Skip to content
Snippets Groups Projects
fw_env.c 32.4 KiB
Newer Older
  • Learn to ignore specific revisions
  •  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
     *
    
     * (C) Copyright 2008
     * Guennadi Liakhovetski, DENX Software Engineering, lg@denx.de.
     *
    
     * SPDX-License-Identifier:	GPL-2.0+
    
    Jörg Krause's avatar
    Jörg Krause committed
    #define _GNU_SOURCE
    
    
    #include <compiler.h>
    
    #include <env_flags.h>
    
    #include <linux/fs.h>
    
    #include <linux/stringify.h>
    
    #include <stdio.h>
    #include <stdlib.h>
    #include <stddef.h>
    #include <string.h>
    #include <sys/types.h>
    #include <sys/ioctl.h>
    #include <sys/stat.h>
    #include <unistd.h>
    
    
    # include <stdint.h>
    
    # include <linux/mtd/mtd.h>
    #else
    
    # define  __user	/* nothing */
    
    # include <mtd/mtd-user.h>
    #endif
    
    #include "fw_env.h"
    
    struct env_opts default_opts = {
    #ifdef CONFIG_FILE
    	.config_file = CONFIG_FILE
    #endif
    };
    
    
    #define DIV_ROUND_UP(n, d)	(((n) + (d) - 1) / (d))
    
    
    #define min(x, y) ({				\
    	typeof(x) _min1 = (x);			\
    	typeof(y) _min2 = (y);			\
    	(void) (&_min1 == &_min2);		\
    	_min1 < _min2 ? _min1 : _min2; })
    
    struct envdev_s {
    
    	const char *devname;		/* Device name */
    
    	long long devoff;		/* Device offset */
    
    	ulong env_size;			/* environment size */
    	ulong erase_size;		/* device erase size */
    
    	ulong env_sectors;		/* number of environment sectors */
    	uint8_t mtd_type;		/* type of the MTD device */
    };
    
    static struct envdev_s envdevices[2] =
    {
    	{
    		.mtd_type = MTD_ABSENT,
    	}, {
    		.mtd_type = MTD_ABSENT,
    	},
    };
    static int dev_current;
    
    
    #define DEVNAME(i)    envdevices[(i)].devname
    
    #define DEVOFFSET(i)  envdevices[(i)].devoff
    
    #define ENVSIZE(i)    envdevices[(i)].env_size
    #define DEVESIZE(i)   envdevices[(i)].erase_size
    
    #define ENVSECTORS(i) envdevices[(i)].env_sectors
    #define DEVTYPE(i)    envdevices[(i)].mtd_type
    
    #define CUR_ENVSIZE ENVSIZE(dev_current)
    
    static unsigned long usable_envsize;
    #define ENV_SIZE      usable_envsize
    
    struct env_image_single {
    	uint32_t	crc;	/* CRC32 over data bytes    */
    	char		data[];
    };
    
    struct env_image_redundant {
    	uint32_t	crc;	/* CRC32 over data bytes    */
    	unsigned char	flags;	/* active or obsolete */
    	char		data[];
    };
    
    enum flag_scheme {
    	FLAG_NONE,
    	FLAG_BOOLEAN,
    	FLAG_INCREMENTAL,
    };
    
    struct environment {
    	void			*image;
    	uint32_t		*crc;
    	unsigned char		*flags;
    	char			*data;
    	enum flag_scheme	flag_scheme;
    };
    
    static struct environment environment = {
    	.flag_scheme = FLAG_NONE,
    };
    
    static int env_aes_cbc_crypt(char *data, const int enc, uint8_t *key);
    
    static int HaveRedundEnv = 0;
    
    
    static unsigned char active_flag = 1;
    
    /* obsolete_flag must be 0 to efficiently set it on NOR flash without erasing */
    
    static unsigned char obsolete_flag = 0;
    
    #define DEFAULT_ENV_INSTANCE_STATIC
    #include <env_default.h>
    
    static int flash_io (int mode);
    
    static int parse_config(struct env_opts *opts);
    
    #if defined(CONFIG_FILE)
    
    static int get_config (char *);
    
    static char *skip_chars(char *s)
    
    	for (; *s != '\0'; s++) {
    		if (isblank(*s))
    			return s;
    	}
    	return NULL;
    }
    
    static char *skip_blanks(char *s)
    {
    	for (; *s != '\0'; s++) {
    		if (!isblank(*s))
    
