_dq_out1_delay(i, 0);
scc_mgr_set_dq_in_delay(i, 0);
/* Multicast to all DQ enables. */
writel(0xff, &sdr_scc_mgr->dq_ena);
/* Zero all DM config settings. */
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
scc_mgr_set_dm_out1_delay(i, 0);
/* Multicast to all DM enables. */
writel(0xff, &sdr_scc_mgr->dm_ena);
/* Zero all DQS IO settings. */
scc_mgr_set_dqs_io_in_delay(0);
/* Arria V/Cyclone V don't have out2. */
scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
scc_mgr_load_dqs_for_write_group(write_group);
/* Multicast to all DQS IO enables (only 1 in total). */
writel(0, &sdr_scc_mgr->dqs_io_ena);
/* Hit update to zero everything. */
writel(0, &sdr_scc_mgr->update);
}
}
/*
* apply and load a particular input delay for the DQ pins in a group
* group_bgn is the index of the first dq pin (in the write group)
*/
static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
{
uint32_t i, p;
for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
scc_mgr_set_dq_in_delay(p, delay);
scc_mgr_load_dq(p);
}
}
/**
* scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
* @delay: Delay value
*
* Apply and load a particular output delay for the DQ pins in a group.
*/
static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
scc_mgr_set_dq_out1_delay(i, delay);
scc_mgr_load_dq(i);
}
}
/* apply and load a particular output delay for the DM pins in a group */
static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
{
uint32_t i;
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
scc_mgr_set_dm_out1_delay(i, delay1);
scc_mgr_load_dm(i);
}
}
/* apply and load delay on both DQS and OCT out1 */
static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
uint32_t delay)
{
scc_mgr_set_dqs_out1_delay(delay);
scc_mgr_load_dqs_io();
scc_mgr_set_oct_out1_delay(write_group, delay);
scc_mgr_load_dqs_for_write_group(write_group);
}
/**
* scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
* @write_group: Write group
* @delay: Delay value
*
* Apply a delay to the entire output side: DQ, DM, DQS, OCT.
*/
static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
const u32 delay)
{
u32 i, new_delay;
/* DQ shift */
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
scc_mgr_load_dq(i);
/* DM shift */
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
scc_mgr_load_dm(i);
/* DQS shift */
new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
if (new_delay > IO_IO_OUT2_DELAY_MAX) {
debug_cond(DLEVEL == 1,
"%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
__func__, __LINE__, write_group, delay, new_delay,
IO_IO_OUT2_DELAY_MAX,
new_delay - IO_IO_OUT2_DELAY_MAX);
new_delay -= IO_IO_OUT2_DELAY_MAX;
scc_mgr_set_dqs_out1_delay(new_delay);
}
scc_mgr_load_dqs_io();
/* OCT shift */
new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
if (new_delay > IO_IO_OUT2_DELAY_MAX) {
debug_cond(DLEVEL == 1,
"%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
__func__, __LINE__, write_group, delay,
new_delay, IO_IO_OUT2_DELAY_MAX,
new_delay - IO_IO_OUT2_DELAY_MAX);
new_delay -= IO_IO_OUT2_DELAY_MAX;
scc_mgr_set_oct_out1_delay(write_group, new_delay);
}
scc_mgr_load_dqs_for_write_group(write_group);
}
/**
* scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
* @write_group: Write group
* @delay: Delay value
*
* Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
static void
scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
const u32 delay)
int r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
scc_mgr_apply_group_all_out_delay_add(write_group, delay);
writel(0, &sdr_scc_mgr->update);
/**
* set_jump_as_return() - Return instruction optimization
*
* Optimization used to recover some slots in ddr3 inst_rom could be
* applied to other protocols if we wanted to
*/
static void set_jump_as_return(void)
{
/*
* To save space, we replace return with jump to special shared
* RETURN instruction so we set the counter to large value so that
writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
}
/*
* should always use constants as argument to ensure all computations are
* performed at compile time
*/
static void delay_for_n_mem_clocks(const uint32_t clocks)
{
uint32_t afi_clocks;
uint8_t inner = 0;
uint8_t outer = 0;
uint16_t c_loop = 0;
debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
/* scale (rounding up) to get afi clocks */
/*
* Note, we don't bother accounting for being off a little bit
* because of a few extra instructions in outer loops
* Note, the loops have a test at the end, and do the test before
* the decrement, and so always perform the loop
* 1 time more than the counter value
*/
if (afi_clocks == 0) {
;
} else if (afi_clocks <= 0x100) {
inner = afi_clocks-1;
outer = 0;
c_loop = 0;
} else if (afi_clocks <= 0x10000) {
inner = 0xff;
outer = (afi_clocks-1) >> 8;
c_loop = 0;
} else {
inner = 0xff;
outer = 0xff;
c_loop = (afi_clocks-1) >> 16;
}
/*
* rom instructions are structured as follows:
*
* IDLE_LOOP2: jnz cntr0, TARGET_A
* IDLE_LOOP1: jnz cntr1, TARGET_B
* return
*
* so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
* TARGET_B is set to IDLE_LOOP2 as well
*
* if we have no outer loop, though, then we can use IDLE_LOOP1 only,
* and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
*
* a little confusing, but it helps save precious space in the inst_rom
* and sequencer rom and keeps the delays more accurate and reduces
* overhead
*/
if (afi_clocks <= 0x100) {
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
&sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_IDLE_LOOP1,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
&sdr_rw_load_mgr_regs->load_cntr0);
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
&sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_IDLE_LOOP2,
&sdr_rw_load_jump_mgr_regs->load_jump_add0);
writel(RW_MGR_IDLE_LOOP2,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
/* hack to get around compiler not being smart enough */
if (afi_clocks <= 0x10000) {
/* only need to run once */
writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
writel(RW_MGR_IDLE_LOOP2,
SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
} while (c_loop-- != 0);
}
}
debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
}
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
/**
* rw_mgr_mem_init_load_regs() - Load instruction registers
* @cntr0: Counter 0 value
* @cntr1: Counter 1 value
* @cntr2: Counter 2 value
* @jump: Jump instruction value
*
* Load instruction registers.
*/
static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
{
uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET;
/* Load counters */
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
&sdr_rw_load_mgr_regs->load_cntr0);
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
&sdr_rw_load_mgr_regs->load_cntr1);
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
&sdr_rw_load_mgr_regs->load_cntr2);
/* Load jump address */
writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
/* Execute count instruction */
writel(jump, grpaddr);
}
/**
* rw_mgr_mem_load_user() - Load user calibration values
* @fin1: Final instruction 1
* @fin2: Final instruction 2
* @precharge: If 1, precharge the banks at the end
*
* Load user calibration values and optionally precharge the banks.
*/
static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
const int precharge)
u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET;
u32 r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
if (param->skip_ranks[r]) {
/* request to skip the rank */
continue;
}
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
/* precharge all banks ... */
if (precharge)
writel(RW_MGR_PRECHARGE_ALL, grpaddr);
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
/*
* USER Use Mirror-ed commands for odd ranks if address
* mirrorring is on
*/
if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
set_jump_as_return();
writel(RW_MGR_MRS2_MIRR, grpaddr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS3_MIRR, grpaddr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS1_MIRR, grpaddr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(fin1, grpaddr);
} else {
set_jump_as_return();
writel(RW_MGR_MRS2, grpaddr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS3, grpaddr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS1, grpaddr);
set_jump_as_return();
writel(fin2, grpaddr);
}
if (precharge)
continue;
set_jump_as_return();
writel(RW_MGR_ZQCL, grpaddr);
/* tZQinit = tDLLK = 512 ck cycles */
delay_for_n_mem_clocks(512);
}
}
/**
* rw_mgr_mem_initialize() - Initialize RW Manager
*
* Initialize RW Manager.