     * s1 is either a simple 'name', or a 'name=value' pair.
     * s2 is a 'name=value' pair.
     * If the names match, return the value of s2, else NULL.
     */
    static char *envmatch(char *s1, char *s2)
    {
    	if (s1 == NULL || s2 == NULL)
    		return NULL;
    
    	while (*s1 == *s2++)
    		if (*s1++ == '=')
    			return s2;
    	if (*s1 == '\0' && *(s2 - 1) == '=')
    		return s2;
    	return NULL;
    }
    
    /**
    
     * Search the environment for a variable.
     * Return the value, if found, or NULL, if not found.
     */
    
    char *fw_getenv (char *name)
    
    	for (env = environment.data; *env; env = nxt + 1) {
    
    		for (nxt = env; *nxt; ++nxt) {
    
    			if (nxt >= &environment.data[ENV_SIZE]) {
    				fprintf (stderr, "## Error: "
    					"environment not terminated\n");
    
    				return NULL;
    
    		val = envmatch (name, env);
    
    		return val;
    
    	return NULL;
    
    /*
     * Search the default environment for a variable.
     * Return the value, if found, or NULL, if not found.
     */
    char *fw_getdefenv(char *name)
    {
    	char *env, *nxt;
    
    	for (env = default_environment; *env; env = nxt + 1) {
    		char *val;
    
    		for (nxt = env; *nxt; ++nxt) {
    			if (nxt >= &default_environment[ENV_SIZE]) {
    				fprintf(stderr, "## Error: "
    					"default environment not terminated\n");
    				return NULL;
    			}
    		}
    		val = envmatch(name, env);
    		if (!val)
    			continue;
    		return val;
    	}
    	return NULL;
    }
    
    
    int parse_aes_key(char *key, uint8_t *bin_key)
    
    {
    	char tmp[5] = { '0', 'x', 0, 0, 0 };
    	unsigned long ul;
    	int i;
    
    	if (strnlen(key, 64) != 32) {
    		fprintf(stderr,
    			"## Error: '-a' option requires 16-byte AES key\n");
    		return -1;
    	}
    
    	for (i = 0; i < 16; i++) {
    		tmp[2] = key[0];
    		tmp[3] = key[1];
    		errno = 0;
    		ul = strtoul(tmp, NULL, 16);
    		if (errno) {
    			fprintf(stderr,
    				"## Error: '-a' option requires valid AES key\n");
    			return -1;
    		}
    
    		bin_key[i] = ul & 0xff;
    
    /*
     * Print the current definition of one, or more, or all
     * environment variables
     */
    
    int fw_printenv(int argc, char *argv[], int value_only, struct env_opts *opts)
    
    	if (value_only && argc != 1) {
    		fprintf(stderr,
    			"## Error: `-n' option requires exactly one argument\n");
    		return -1;
    	}
    
    
    		return -1;
    
    	if (argc == 0) {		/* Print all env variables  */
    
    		for (env = environment.data; *env; env = nxt + 1) {
    			for (nxt = env; *nxt; ++nxt) {
    
    				if (nxt >= &environment.data[ENV_SIZE]) {
    					fprintf (stderr, "## Error: "
    						"environment not terminated\n");
    
    					return -1;
    
    			printf ("%s\n", env);
    
    		return 0;
    
    	for (i = 0; i < argc; ++i) {	/* print a subset of env variables */
    
    		char *name = argv[i];
    		char *val = NULL;
    
    		val = fw_getenv(name);
    
    			fprintf (stderr, "## Error: \"%s\" not defined\n", name);
    
    
    		if (value_only) {
    			puts(val);
    			break;
    		}
    
    		printf("%s=%s\n", name, val);
    
    	return rc;
    
    int fw_env_close(struct env_opts *opts)
    
    		ret = env_aes_cbc_crypt(environment.data, 1,
    
    		if (ret) {
    			fprintf(stderr,
    				"Error: can't encrypt env for flash\n");
    			return ret;
    		}
    	}
    
    
    	/*
    	 * Update CRC
    	 */
    	*environment.crc = crc32(0, (uint8_t *) environment.data, ENV_SIZE);
    