*/
static void rw_mgr_mem_initialize(void)
{
debug("%s:%d\n", __func__, __LINE__);
/* The reset / cke part of initialization is broadcasted to all ranks */
writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
/*
* Here's how you load register for a loop
* Counters are located @ 0x800
* Jump address are located @ 0xC00
* For both, registers 0 to 3 are selected using bits 3 and 2, like
* in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
* I know this ain't pretty, but Avalon bus throws away the 2 least
* significant bits
*/
/* Start with memory RESET activated */
/* tINIT = 200us */
/*
* 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
* If a and b are the number of iteration in 2 nested loops
* it takes the following number of cycles to complete the operation:
* number_of_cycles = ((2 + n) * a + 2) * b
* where n is the number of instruction in the inner loop
* One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
* b = 6A
*/
rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
SEQ_TINIT_CNTR2_VAL,
RW_MGR_INIT_RESET_0_CKE_0);
/* Indicate that memory is stable. */
writel(1, &phy_mgr_cfg->reset_mem_stbl);
/*
* transition the RESET to high
* Wait for 500us
*/
/*
* 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
* If a and b are the number of iteration in 2 nested loops
* it takes the following number of cycles to complete the operation
* number_of_cycles = ((2 + n) * a + 2) * b
* where n is the number of instruction in the inner loop
* One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
* b = FF
*/
rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
SEQ_TRESET_CNTR2_VAL,
RW_MGR_INIT_RESET_1_CKE_0);
/* Bring up clock enable. */
/* tXRP < 250 ck cycles */
delay_for_n_mem_clocks(250);
rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
0);
}
/*
* At the end of calibration we have to program the user settings in, and
* USER hand off the memory to the user.
*/
static void rw_mgr_mem_handoff(void)
{
rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
/*
* USER need to wait tMOD (12CK or 15ns) time before issuing
* other commands, but we will have plenty of NIOS cycles before
* actual handoff so its okay.
*/
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
}
/*
* performs a guaranteed read on the patterns we are going to use during a
* read test to ensure memory works
*/
static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
uint32_t all_ranks)
{
uint32_t r, vg;
uint32_t correct_mask_vg;
uint32_t tmp_bit_chk;
uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
uint32_t addr;
uint32_t base_rw_mgr;
*bit_chk = param->read_correct_mask;
correct_mask_vg = param->read_correct_mask_vg;
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r])
/* request to skip the rank */
continue;
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
/* Load up a constant bursts of read commands */
writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
writel(RW_MGR_GUARANTEED_READ,
&sdr_rw_load_jump_mgr_regs->load_jump_add0);
writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_GUARANTEED_READ_CONT,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
tmp_bit_chk = 0;
for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
/* reset the fifos to get pointers to known state */
writel(0, &phy_mgr_cmd->fifo_reset);
writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RESET_READ_DATAPATH_OFFSET);
tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
writel(RW_MGR_GUARANTEED_READ, addr +
((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
vg) << 2));
base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
if (vg == 0)
break;
}
*bit_chk &= tmp_bit_chk;
}
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
%lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
(long unsigned int)(*bit_chk == param->read_correct_mask));
return *bit_chk == param->read_correct_mask;
}
static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
(uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
{
return rw_mgr_mem_calibrate_read_test_patterns(0, group,
num_tries, bit_chk, 1);
}
/* load up the patterns we are going to use during a read test */
static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
uint32_t all_ranks)
{
uint32_t r;
uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
debug("%s:%d\n", __func__, __LINE__);
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r])
/* request to skip the rank */
continue;
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
/* Load up a constant bursts */
writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
&sdr_rw_load_jump_mgr_regs->load_jump_add0);
writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
}
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
}
/*
* try a read and see if it returns correct data back. has dummy reads
* inserted into the mix used to align dqs enable. has more thorough checks
* than the regular read test.
*/
static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
uint32_t all_groups, uint32_t all_ranks)
{
uint32_t r, vg;
uint32_t correct_mask_vg;
uint32_t tmp_bit_chk;
uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
uint32_t addr;
uint32_t base_rw_mgr;
*bit_chk = param->read_correct_mask;
correct_mask_vg = param->read_correct_mask_vg;
uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r])
/* request to skip the rank */
continue;
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_READ_B2B_WAIT1,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
writel(RW_MGR_READ_B2B_WAIT2,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
if (quick_read_mode)
writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
/* need at least two (1+1) reads to capture failures */
else if (all_groups)
writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
writel(RW_MGR_READ_B2B,
&sdr_rw_load_jump_mgr_regs->load_jump_add0);
if (all_groups)
writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
&sdr_rw_load_mgr_regs->load_cntr3);
writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
writel(RW_MGR_READ_B2B,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
tmp_bit_chk = 0;
for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
/* reset the fifos to get pointers to known state */
writel(0, &phy_mgr_cmd->fifo_reset);
writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RESET_READ_DATAPATH_OFFSET);
tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
if (all_groups)
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
else
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
writel(RW_MGR_READ_B2B, addr +
((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
vg) << 2));
base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
if (vg == 0)
break;
}
*bit_chk &= tmp_bit_chk;
}
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
if (all_correct) {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
(%u == %u) => %lu", __func__, __LINE__, group,
all_groups, *bit_chk, param->read_correct_mask,
(long unsigned int)(*bit_chk ==
param->read_correct_mask));
return *bit_chk == param->read_correct_mask;
} else {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
(%u != %lu) => %lu\n", __func__, __LINE__,
group, all_groups, *bit_chk, (long unsigned int)0,
(long unsigned int)(*bit_chk != 0x00));
return *bit_chk != 0x00;
}
}
static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
uint32_t all_groups)
{
return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
bit_chk, all_groups, 1);
}
static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
{
writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
(*v)++;
}
static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
{
uint32_t i;
for (i = 0; i < VFIFO_SIZE-1; i++)
rw_mgr_incr_vfifo(grp, v);
}
static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
{
uint32_t v;
uint32_t fail_cnt = 0;
uint32_t test_status;
for (v = 0; v < VFIFO_SIZE; ) {
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
__func__, __LINE__, v);
test_status = rw_mgr_mem_calibrate_read_test_all_ranks
(grp, 1, PASS_ONE_BIT, bit_chk, 0);
if (!test_status) {
fail_cnt++;
if (fail_cnt == 2)
break;
}
/* fiddle with FIFO */
rw_mgr_incr_vfifo(grp, &v);
}
if (v >= VFIFO_SIZE) {
/* no failing read found!! Something must have gone wrong */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
__func__, __LINE__);
return 0;
} else {
return v;
}
}
static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
uint32_t dtaps_per_ptap, uint32_t *work_bgn,
uint32_t *v, uint32_t *d, uint32_t *p,
uint32_t *i, uint32_t *max_working_cnt)
{
uint32_t found_begin = 0;
uint32_t tmp_delay = 0;
uint32_t test_status;
for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
*work_bgn = tmp_delay;
scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
IO_DELAY_PER_OPA_TAP) {
scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
test_status =
rw_mgr_mem_calibrate_read_test_all_ranks
(*grp, 1, PASS_ONE_BIT, bit_chk, 0);
if (test_status) {
*max_working_cnt = 1;
found_begin = 1;
break;
}
}
if (found_begin)
break;
if (*p > IO_DQS_EN_PHASE_MAX)
/* fiddle with FIFO */
rw_mgr_incr_vfifo(*grp, v);
}
if (found_begin)
break;
}
if (*i >= VFIFO_SIZE) {
/* cannot find working solution */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
ptap/dtap\n", __func__, __LINE__);
return 0;
} else {
return 1;
}
}
static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
uint32_t *work_bgn, uint32_t *v, uint32_t *d,
uint32_t *p, uint32_t *max_working_cnt)
{
uint32_t found_begin = 0;
uint32_t tmp_delay;
/* Special case code for backing up a phase */
if (*p == 0) {
*p = IO_DQS_EN_PHASE_MAX;
rw_mgr_decr_vfifo(*grp, v);
} else {
(*p)--;
}
tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
PASS_ONE_BIT,
bit_chk, 0)) {
found_begin = 1;
*work_bgn = tmp_delay;
break;
}
}
/* We have found a working dtap before the ptap found above */
if (found_begin == 1)
(*max_working_cnt)++;
/*
* Restore VFIFO to old state before we decremented it
* (if needed).
*/
(*p)++;
if (*p > IO_DQS_EN_PHASE_MAX) {
*p = 0;
rw_mgr_incr_vfifo(*grp, v);
}
scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
}
static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
uint32_t *work_bgn, uint32_t *v, uint32_t *d,
uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
uint32_t *work_end)
{
uint32_t found_end = 0;
(*p)++;
*work_end += IO_DELAY_PER_OPA_TAP;
if (*p > IO_DQS_EN_PHASE_MAX) {
/* fiddle with FIFO */
*p = 0;
rw_mgr_incr_vfifo(*grp, v);
}
for (; *i < VFIFO_SIZE + 1; (*i)++) {
for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
+= IO_DELAY_PER_OPA_TAP) {
scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
if (!rw_mgr_mem_calibrate_read_test_all_ranks
(*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
found_end = 1;
break;
} else {
(*max_working_cnt)++;
}
}
if (found_end)
break;
if (*p > IO_DQS_EN_PHASE_MAX) {
/* fiddle with FIFO */
rw_mgr_incr_vfifo(*grp, v);
*p = 0;
}
}
if (*i >= VFIFO_SIZE + 1) {
/* cannot see edge of failing read */
debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
failed\n", __func__, __LINE__);
return 0;
} else {
return 1;
}
}
static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
uint32_t *work_bgn, uint32_t *v, uint32_t *d,
uint32_t *p, uint32_t *work_mid,
uint32_t *work_end)
{
int i;
int tmp_delay = 0;
*work_mid = (*work_bgn + *work_end) / 2;
debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
*work_bgn, *work_end, *work_mid);
/* Get the middle delay to be less than a VFIFO delay */
for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
;
debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
while (*work_mid > tmp_delay)
*work_mid -= tmp_delay;
debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
tmp_delay = 0;
for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
;
tmp_delay -= IO_DELAY_PER_OPA_TAP;
debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
;
debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
/*
* push vfifo until we can successfully calibrate. We can do this
* because the largest possible margin in 1 VFIFO cycle.
*/
for (i = 0; i < VFIFO_SIZE; i++) {
debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
*v);
if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
PASS_ONE_BIT,
bit_chk, 0)) {
break;
}
/* fiddle with FIFO */
rw_mgr_incr_vfifo(*grp, v);
}
if (i >= VFIFO_SIZE) {
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
failed\n", __func__, __LINE__);
return 0;
} else {
return 1;
}
}
/* find a good dqs enable to use */
static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
{
uint32_t v, d, p, i;
uint32_t max_working_cnt;
uint32_t bit_chk;
uint32_t dtaps_per_ptap;
uint32_t work_bgn, work_mid, work_end;
uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
debug("%s:%d %u\n", __func__, __LINE__, grp);
reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
/* ************************************************************** */
/* * Step 0 : Determine number of delay taps for each phase tap * */
dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
/* ********************************************************* */
/* * Step 1 : First push vfifo until we get a failing read * */
v = find_vfifo_read(grp, &bit_chk);
max_working_cnt = 0;
/* ******************************************************** */
/* * step 2: find first working phase, increment in ptaps * */
work_bgn = 0;
if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
&p, &i, &max_working_cnt) == 0)
return 0;
work_end = work_bgn;
/*
* If d is 0 then the working window covers a phase tap and
* we can follow the old procedure otherwise, we've found the beginning,
* and we need to increment the dtaps until we find the end.
*/
if (d == 0) {
/* ********************************************************* */
/* * step 3a: if we have room, back off by one and
increment in dtaps * */
sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
&max_working_cnt);
/* ********************************************************* */
/* * step 4a: go forward from working phase to non working
phase, increment in ptaps * */
if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
&i, &max_working_cnt, &work_end) == 0)
return 0;
/* ********************************************************* */
/* * step 5a: back off one from last, increment in dtaps * */
/* Special case code for backing up a phase */
if (p == 0) {
p = IO_DQS_EN_PHASE_MAX;
rw_mgr_decr_vfifo(grp, &v);
} else {
p = p - 1;
}
work_end -= IO_DELAY_PER_OPA_TAP;
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
/* * The actual increment of dtaps is done outside of
the if/else loop to share code */
d = 0;
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
vfifo=%u ptap=%u\n", __func__, __LINE__,
v, p);
} else {
/* ******************************************************* */
/* * step 3-5b: Find the right edge of the window using
delay taps * */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
v, p, d, work_bgn);
work_end = work_bgn;
/* * The actual increment of dtaps is done outside of the
if/else loop to share code */
/* Only here to counterbalance a subtract later on which is
not needed if this branch of the algorithm is taken */
max_working_cnt++;
}
/* The dtap increment to find the failing edge is done here */
for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
end-2: dtap=%u\n", __func__, __LINE__, d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
PASS_ONE_BIT,
&bit_chk, 0)) {
break;
}
}
/* Go back to working dtap */
if (d != 0)
work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
v, p, d-1, work_end);
if (work_end < work_bgn) {
/* nil range */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
failed\n", __func__, __LINE__);
return 0;
}
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
__func__, __LINE__, work_bgn, work_end);
/* *************************************************************** */
/*
* * We need to calculate the number of dtaps that equal a ptap
* * To do that we'll back up a ptap and re-find the edge of the
* * window using dtaps
*/
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
for tracking\n", __func__, __LINE__);
/* Special case code for backing up a phase */
if (p == 0) {
p = IO_DQS_EN_PHASE_MAX;
rw_mgr_decr_vfifo(grp, &v);
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
cycle/phase: v=%u p=%u\n", __func__, __LINE__,
v, p);
} else {
p = p - 1;
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
phase only: v=%u p=%u", __func__, __LINE__,
v, p);
}
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
/*
* Increase dtap until we first see a passing read (in case the
* window is smaller than a ptap),
* and then a failing read to mark the edge of the window again
*/
/* Find a passing read */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
__func__, __LINE__);
found_passing_read = 0;
found_failing_read = 0;
initial_failing_dtap = d;
for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
read d=%u\n", __func__, __LINE__, d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
PASS_ONE_BIT,
&bit_chk, 0)) {
found_passing_read = 1;
break;
}
}
if (found_passing_read) {
/* Find a failing read */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
read\n", __func__, __LINE__);
for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
testing read d=%u\n", __func__, __LINE__, d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (!rw_mgr_mem_calibrate_read_test_all_ranks
(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
found_failing_read = 1;
break;
}
}
} else {
debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
calculate dtaps", __func__, __LINE__);
debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
}
/*
* The dynamically calculated dtaps_per_ptap is only valid if we
* found a passing/failing read. If we didn't, it means d hit the max
* (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
* statically calculated value.
*/
if (found_passing_read && found_failing_read)
dtaps_per_ptap = d - initial_failing_dtap;
writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
- %u = %u", __func__, __LINE__, d,
initial_failing_dtap, dtaps_per_ptap);
/* ******************************************** */
/* * step 6: Find the centre of the window * */
if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
&work_mid, &work_end) == 0)
return 0;
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
v, p-1, d);
return 1;
}
/*
* Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
* dq_in_delay values
*/
static uint32_t
rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
(uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
{
uint32_t found;
uint32_t i;
uint32_t p;
uint32_t d;
uint32_t r;
const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
(RW_MGR_MEM_DQ_PER_READ_DQS-1);
/* we start at zero, so have one less dq to devide among */
debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
test_bgn);
/* try different dq_in_delays since the dq path is shorter than dqs */
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) {
debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
vfifo_find_dqs_", __func__, __LINE__);
debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
write_group, read_group);
debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
scc_mgr_set_dq_in_delay(p, d);
scc_mgr_load_dq(p);
}
writel(0, &sdr_scc_mgr->update);
}
found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
en_phase_sweep_dq", __func__, __LINE__);
debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
chain to zero\n", write_group, read_group, found);
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
i++, p++) {
scc_mgr_set_dq_in_delay(p, 0);
scc_mgr_load_dq(p);
}
writel(0, &sdr_scc_mgr->update);
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
}
return found;
}
/* per-bit deskew DQ and center */
static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
uint32_t use_read_test, uint32_t update_fom)
{
uint32_t i, p, d, min_index;
/*
* Store these as signed since there are comparisons with
* signed numbers.
*/
uint32_t bit_chk;
uint32_t sticky_bit_chk;
int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
int32_t mid;
int32_t orig_mid_min, mid_min;
int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
final_dqs_en;
int32_t dq_margin, dqs_margin;
uint32_t stop;
uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
uint32_t addr;
debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
start_dqs = readl(addr + (read_group << 2));
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
start_dqs_en = readl(addr + ((read_group << 2)
- IO_DQS_EN_DELAY_OFFSET));
/* set the left and right edge of each bit to an illegal value */
/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
sticky_bit_chk = 0;
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
left_edge[i] = IO_IO_IN_DELAY_MAX + 1;
right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
}
/* Search for the left edge of the window for each bit */
for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
writel(0, &sdr_scc_mgr->update);
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
/*
* Stop searching when the read test doesn't pass AND when
* we've seen a passing read on every bit.