    	/* write environment back to flash */
    	if (flash_io(O_RDWR)) {
    		fprintf(stderr,
    			"Error: can't write fw_env to flash\n");
    			return -1;
    
    
    /*
     * Set/Clear a single variable in the environment.
     * This is called in sequence to update the environment
     * in RAM without updating the copy in flash after each set
     */
    int fw_env_write(char *name, char *value)
    {
    	int len;
    	char *env, *nxt;
    	char *oldval = NULL;
    
    	int deleting, creating, overwriting;
    
    
    	/*
    	 * search if variable with this name already exists
    	 */
    
    	for (nxt = env = environment.data; *env; env = nxt + 1) {
    		for (nxt = env; *nxt; ++nxt) {
    
    			if (nxt >= &environment.data[ENV_SIZE]) {
    
    				fprintf(stderr, "## Error: "
    
    					"environment not terminated\n");
    
    				errno = EINVAL;
    				return -1;
    
    		if ((oldval = envmatch (name, env)) != NULL)
    
    	deleting = (oldval && !(value && strlen(value)));
    	creating = (!oldval && (value && strlen(value)));
    	overwriting = (oldval && (value && strlen(value)));
    
    	/* check for permission */
    	if (deleting) {
    		if (env_flags_validate_varaccess(name,
    		    ENV_FLAGS_VARACCESS_PREVENT_DELETE)) {
    			printf("Can't delete \"%s\"\n", name);
    			errno = EROFS;
    			return -1;
    		}
    	} else if (overwriting) {
    		if (env_flags_validate_varaccess(name,
    		    ENV_FLAGS_VARACCESS_PREVENT_OVERWR)) {
    			printf("Can't overwrite \"%s\"\n", name);
    			errno = EROFS;
    			return -1;
    		} else if (env_flags_validate_varaccess(name,
    		    ENV_FLAGS_VARACCESS_PREVENT_NONDEF_OVERWR)) {
    			const char *defval = fw_getdefenv(name);
    
    			if (defval == NULL)
    				defval = "";
    			if (strcmp(oldval, defval)
    			    != 0) {
    				printf("Can't overwrite \"%s\"\n", name);
    				errno = EROFS;
    				return -1;
    			}
    		}
    	} else if (creating) {
    		if (env_flags_validate_varaccess(name,
    		    ENV_FLAGS_VARACCESS_PREVENT_CREATE)) {
    			printf("Can't create \"%s\"\n", name);
    			errno = EROFS;
    			return -1;
    		}
    	} else
    		/* Nothing to do */
    		return 0;
    
    	if (deleting || overwriting) {
    
    		if (*++nxt == '\0') {
    			*env = '\0';
    		} else {
    			for (;;) {
    				*env = *nxt++;
    				if ((*env == '\0') && (*nxt == '\0'))
    					break;
    				++env;
    			}
    		}
    		*++env = '\0';
    	}
    
    	/* Delete only ? */
    
    	if (!value || !strlen(value))
    		return 0;
    
    
    	/*
    	 * Append new definition at the end
    	 */
    
    	for (env = environment.data; *env || *(env + 1); ++env);
    
    	if (env > environment.data)
    		++env;
    	/*
    	 * Overflow when:
    
    	 * "name" + "=" + "val" +"\0\0"  > CUR_ENVSIZE - (env-environment)
    
    	len = strlen (name) + 2;
    
    	/* add '=' for first arg, ' ' for all others */
    
    	len += strlen(value) + 1;
    
    
    	if (len > (&environment.data[ENV_SIZE] - env)) {
    
    		fprintf (stderr,
    			"Error: environment overflow, \"%s\" deleted\n",
    			name);
    
    		return -1;
    
    	while ((*env = *name++) != '\0')
    		env++;
    
    	*env = '=';
    	while ((*++env = *value++) != '\0')
    		;
    
    	/* end is marked with double '\0' */
    	*++env = '\0';
    
    	return 0;
    }
    
    /*
     * Deletes or sets environment variables. Returns -1 and sets errno error codes:
     * 0	  - OK
     * EINVAL - need at least 1 argument
     * EROFS  - certain variables ("ethaddr", "serial#") cannot be
     *	    modified or deleted
     *
     */
    
    int fw_setenv(int argc, char *argv[], struct env_opts *opts)
    