*/
if (use_read_test) {
stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
&bit_chk, 0, 0);
} else {
rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
0, PASS_ONE_BIT,
&bit_chk, 0);
bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
(read_group - (write_group *
RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
stop = (bit_chk == 0);
}
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->read_correct_mask);
debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
&& %u", __func__, __LINE__, d,
sticky_bit_chk,
param->read_correct_mask, stop);
if (stop == 1) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
if (bit_chk & 1) {
/* Remember a passing test as the
left_edge */
left_edge[i] = d;
} else {
/* If a left edge has not been seen yet,
then a future passing test will mark
this edge as the right edge */
if (left_edge[i] ==
IO_IO_IN_DELAY_MAX + 1) {
right_edge[i] = -(d + 1);
}
}
bit_chk = bit_chk >> 1;
}
}
}
/* Reset DQ delay chains to 0 */
scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
sticky_bit_chk = 0;
for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
%d right_edge[%u]: %d\n", __func__, __LINE__,
i, left_edge[i], i, right_edge[i]);
/*
* Check for cases where we haven't found the left edge,
* which makes our assignment of the the right edge invalid.
* Reset it to the illegal value.
*/
if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
right_edge[%u]: %d\n", __func__, __LINE__,
i, right_edge[i]);
}
/*
* Reset sticky bit (except for bits where we have seen
* both the left and right edge).
*/
sticky_bit_chk = sticky_bit_chk << 1;
if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
(right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
sticky_bit_chk = sticky_bit_chk | 1;
}
if (i == 0)
break;
}
/* Search for the right edge of the window for each bit */
for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
uint32_t delay = d + start_dqs_en;
if (delay > IO_DQS_EN_DELAY_MAX)
delay = IO_DQS_EN_DELAY_MAX;
scc_mgr_set_dqs_en_delay(read_group, delay);
}
scc_mgr_load_dqs(read_group);
writel(0, &sdr_scc_mgr->update);
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
/*
* Stop searching when the read test doesn't pass AND when
* we've seen a passing read on every bit.
*/
if (use_read_test) {
stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
&bit_chk, 0, 0);
} else {
rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
0, PASS_ONE_BIT,
&bit_chk, 0);
bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
(read_group - (write_group *
RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
stop = (bit_chk == 0);
}
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->read_correct_mask);
debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
%u && %u", __func__, __LINE__, d,
sticky_bit_chk, param->read_correct_mask, stop);
if (stop == 1) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
if (bit_chk & 1) {
/* Remember a passing test as
the right_edge */
right_edge[i] = d;
} else {
if (d != 0) {
/* If a right edge has not been
seen yet, then a future passing
test will mark this edge as the
left edge */
if (right_edge[i] ==
IO_IO_IN_DELAY_MAX + 1) {
left_edge[i] = -(d + 1);
}
} else {
/* d = 0 failed, but it passed
when testing the left edge,
so it must be marginal,
set it to -1 */
if (right_edge[i] ==
IO_IO_IN_DELAY_MAX + 1 &&
left_edge[i] !=
IO_IO_IN_DELAY_MAX
+ 1) {
right_edge[i] = -1;
}
/* If a right edge has not been
seen yet, then a future passing
test will mark this edge as the
left edge */
else if (right_edge[i] ==
IO_IO_IN_DELAY_MAX +
1) {
left_edge[i] = -(d + 1);
}
}
}
debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
d=%u]: ", __func__, __LINE__, d);
debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
(int)(bit_chk & 1), i, left_edge[i]);
debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
right_edge[i]);
bit_chk = bit_chk >> 1;
}
}
}
/* Check that all bits have a window */
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
%d right_edge[%u]: %d", __func__, __LINE__,
i, left_edge[i], i, right_edge[i]);
if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
== IO_IO_IN_DELAY_MAX + 1)) {
/*
* Restore delay chain settings before letting the loop
* in rw_mgr_mem_calibrate_vfifo to retry different
* dqs/ck relationships.
*/
scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
scc_mgr_set_dqs_en_delay(read_group,
start_dqs_en);
}
scc_mgr_load_dqs(read_group);
writel(0, &sdr_scc_mgr->update);
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
find edge [%u]: %d %d", __func__, __LINE__,
i, left_edge[i], right_edge[i]);
if (use_read_test) {
set_failing_group_stage(read_group *
RW_MGR_MEM_DQ_PER_READ_DQS + i,
CAL_STAGE_VFIFO,
CAL_SUBSTAGE_VFIFO_CENTER);
} else {
set_failing_group_stage(read_group *
RW_MGR_MEM_DQ_PER_READ_DQS + i,
CAL_STAGE_VFIFO_AFTER_WRITES,
CAL_SUBSTAGE_VFIFO_CENTER);
}
return 0;
}
}
/* Find middle of window for each DQ bit */
mid_min = left_edge[0] - right_edge[0];
min_index = 0;
for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
mid = left_edge[i] - right_edge[i];
if (mid < mid_min) {
mid_min = mid;
min_index = i;
}
}
/*
* -mid_min/2 represents the amount that we need to move DQS.
* If mid_min is odd and positive we'll need to add one to
* make sure the rounding in further calculations is correct
* (always bias to the right), so just add 1 for all positive values.
*/
if (mid_min > 0)
mid_min++;
mid_min = mid_min / 2;
debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
__func__, __LINE__, mid_min, min_index);
/* Determine the amount we can change DQS (which is -mid_min) */
orig_mid_min = mid_min;
new_dqs = start_dqs - mid_min;
if (new_dqs > IO_DQS_IN_DELAY_MAX)
new_dqs = IO_DQS_IN_DELAY_MAX;
else if (new_dqs < 0)
new_dqs = 0;
mid_min = start_dqs - new_dqs;
debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
mid_min, new_dqs);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
else if (start_dqs_en - mid_min < 0)
mid_min += start_dqs_en - mid_min;
}
new_dqs = start_dqs - mid_min;
debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
new_dqs=%d mid_min=%d\n", start_dqs,
IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
new_dqs, mid_min);
/* Initialize data for export structures */
dqs_margin = IO_IO_IN_DELAY_MAX + 1;
dq_margin = IO_IO_IN_DELAY_MAX + 1;
/* add delay to bring centre of all DQ windows to the same "level" */
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
/* Use values before divide by 2 to reduce round off error */
shift_dq = (left_edge[i] - right_edge[i] -
(left_edge[min_index] - right_edge[min_index]))/2 +
(orig_mid_min - mid_min);
debug_cond(DLEVEL == 2, "vfifo_center: before: \
shift_dq[%u]=%d\n", i, shift_dq);
addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
temp_dq_in_delay1 = readl(addr + (p << 2));
temp_dq_in_delay2 = readl(addr + (i << 2));
if (shift_dq + (int32_t)temp_dq_in_delay1 >
(int32_t)IO_IO_IN_DELAY_MAX) {
shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
shift_dq = -(int32_t)temp_dq_in_delay1;
}
debug_cond(DLEVEL == 2, "vfifo_center: after: \
shift_dq[%u]=%d\n", i, shift_dq);
final_dq[i] = temp_dq_in_delay1 + shift_dq;
scc_mgr_set_dq_in_delay(p, final_dq[i]);
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
scc_mgr_load_dq(p);
debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
left_edge[i] - shift_dq + (-mid_min),
right_edge[i] + shift_dq - (-mid_min));
/* To determine values for export structures */
if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
dq_margin = left_edge[i] - shift_dq + (-mid_min);
if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
dqs_margin = right_edge[i] + shift_dq - (-mid_min);
}
final_dqs = new_dqs;
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
final_dqs_en = start_dqs_en - mid_min;
/* Move DQS-en */
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
scc_mgr_load_dqs(read_group);
}
/* Move DQS */
scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
scc_mgr_load_dqs(read_group);
debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
dqs_margin=%d", __func__, __LINE__,
dq_margin, dqs_margin);
/*
* Do not remove this line as it makes sure all of our decisions
* have been applied. Apply the update bit.
*/
writel(0, &sdr_scc_mgr->update);
return (dq_margin >= 0) && (dqs_margin >= 0);
}
/**
* rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
* @rw_group: Read/Write Group
* @phase: DQ/DQS phase
*
* Because initially no communication ca be reliably performed with the memory
* device, the sequencer uses a guaranteed write mechanism to write data into
* the memory device.
*/
static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
const u32 phase)
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
{
u32 bit_chk;
int ret;
/* Set a particular DQ/DQS phase. */
scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
__func__, __LINE__, rw_group, phase);
/*
* Altera EMI_RM 2015.05.04 :: Figure 1-25
* Load up the patterns used by read calibration using the
* current DQDQS phase.
*/
rw_mgr_mem_calibrate_read_load_patterns(0, 1);
if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
return 0;
/*
* Altera EMI_RM 2015.05.04 :: Figure 1-26
* Back-to-Back reads of the patterns used for calibration.
*/
ret = rw_mgr_mem_calibrate_read_test_patterns_all_ranks(rw_group, 1,
&bit_chk);
if (!ret) { /* FIXME: 0 means failure in this old code :-( */
debug_cond(DLEVEL == 1,
"%s:%d Guaranteed read test failed: g=%u p=%u\n",
__func__, __LINE__, rw_group, phase);
return -EIO;
}
return 0;
}
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
/**
* rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
* @rw_group: Read/Write Group
* @test_bgn: Rank at which the test begins
*
* DQS enable calibration ensures reliable capture of the DQ signal without
* glitches on the DQS line.
*/
static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
const u32 test_bgn)
{
int ret;
/*
* Altera EMI_RM 2015.05.04 :: Figure 1-27
* DQS and DQS Eanble Signal Relationships.
*/
ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay(
rw_group, rw_group, test_bgn);
if (!ret) /* FIXME: 0 means failure in this old code :-( */
return -EIO;
return 0;
}
/**
* rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
* @rw_group: Read/Write Group
* @test_bgn: Rank at which the test begins
*
* Stage 1: Calibrate the read valid prediction FIFO.
*
* This function implements UniPHY calibration Stage 1, as explained in
* detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
* - read valid prediction will consist of finding:
* - DQS enable phase and DQS enable delay (DQS Enable Calibration)
* - DQS input phase and DQS input delay (DQ/DQS Centering)
* - we also do a per-bit deskew on the DQ lines.
*/
static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
{
uint32_t p, d, rank_bgn, sr;
uint32_t dtaps_per_ptap;
uint32_t grp_calibrated;
uint32_t failed_substage;
int ret;
debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
/* Update info for sims */
reg_file_set_group(rw_group);
reg_file_set_stage(CAL_STAGE_VFIFO);
reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
/* USER Determine number of delay taps for each phase tap. */
dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
for (d = 0; d <= dtaps_per_ptap; d += 2) {
/*
* In RLDRAMX we may be messing the delay of pins in
* the same write rw_group but outside of the current read
* the rw_group, but that's ok because we haven't calibrated
* output side yet.
*/
if (d > 0) {
scc_mgr_apply_group_all_out_delay_add_all_ranks(
rw_group, d);
for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
/* 1) Guaranteed Write */
ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
if (ret)
break;
/* 2) DQS Enable Calibration */
ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
test_bgn);
if (ret) {
failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
continue;
}
/*
* USER Read per-bit deskew can be done on a
* per shadow register basis.
*/
grp_calibrated = 1;
for (rank_bgn = 0, sr = 0;
rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
/*
* Determine if this set of ranks
* should be skipped entirely.
*/
if (param->skip_shadow_regs[sr])
continue;
/*
* If doing read after write
* calibration, do not update
* FOM, now - do it then.
*/
if (rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
rw_group, rw_group,
test_bgn, 1, 0))
continue;
grp_calibrated = 0;
failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
if (grp_calibrated)
goto cal_done_ok;
/* Calibration Stage 1 failed. */
set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
return 0;
/* Calibration Stage 1 completed OK. */
cal_done_ok:
/*
* Reset the delay chains back to zero if they have moved > 1
* (check for > 1 because loop will increase d even when pass in
* first case).
*/
if (d > 2)
scc_mgr_zero_group(rw_group, 1);
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
return 1;
}
/* VFIFO Calibration -- Read Deskew Calibration after write deskew */
static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
uint32_t test_bgn)
{
uint32_t rank_bgn, sr;
uint32_t grp_calibrated;
uint32_t write_group;
debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
/* update info for sims */
reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
write_group = read_group;
/* update info for sims */
reg_file_set_group(read_group);
grp_calibrated = 1;
/* Read per-bit deskew can be done on a per shadow register basis */
for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
/* Determine if this set of ranks should be skipped entirely */
if (!param->skip_shadow_regs[sr]) {
/* This is the last calibration round, update FOM here */
if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
write_group,
read_group,
test_bgn, 0,
1)) {
grp_calibrated = 0;
}
}
}
if (grp_calibrated == 0) {
set_failing_group_stage(write_group,
CAL_STAGE_VFIFO_AFTER_WRITES,
CAL_SUBSTAGE_VFIFO_CENTER);
return 0;
}
return 1;
}
/* Calibrate LFIFO to find smallest read latency */
static uint32_t rw_mgr_mem_calibrate_lfifo(void)
{
uint32_t found_one;
uint32_t bit_chk;
debug("%s:%d\n", __func__, __LINE__);
/* update info for sims */
reg_file_set_stage(CAL_STAGE_LFIFO);
reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
/* Load up the patterns used by read calibration for all ranks */
rw_mgr_mem_calibrate_read_load_patterns(0, 1);
found_one = 0;
do {
writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
__func__, __LINE__, gbl->curr_read_lat);
if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
NUM_READ_TESTS,
PASS_ALL_BITS,
&bit_chk, 1)) {
break;
}
found_one = 1;
/* reduce read latency and see if things are working */
/* correctly */
gbl->curr_read_lat--;
} while (gbl->curr_read_lat > 0);
/* reset the fifos to get pointers to known state */
writel(0, &phy_mgr_cmd->fifo_reset);
if (found_one) {
/* add a fudge factor to the read latency that was determined */
gbl->curr_read_lat += 2;
writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
read_lat=%u\n", __func__, __LINE__,
gbl->curr_read_lat);
return 1;
} else {
set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
CAL_SUBSTAGE_READ_LATENCY);
debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
read_lat=%u\n", __func__, __LINE__,
gbl->curr_read_lat);
return 0;
}
}
/*
* issue write test command.
* two variants are provided. one that just tests a write pattern and
* another that tests datamask functionality.
*/
static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
uint32_t test_dm)
{
uint32_t mcc_instruction;
uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
ENABLE_SUPER_QUICK_CALIBRATION);
uint32_t rw_wl_nop_cycles;
uint32_t addr;
/*
* Set counter and jump addresses for the right
* number of NOP cycles.
* The number of supported NOP cycles can range from -1 to infinity
* Three different cases are handled:
*
* 1. For a number of NOP cycles greater than 0, the RW Mgr looping
* mechanism will be used to insert the right number of NOPs
*
* 2. For a number of NOP cycles equals to 0, the micro-instruction
* issuing the write command will jump straight to the
* micro-instruction that turns on DQS (for DDRx), or outputs write
* data (for RLD), skipping
* the NOP micro-instruction all together
*
* 3. A number of NOP cycles equal to -1 indicates that DQS must be
* turned on in the same micro-instruction that issues the write
* command. Then we need
* to directly jump to the micro-instruction that sends out the data
*
* NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
* (2 and 3). One jump-counter (0) is used to perform multiple
* write-read operations.
* one counter left to issue this command in "multiple-group" mode
*/
rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
if (rw_wl_nop_cycles == -1) {
/*
* CNTR 2 - We want to execute the special write operation that
* turns on DQS right away and then skip directly to the
* instruction that sends out the data. We set the counter to a
* large number so that the jump is always taken.
*/
writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
/* CNTR 3 - Not used */
if (test_dm) {
mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
} else {
mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
}
} else if (rw_wl_nop_cycles == 0) {
/*
* CNTR 2 - We want to skip the NOP operation and go straight
* to the DQS enable instruction. We set the counter to a large
* number so that the jump is always taken.
*/
writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
/* CNTR 3 - Not used */
if (test_dm) {
mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
} else {
mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
}
} else {
/*
* CNTR 2 - In this case we want to execute the next instruction
* and NOT take the jump. So we set the counter to 0. The jump
* address doesn't count.
*/
writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
/*
* CNTR 3 - Set the nop counter to the number of cycles we
* need to loop for, minus 1.
*/
writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
if (test_dm) {
mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
} else {
mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RESET_READ_DATAPATH_OFFSET);
if (quick_write_mode)
writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
/*
* CNTR 1 - This is used to ensure enough time elapses
* for read data to come back.