    Mike Frysinger's avatar
    Mike Frysinger committed
    	size_t len;
    
    	if (argc < 1) {
    		fprintf(stderr, "## Error: variable name missing\n");
    
    		fprintf(stderr, "Error: environment not initialized\n");
    		return -1;
    	}
    
    
    	name = argv[0];
    	valv = argv + 1;
    	valc = argc - 1;
    
    	if (env_flags_validate_env_set_params(name, valv, valc) < 0)
    
    	for (i = 0; i < valc; ++i) {
    		char *val = valv[i];
    
    		size_t val_len = strlen(val);
    
    
    		if (value)
    			value[len - 1] = ' ';
    
    		value = realloc(value, len + val_len + 1);
    
    			fprintf(stderr,
    
    				"Cannot malloc %zu bytes: %s\n",
    
    				len, strerror(errno));
    			return -1;
    
    
    		memcpy(value + len, val, val_len);
    		len += val_len;
    
    		value[len++] = '\0';
    
    	fw_env_write(name, value);
    
    /*
     * Parse  a file  and configure the u-boot variables.
     * The script file has a very simple format, as follows:
     *
     * Each line has a couple with name, value:
     * <white spaces>variable_name<white spaces>variable_value
     *
     * Both variable_name and variable_value are interpreted as strings.
     * Any character after <white spaces> and before ending \r\n is interpreted
     * as variable's value (no comment allowed on these lines !)
     *
     * Comments are allowed if the first character in the line is #
     *
     * Returns -1 and sets errno error codes:
     * 0	  - OK
     * -1     - Error
     */
    
    int fw_parse_script(char *fname, struct env_opts *opts)
    
    {
    	FILE *fp;
    	char dump[1024];	/* Maximum line length in the file */
    	char *name;
    	char *val;
    	int lineno = 0;
    	int len;
    	int ret = 0;
    
    
    		fprintf(stderr, "Error: environment not initialized\n");
    
    		return -1;
    
    	if (strcmp(fname, "-") == 0)
    		fp = stdin;
    	else {
    		fp = fopen(fname, "r");
    		if (fp == NULL) {
    			fprintf(stderr, "I cannot open %s for reading\n",
    				 fname);
    			return -1;
    		}
    	}
    
    	while (fgets(dump, sizeof(dump), fp)) {
    		lineno++;
    		len = strlen(dump);
    
    		/*
    		 * Read a whole line from the file. If the line is too long
    		 * or is not terminated, reports an error and exit.
    		 */
    		if (dump[len - 1] != '\n') {
    			fprintf(stderr,
    			"Line %d not corrected terminated or too long\n",
    				lineno);
    			ret = -1;
    			break;
    		}
    
    		/* Drop ending line feed / carriage return */
    
    		dump[--len] = '\0';
    		if (len && dump[len - 1] == '\r')
    			dump[--len] = '\0';
    
    
    		/* Skip comment or empty lines */
    
    			continue;
    
    		/*
    		 * Search for variable's name,
    		 * remove leading whitespaces
    		 */
    
    		if (!name)
    			continue;
    
    		/* The first white space is the end of variable name */
    
    		len = strlen(name);
    		if (val) {
    			*val++ = '\0';
    			if ((val - name) < len)
    
    			else
    				val = NULL;
    		}
    
    #ifdef DEBUG
    		fprintf(stderr, "Setting %s : %s\n",
    			name, val ? val : " removed");
    #endif
    
    
    		if (env_flags_validate_type(name, val) < 0) {
    			ret = -1;
    			break;
    		}
    
    
    		/*
    		 * If there is an error setting a variable,
    		 * try to save the environment and returns an error
    		 */
    		if (fw_env_write(name, val)) {
    			fprintf(stderr,
    			"fw_env_write returns with error : %s\n",
    				strerror(errno));
    			ret = -1;
    			break;
    		}
    
    	}
    
    	/* Close file if not stdin */
    	if (strcmp(fname, "-") != 0)
    		fclose(fp);
    
    
    /**
     * environment_end() - compute offset of first byte right after environemnt
     * @dev - index of enviroment buffer
     * Return:
     *  device offset of first byte right after environemnt
     */
    off_t environment_end(int dev)
    {
    	/* environment is block aligned */
    	return DEVOFFSET(dev) + ENVSECTORS(dev) * DEVESIZE(dev);
    }
    