*/
writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
writel(mcc_instruction, addr + (group << 2));
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
}
/* Test writes, can check for a single bit pass or multiple bit pass */
static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
uint32_t *bit_chk, uint32_t all_ranks)
{
uint32_t r;
uint32_t correct_mask_vg;
uint32_t tmp_bit_chk;
uint32_t vg;
uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
uint32_t addr_rw_mgr;
uint32_t base_rw_mgr;
*bit_chk = param->write_correct_mask;
correct_mask_vg = param->write_correct_mask_vg;
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r]) {
/* request to skip the rank */
continue;
}
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
tmp_bit_chk = 0;
addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
/* reset the fifos to get pointers to known state */
writel(0, &phy_mgr_cmd->fifo_reset);
tmp_bit_chk = tmp_bit_chk <<
(RW_MGR_MEM_DQ_PER_WRITE_DQS /
RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
rw_mgr_mem_calibrate_write_test_issue(write_group *
RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
use_dm);
base_rw_mgr = readl(addr_rw_mgr);
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
if (vg == 0)
break;
}
*bit_chk &= tmp_bit_chk;
}
if (all_correct) {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
%u => %lu", write_group, use_dm,
*bit_chk, param->write_correct_mask,
(long unsigned int)(*bit_chk ==
param->write_correct_mask));
return *bit_chk == param->write_correct_mask;
} else {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
write_group, use_dm, *bit_chk);
debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
(long unsigned int)(*bit_chk != 0));
return *bit_chk != 0x00;
}
}
/*
* center all windows. do per-bit-deskew to possibly increase size of
* certain windows.
*/
static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
uint32_t write_group, uint32_t test_bgn)
{
uint32_t i, p, min_index;
int32_t d;
/*
* Store these as signed since there are comparisons with
* signed numbers.
*/
uint32_t bit_chk;
uint32_t sticky_bit_chk;
int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
int32_t mid;
int32_t mid_min, orig_mid_min;
int32_t new_dqs, start_dqs, shift_dq;
int32_t dq_margin, dqs_margin, dm_margin;
uint32_t stop;
uint32_t temp_dq_out1_delay;
uint32_t addr;
debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
dm_margin = 0;
addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
start_dqs = readl(addr +
(RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
/* per-bit deskew */
/*
* set the left and right edge of each bit to an illegal value
* use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
*/
sticky_bit_chk = 0;
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
}
/* Search for the left edge of the window for each bit */
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
scc_mgr_apply_group_dq_out1_delay(write_group, d);
writel(0, &sdr_scc_mgr->update);
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
/*
* Stop searching when the read test doesn't pass AND when
* we've seen a passing read on every bit.
*/
stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
0, PASS_ONE_BIT, &bit_chk, 0);
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->write_correct_mask);
debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
== %u && %u [bit_chk= %u ]\n",
d, sticky_bit_chk, param->write_correct_mask,
stop, bit_chk);
if (stop == 1) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
if (bit_chk & 1) {
/*
* Remember a passing test as the
* left_edge.
*/
left_edge[i] = d;
} else {
/*
* If a left edge has not been seen
* yet, then a future passing test will
* mark this edge as the right edge.
*/
if (left_edge[i] ==
IO_IO_OUT1_DELAY_MAX + 1) {
right_edge[i] = -(d + 1);
}
}
debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
(int)(bit_chk & 1), i, left_edge[i]);
debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
right_edge[i]);
bit_chk = bit_chk >> 1;
}
}
}
/* Reset DQ delay chains to 0 */
scc_mgr_apply_group_dq_out1_delay(0);
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
sticky_bit_chk = 0;
for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
%d right_edge[%u]: %d\n", __func__, __LINE__,
i, left_edge[i], i, right_edge[i]);
/*
* Check for cases where we haven't found the left edge,
* which makes our assignment of the the right edge invalid.
* Reset it to the illegal value.
*/
if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
(right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
right_edge[%u]: %d\n", __func__, __LINE__,
i, right_edge[i]);
}
/*
* Reset sticky bit (except for bits where we have
* seen the left edge).
*/
sticky_bit_chk = sticky_bit_chk << 1;
if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
sticky_bit_chk = sticky_bit_chk | 1;
if (i == 0)
break;
}
/* Search for the right edge of the window for each bit */
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
d + start_dqs);
writel(0, &sdr_scc_mgr->update);
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
/*
* Stop searching when the read test doesn't pass AND when
* we've seen a passing read on every bit.
*/
stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
0, PASS_ONE_BIT, &bit_chk, 0);
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->write_correct_mask);
debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
%u && %u\n", d, sticky_bit_chk,
param->write_correct_mask, stop);
if (stop == 1) {
if (d == 0) {
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
i++) {
/* d = 0 failed, but it passed when
testing the left edge, so it must be
marginal, set it to -1 */
if (right_edge[i] ==
IO_IO_OUT1_DELAY_MAX + 1 &&
left_edge[i] !=
IO_IO_OUT1_DELAY_MAX + 1) {
right_edge[i] = -1;
}
}
}
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
if (bit_chk & 1) {
/*
* Remember a passing test as
* the right_edge.
*/
right_edge[i] = d;
} else {
if (d != 0) {
/*
* If a right edge has not
* been seen yet, then a future
* passing test will mark this
* edge as the left edge.
*/
if (right_edge[i] ==
IO_IO_OUT1_DELAY_MAX + 1)
left_edge[i] = -(d + 1);
} else {
/*
* d = 0 failed, but it passed
* when testing the left edge,
* so it must be marginal, set
* it to -1.
*/
if (right_edge[i] ==
IO_IO_OUT1_DELAY_MAX + 1 &&
left_edge[i] !=
IO_IO_OUT1_DELAY_MAX + 1)
right_edge[i] = -1;
/*
* If a right edge has not been
* seen yet, then a future
* passing test will mark this
* edge as the left edge.
*/
else if (right_edge[i] ==
IO_IO_OUT1_DELAY_MAX +
1)
left_edge[i] = -(d + 1);
}
}
debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
(int)(bit_chk & 1), i, left_edge[i]);
debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
right_edge[i]);
bit_chk = bit_chk >> 1;
}
}
}
/* Check that all bits have a window */
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
%d right_edge[%u]: %d", __func__, __LINE__,
i, left_edge[i], i, right_edge[i]);
if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
(right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
set_failing_group_stage(test_bgn + i,
CAL_STAGE_WRITES,
CAL_SUBSTAGE_WRITES_CENTER);
return 0;
}
}
/* Find middle of window for each DQ bit */
mid_min = left_edge[0] - right_edge[0];
min_index = 0;
for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
mid = left_edge[i] - right_edge[i];
if (mid < mid_min) {
mid_min = mid;
min_index = i;
}
}
/*
* -mid_min/2 represents the amount that we need to move DQS.
* If mid_min is odd and positive we'll need to add one to
* make sure the rounding in further calculations is correct
* (always bias to the right), so just add 1 for all positive values.
*/
if (mid_min > 0)
mid_min++;
mid_min = mid_min / 2;
debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
__LINE__, mid_min);
/* Determine the amount we can change DQS (which is -mid_min) */
orig_mid_min = mid_min;
new_dqs = start_dqs;
mid_min = 0;
debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
/* Initialize data for export structures */
dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
dq_margin = IO_IO_OUT1_DELAY_MAX + 1;
/* add delay to bring centre of all DQ windows to the same "level" */
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
/* Use values before divide by 2 to reduce round off error */
shift_dq = (left_edge[i] - right_edge[i] -
(left_edge[min_index] - right_edge[min_index]))/2 +
(orig_mid_min - mid_min);
debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
[%u]=%d\n", __func__, __LINE__, i, shift_dq);
addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
temp_dq_out1_delay = readl(addr + (i << 2));
if (shift_dq + (int32_t)temp_dq_out1_delay >
(int32_t)IO_IO_OUT1_DELAY_MAX) {
shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
shift_dq = -(int32_t)temp_dq_out1_delay;
}
debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
i, shift_dq);
scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
scc_mgr_load_dq(i);
debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
left_edge[i] - shift_dq + (-mid_min),
right_edge[i] + shift_dq - (-mid_min));
/* To determine values for export structures */
if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
dq_margin = left_edge[i] - shift_dq + (-mid_min);
if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
dqs_margin = right_edge[i] + shift_dq - (-mid_min);
}
/* Move DQS */
scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
writel(0, &sdr_scc_mgr->update);
/* Centre DM */
debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
/*
* set the left and right edge of each bit to an illegal value,
* use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
*/
left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
int32_t win_best = 0;
/* Search for the/part of the window with DM shift */
for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
scc_mgr_apply_group_dm_out1_delay(d);
writel(0, &sdr_scc_mgr->update);
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
PASS_ALL_BITS, &bit_chk,
0)) {
/* USE Set current end of the window */
end_curr = -d;
/*
* If a starting edge of our window has not been seen
* this is our current start of the DM window.
*/
if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
bgn_curr = -d;
/*
* If current window is bigger than best seen.
* Set best seen to be current window.