    
    /*
     * Test for bad block on NAND, just returns 0 on NOR, on NAND:
     * 0	- block is good
     * > 0	- block is bad
     * < 0	- failed to test
     */
    
    static int flash_bad_block(int fd, uint8_t mtd_type, loff_t blockstart)
    
    	if (mtd_type == MTD_NANDFLASH) {
    
    		int badblock = ioctl(fd, MEMGETBADBLOCK, &blockstart);
    
    		if (badblock < 0) {
    			perror ("Cannot read bad block mark");
    			return badblock;
    		}
    
    		if (badblock) {
    #ifdef DEBUG
    
    			fprintf (stderr, "Bad block at 0x%llx, skipping\n",
    
    				(unsigned long long)blockstart);
    
    #endif
    			return badblock;
    		}
    
    	return 0;
    }
    
    /*
     * Read data from flash at an offset into a provided buffer. On NAND it skips
     * bad blocks but makes sure it stays within ENVSECTORS (dev) starting from
     * the DEVOFFSET (dev) block. On NOR the loop is only run once.
     */
    static int flash_read_buf (int dev, int fd, void *buf, size_t count,
    
    {
    	size_t blocklen;	/* erase / write length - one block on NAND,
    				   0 on NOR */
    	size_t processed = 0;	/* progress counter */
    	size_t readlen = count;	/* current read length */
    	off_t block_seek;	/* offset inside the current block to the start
    				   of the data */
    	loff_t blockstart;	/* running start of the current block -
    				   MEMGETBADBLOCK needs 64 bits */
    	int rc;
    
    
    	blockstart = (offset / DEVESIZE (dev)) * DEVESIZE (dev);
    
    
    	/* Offset inside a block */
    	block_seek = offset - blockstart;
    
    
    	if (DEVTYPE(dev) == MTD_NANDFLASH) {
    
    		/*
    		 * NAND: calculate which blocks we are reading. We have
    		 * to read one block at a time to skip bad blocks.
    		 */
    		blocklen = DEVESIZE (dev);
    
    		/* Limit to one block for the first read */
    		if (readlen > blocklen - block_seek)
    			readlen = blocklen - block_seek;
    	} else {
    		blocklen = 0;
    
    	/* This only runs once on NOR flash */
    	while (processed < count) {
    
    		rc = flash_bad_block(fd, DEVTYPE(dev), blockstart);
    
    		if (rc < 0)		/* block test failed */
    			return -1;
    
    		if (blockstart + block_seek + readlen > environment_end(dev)) {
    
    			/* End of range is reached */
    			fprintf (stderr,
    				 "Too few good blocks within range\n");
    			return -1;
    
    		if (rc) {		/* block is bad */
    			blockstart += blocklen;
    			continue;
    
    		/*
    		 * If a block is bad, we retry in the next block at the same
    		 * offset - see common/env_nand.c::writeenv()
    		 */
    		lseek (fd, blockstart + block_seek, SEEK_SET);
    
    		rc = read (fd, buf + processed, readlen);
    		if (rc != readlen) {
    			fprintf (stderr, "Read error on %s: %s\n",
    				 DEVNAME (dev), strerror (errno));
    			return -1;
    
    #ifdef DEBUG
    
    		fprintf(stderr, "Read 0x%x bytes at 0x%llx on %s\n",
    
    			rc, (unsigned long long) blockstart + block_seek,
    			DEVNAME(dev));
    
    #endif
    		processed += readlen;
    		readlen = min (blocklen, count - processed);
    		block_seek = 0;
    		blockstart += blocklen;
    	}
    
    	return processed;
    }
    
    /*
    
     * Write count bytes from begin of environment, but stay within
     * ENVSECTORS(dev) sectors of
    
     * DEVOFFSET (dev). Similar to the read case above, on NOR and dataflash we
     * erase and write the whole data at once.
    
    static int flash_write_buf(int dev, int fd, void *buf, size_t count)
    
    {
    	void *data;
    	struct erase_info_user erase;
    	size_t blocklen;	/* length of NAND block / NOR erase sector */
    	size_t erase_len;	/* whole area that can be erased - may include
    				   bad blocks */
    	size_t erasesize;	/* erase / write length - one block on NAND,
    				   whole area on NOR */
    	size_t processed = 0;	/* progress counter */
    
    	size_t write_total;	/* total size to actually write - excluding
    
    				   bad blocks */
    	off_t erase_offset;	/* offset to the first erase block (aligned)
    				   below offset */
    	off_t block_seek;	/* offset inside the erase block to the start
    				   of the data */
    	loff_t blockstart;	/* running start of the current block -
    				   MEMGETBADBLOCK needs 64 bits */
    	int rc;
    