*/
if ((end_curr-bgn_curr+1) > win_best) {
win_best = end_curr-bgn_curr+1;
bgn_best = bgn_curr;
end_best = end_curr;
}
} else {
/* We just saw a failing test. Reset temp edge */
bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
end_curr = IO_IO_OUT1_DELAY_MAX + 1;
}
}
/* Reset DM delay chains to 0 */
scc_mgr_apply_group_dm_out1_delay(0);
/*
* Check to see if the current window nudges up aganist 0 delay.
* If so we need to continue the search by shifting DQS otherwise DQS
* search begins as a new search. */
if (end_curr != 0) {
bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
end_curr = IO_IO_OUT1_DELAY_MAX + 1;
}
/* Search for the/part of the window with DQS shifts */
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
/*
* Note: This only shifts DQS, so are we limiting ourselve to
* width of DQ unnecessarily.
*/
scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
d + new_dqs);
writel(0, &sdr_scc_mgr->update);
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
PASS_ALL_BITS, &bit_chk,
0)) {
/* USE Set current end of the window */
end_curr = d;
/*
* If a beginning edge of our window has not been seen
* this is our current begin of the DM window.
*/
if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
bgn_curr = d;
/*
* If current window is bigger than best seen. Set best
* seen to be current window.
*/
if ((end_curr-bgn_curr+1) > win_best) {
win_best = end_curr-bgn_curr+1;
bgn_best = bgn_curr;
end_best = end_curr;
}
} else {
/* We just saw a failing test. Reset temp edge */
bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
end_curr = IO_IO_OUT1_DELAY_MAX + 1;
/* Early exit optimization: if ther remaining delay
chain space is less than already seen largest window
we can exit */
if ((win_best-1) >
(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
break;
}
}
}
/* assign left and right edge for cal and reporting; */
left_edge[0] = -1*bgn_best;
right_edge[0] = end_best;
debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
__LINE__, left_edge[0], right_edge[0]);
/* Move DQS (back to orig) */
scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
/* Move DM */
/* Find middle of window for the DM bit */
mid = (left_edge[0] - right_edge[0]) / 2;
/* only move right, since we are not moving DQS/DQ */
if (mid < 0)
mid = 0;
/* dm_marign should fail if we never find a window */
if (win_best == 0)
dm_margin = -1;
else
dm_margin = left_edge[0] - mid;
scc_mgr_apply_group_dm_out1_delay(mid);
writel(0, &sdr_scc_mgr->update);
debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
dm_margin=%d\n", __func__, __LINE__, left_edge[0],
right_edge[0], mid, dm_margin);
/* Export values */
gbl->fom_out += dq_margin + dqs_margin;
debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
dq_margin, dqs_margin, dm_margin);
/*
* Do not remove this line as it makes sure all of our
* decisions have been applied.
*/
writel(0, &sdr_scc_mgr->update);
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
}
/* calibrate the write operations */
static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
uint32_t test_bgn)
{
/* update info for sims */
debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
reg_file_set_stage(CAL_STAGE_WRITES);
reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
reg_file_set_group(g);
if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
set_failing_group_stage(g, CAL_STAGE_WRITES,
CAL_SUBSTAGE_WRITES_CENTER);
return 0;
}
return 1;
}
/**
* mem_precharge_and_activate() - Precharge all banks and activate
*
* Precharge all banks and activate row 0 in bank "000..." and bank "111...".
*/
static void mem_precharge_and_activate(void)
{
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
/* Test if the rank should be skipped. */
if (param->skip_ranks[r])
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
/* Precharge all banks. */
writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
&sdr_rw_load_jump_mgr_regs->load_jump_add0);
writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
/**
* mem_init_latency() - Configure memory RLAT and WLAT settings
*
* Configure memory RLAT and WLAT parameters.
*/
static void mem_init_latency(void)
* For AV/CV, LFIFO is hardened and always runs at full rate
* so max latency in AFI clocks, used here, is correspondingly
* smaller.
const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
u32 rlat, wlat;
* Read in write latency.
* WL for Hard PHY does not include additive latency.
wlat = readl(&data_mgr->t_wl_add);
wlat += readl(&data_mgr->mem_t_add);
/* Read in readl latency. */
rlat = readl(&data_mgr->t_rl_add);
/* Set a pretty high read latency initially. */
gbl->curr_read_lat = rlat + 16;
if (gbl->curr_read_lat > max_latency)
gbl->curr_read_lat = max_latency;
writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
/* Advertise write latency. */
writel(wlat, &phy_mgr_cfg->afi_wlat);
/**
* @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
*
* Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
*/
static void mem_skip_calibrate(void)
{
uint32_t vfifo_offset;
uint32_t i, j, r;
debug("%s:%d\n", __func__, __LINE__);
/* Need to update every shadow register set used by the interface */
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
/*
* Set output phase alignment settings appropriate for
* skip calibration.
*/
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
scc_mgr_set_dqs_en_phase(i, 0);
#if IO_DLL_CHAIN_LENGTH == 6
scc_mgr_set_dqdqs_output_phase(i, 6);
#else
scc_mgr_set_dqdqs_output_phase(i, 7);
#endif
/*
* Case:33398
*
* Write data arrives to the I/O two cycles before write
* latency is reached (720 deg).
* -> due to bit-slip in a/c bus
* -> to allow board skew where dqs is longer than ck
* -> how often can this happen!?
* -> can claim back some ptaps for high freq
* support if we can relax this, but i digress...
*
* The write_clk leads mem_ck by 90 deg
* The minimum ptap of the OPA is 180 deg
* Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
* The write_clk is always delayed by 2 ptaps
*
* Hence, to make DQS aligned to CK, we need to delay
* DQS by:
* (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
*
* Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
* gives us the number of ptaps, which simplies to:
*
* (1.25 * IO_DLL_CHAIN_LENGTH - 2)
*/
scc_mgr_set_dqdqs_output_phase(i,
1.25 * IO_DLL_CHAIN_LENGTH - 2);
writel(0xff, &sdr_scc_mgr->dqs_ena);
writel(0xff, &sdr_scc_mgr->dqs_io_ena);
for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
SCC_MGR_GROUP_COUNTER_OFFSET);
writel(0xff, &sdr_scc_mgr->dq_ena);
writel(0xff, &sdr_scc_mgr->dm_ena);
writel(0, &sdr_scc_mgr->update);
}
/* Compensate for simulation model behaviour */
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
scc_mgr_set_dqs_bus_in_delay(i, 10);
scc_mgr_load_dqs(i);
}
writel(0, &sdr_scc_mgr->update);
/*
* ArriaV has hard FIFOs that can only be initialized by incrementing
* in sequencer.
*/
vfifo_offset = CALIB_VFIFO_OFFSET;
for (j = 0; j < vfifo_offset; j++)
writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
writel(0, &phy_mgr_cmd->fifo_reset);
* For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
* setting from generation-time constant.
*/
gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
/**
* mem_calibrate() - Memory calibration entry point.
*
* Perform memory calibration.
*/
static uint32_t mem_calibrate(void)
{
uint32_t i;
uint32_t rank_bgn, sr;
uint32_t write_group, write_test_bgn;
uint32_t read_group, read_test_bgn;
uint32_t run_groups, current_run;
uint32_t failing_groups = 0;
uint32_t group_failed = 0;
const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
debug("%s:%d\n", __func__, __LINE__);
gbl->error_substage = CAL_SUBSTAGE_NIL;
gbl->error_stage = CAL_STAGE_NIL;
gbl->error_group = 0xff;
gbl->fom_in = 0;
gbl->fom_out = 0;
/* Initialize WLAT and RLAT. */
mem_init_latency();
/* Initialize bit slips. */
mem_precharge_and_activate();
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
SCC_MGR_GROUP_COUNTER_OFFSET);
/* Only needed once to set all groups, pins, DQ, DQS, DM. */
if (i == 0)
scc_mgr_set_hhp_extras();
/* Calibration is skipped. */
if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
/*
* Set VFIFO and LFIFO to instant-on settings in skip
* calibration mode.
*/
mem_skip_calibrate();
/*
* Do not remove this line as it makes sure all of our
* decisions have been applied.
*/
writel(0, &sdr_scc_mgr->update);
return 1;
}
/* Calibration is not skipped. */
for (i = 0; i < NUM_CALIB_REPEAT; i++) {
/*
* Zero all delay chain/phase settings for all
* groups and all shadow register sets.
*/
scc_mgr_zero_all();
run_groups = ~param->skip_groups;
for (write_group = 0, write_test_bgn = 0; write_group
< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
/* Initialize the group failure */
group_failed = 0;
current_run = run_groups & ((1 <<
RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
run_groups = run_groups >>
RW_MGR_NUM_DQS_PER_WRITE_GROUP;
if (current_run == 0)
continue;
writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
SCC_MGR_GROUP_COUNTER_OFFSET);
scc_mgr_zero_group(write_group, 0);
for (read_group = write_group * rwdqs_ratio,
read_test_bgn = 0;
read_group < (write_group + 1) * rwdqs_ratio;
read_group++,
read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
continue;
/* Calibrate the VFIFO */
if (rw_mgr_mem_calibrate_vfifo(read_group,
read_test_bgn))
continue;
if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
return 0;
/* The group failed, we're done. */
goto grp_failed;
/* Calibrate the output side */
for (rank_bgn = 0, sr = 0;
rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
continue;
/* Not needed in quick mode! */
if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
continue;
/*
* Determine if this set of ranks
* should be skipped entirely.
*/
if (param->skip_shadow_regs[sr])
continue;
/* Calibrate WRITEs */
if (rw_mgr_mem_calibrate_writes(rank_bgn,
write_group, write_test_bgn))
continue;
group_failed = 1;
if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
return 0;
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
/* Some group failed, we're done. */
if (group_failed)
goto grp_failed;
for (read_group = write_group * rwdqs_ratio,
read_test_bgn = 0;
read_group < (write_group + 1) * rwdqs_ratio;
read_group++,
read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
continue;
if (rw_mgr_mem_calibrate_vfifo_end(read_group,
read_test_bgn))
continue;
if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
return 0;
/* The group failed, we're done. */
goto grp_failed;
/* No group failed, continue as usual. */
continue;
grp_failed: /* A group failed, increment the counter. */
failing_groups++;
}
/*
* USER If there are any failing groups then report
* the failure.
*/
if (failing_groups != 0)
return 0;
if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
continue;
/*
* If we're skipping groups as part of debug,
* don't calibrate LFIFO.
*/
if (param->skip_groups != 0)
continue;
/* Calibrate the LFIFO */
if (!rw_mgr_mem_calibrate_lfifo())
return 0;
}
/*
* Do not remove this line as it makes sure all of our decisions
* have been applied.
*/
writel(0, &sdr_scc_mgr->update);
return 1;
}
/**
* run_mem_calibrate() - Perform memory calibration
*
* This function triggers the entire memory calibration procedure.
*/
static int run_mem_calibrate(void)
debug("%s:%d\n", __func__, __LINE__);
/* Reset pass/fail status shown on afi_cal_success/fail */
writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
/* Stop tracking manager. */
clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
phy_mgr_initialize();
rw_mgr_mem_initialize();
/* Perform the actual memory calibration. */
pass = mem_calibrate();
mem_precharge_and_activate();
writel(0, &phy_mgr_cmd->fifo_reset);
/* Handoff. */
rw_mgr_mem_handoff();
* In Hard PHY this is a 2-bit control:
* 0: AFI Mux Select
* 1: DDIO Mux Select
writel(0x2, &phy_mgr_cfg->mux_sel);
/* Start tracking manager. */
setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
return pass;
}
/**
* debug_mem_calibrate() - Report result of memory calibration
* @pass: Value indicating whether calibration passed or failed
*
* This function reports the results of the memory calibration
* and writes debug information into the register file.
*/
static void debug_mem_calibrate(int pass)
{
uint32_t debug_info;
if (pass) {
printf("%s: CALIBRATION PASSED\n", __FILE__);
gbl->fom_in /= 2;
gbl->fom_out /= 2;
if (gbl->fom_in > 0xff)
gbl->fom_in = 0xff;
if (gbl->fom_out > 0xff)
gbl->fom_out = 0xff;
/* Update the FOM in the register file */
debug_info = gbl->fom_in;
debug_info |= gbl->fom_out << 8;
writel(debug_info, &sdr_reg_file->fom);
writel(debug_info, &phy_mgr_cfg->cal_debug_info);
writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
} else {
printf("%s: CALIBRATION FAILED\n", __FILE__);
debug_info = gbl->error_stage;
debug_info |= gbl->error_substage << 8;
debug_info |= gbl->error_group << 16;
writel(debug_info, &sdr_reg_file->failing_stage);
writel(debug_info, &phy_mgr_cfg->cal_debug_info);
writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
/* Update the failing group/stage in the register file */
debug_info = gbl->error_stage;
debug_info |= gbl->error_substage << 8;
debug_info |= gbl->error_group << 16;
writel(debug_info, &sdr_reg_file->failing_stage);
printf("%s: Calibration complete\n", __FILE__);
/**
* hc_initialize_rom_data() - Initialize ROM data
*
* Initialize ROM data.
*/
static void hc_initialize_rom_data(void)
{
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
writel(inst_rom_init[i], addr + (i << 2));
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
writel(ac_rom_init[i], addr + (i << 2));
/**
* initialize_reg_file() - Initialize SDR register file
*
* Initialize SDR register file.
*/
static void initialize_reg_file(void)
{
/* Initialize the register file with the correct data */
writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
writel(0, &sdr_reg_file->debug_data_addr);
writel(0, &sdr_reg_file->cur_stage);
writel(0, &sdr_reg_file->fom);
writel(0, &sdr_reg_file->failing_stage);
writel(0, &sdr_reg_file->debug1);
writel(0, &sdr_reg_file->debug2);
/**
* initialize_hps_phy() - Initialize HPS PHY
*
* Initialize HPS PHY.
*/
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
static void initialize_hps_phy(void)
{
uint32_t reg;
/*
* Tracking also gets configured here because it's in the
* same register.
*/
uint32_t trk_sample_count = 7500;
uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
/*
* Format is number of outer loops in the 16 MSB, sample
* count in 16 LSB.
*/
reg = 0;
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
/*
* This field selects the intrinsic latency to RDATA_EN/FULL path.
* 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
*/
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
trk_sample_count);
writel(reg, &sdr_ctrl->phy_ctrl0);
reg = 0;
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
trk_sample_count >>
SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
trk_long_idle_sample_count);
writel(reg, &sdr_ctrl->phy_ctrl1);
reg = 0;
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
trk_long_idle_sample_count >>
SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
writel(reg, &sdr_ctrl->phy_ctrl2);
/**
* initialize_tracking() - Initialize tracking
*
* Initialize the register file with usable initial data.
*/
static void initialize_tracking(void)
{
/*
* Initialize the register file with the correct data.
* Compute usable version of value in case we skip full
* computation later.
*/
writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
&sdr_reg_file->dtaps_per_ptap);
/* trk_sample_count */
writel(7500, &sdr_reg_file->trk_sample_count);
/* longidle outer loop [15:0] */
writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
* longidle sample count [31:24]
* trfc, worst case of 933Mhz 4Gb [23:16]
* trcd, worst case [15:8]
* vfifo wait [7:0]
writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
&sdr_reg_file->delays);
/* mux delay */
writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
(RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
&sdr_reg_file->trk_rw_mgr_addr);
writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
&sdr_reg_file->trk_read_dqs_width);
/* trefi [7:0] */
writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
&sdr_reg_file->trk_rfsh);
}
int sdram_calibration_full(void)
{
struct param_type my_param;
struct gbl_type my_gbl;
uint32_t pass;
memset(&my_param, 0, sizeof(my_param));
memset(&my_gbl, 0, sizeof(my_gbl));
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
param = &my_param;
gbl = &my_gbl;
/* Set the calibration enabled by default */
gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
/*
* Only sweep all groups (regardless of fail state) by default
* Set enabled read test by default.
*/
#if DISABLE_GUARANTEED_READ
gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
#endif
/* Initialize the register file */
initialize_reg_file();
/* Initialize any PHY CSR */
initialize_hps_phy();
scc_mgr_initialize();
initialize_tracking();
printf("%s: Preparing to start memory calibration\n", __FILE__);
debug("%s:%d\n", __func__, __LINE__);
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
debug_cond(DLEVEL == 1,
"DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
debug_cond(DLEVEL == 1,
"dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
IO_IO_OUT2_DELAY_MAX);
debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
hc_initialize_rom_data();
/* update info for sims */
reg_file_set_stage(CAL_STAGE_NIL);
reg_file_set_group(0);
/*
* Load global needed for those actions that require
* some dynamic calibration support.
*/
dyn_calib_steps = STATIC_CALIB_STEPS;
/*
* Load global to allow dynamic selection of delay loop settings
* based on calibration mode.
*/
if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
skip_delay_mask = 0xff;
else
skip_delay_mask = 0x0;
pass = run_mem_calibrate();