    
    	/*
    	 * For mtd devices only offset and size of the environment do matter
    	 */
    
    		blocklen = count;
    		erase_len = blocklen;
    
    		block_seek = 0;
    		write_total = blocklen;
    	} else {
    		blocklen = DEVESIZE(dev);
    
    		/* Maximum area we may use */
    
    		erase_len = environment_end(dev) - erase_offset;
    
    		blockstart = erase_offset;
    
    		/* Offset inside a block */
    
    		block_seek = DEVOFFSET(dev) - erase_offset;
    
    		/*
    		 * Data size we actually write: from the start of the block
    		 * to the start of the data, then count bytes of data, and
    		 * to the end of the block
    		 */
    		write_total = ((block_seek + count + blocklen - 1) /
    							blocklen) * blocklen;
    	}
    
    
    	/*
    	 * Support data anywhere within erase sectors: read out the complete
    	 * area to be erased, replace the environment image, write the whole
    	 * block back again.
    	 */
    	if (write_total > count) {
    		data = malloc (erase_len);
    		if (!data) {
    
    				 "Cannot malloc %zu bytes: %s\n",
    
    				 erase_len, strerror (errno));
    			return -1;
    
    		rc = flash_read_buf(dev, fd, data, write_total, erase_offset);
    
    		if (write_total != rc)
    			return -1;
    
    
    #ifdef DEBUG
    		fprintf(stderr, "Preserving data ");
    		if (block_seek != 0)
    			fprintf(stderr, "0x%x - 0x%lx", 0, block_seek - 1);
    		if (block_seek + count != write_total) {
    			if (block_seek != 0)
    				fprintf(stderr, " and ");
    
    			fprintf(stderr, "0x%lx - 0x%lx",
    				(unsigned long) block_seek + count,
    				(unsigned long) write_total - 1);
    
    		}
    		fprintf(stderr, "\n");
    #endif
    
    		/* Overwrite the old environment */
    		memcpy (data + block_seek, buf, count);
    	} else {
    		/*
    		 * We get here, iff offset is block-aligned and count is a
    		 * multiple of blocklen - see write_total calculation above
    		 */
    		data = buf;
    	}
    
    
    	if (DEVTYPE(dev) == MTD_NANDFLASH) {
    
    		/*
    		 * NAND: calculate which blocks we are writing. We have
    		 * to write one block at a time to skip bad blocks.
    		 */
    		erasesize = blocklen;
    	} else {
    		erasesize = erase_len;
    	}
    
    	erase.length = erasesize;
    
    
    	/* This only runs once on NOR flash and SPI-dataflash */
    
    	while (processed < write_total) {
    
    		rc = flash_bad_block(fd, DEVTYPE(dev), blockstart);
    
    		if (rc < 0)		/* block test failed */
    			return rc;
    
    
    		if (blockstart + erasesize > environment_end(dev)) {
    
    			fprintf (stderr, "End of range reached, aborting\n");
    			return -1;
    
    
    		if (rc) {		/* block is bad */
    			blockstart += blocklen;
    			continue;
    		}
    
    
    			erase.start = blockstart;
    			ioctl(fd, MEMUNLOCK, &erase);
    			/* These do not need an explicit erase cycle */
    
    				if (ioctl(fd, MEMERASE, &erase) != 0) {
    					fprintf(stderr,
    						"MTD erase error on %s: %s\n",
    						DEVNAME(dev), strerror(errno));
    					return -1;
    				}
    		}
    
    
    		if (lseek (fd, blockstart, SEEK_SET) == -1) {
    
    				 "Seek error on %s: %s\n",
    				 DEVNAME (dev), strerror (errno));
    			return -1;
    
    
    #ifdef DEBUG
    
    		fprintf(stderr, "Write 0x%llx bytes at 0x%llx\n",
    			(unsigned long long) erasesize,
    			(unsigned long long) blockstart);
    
    #endif
    		if (write (fd, data + processed, erasesize) != erasesize) {
    			fprintf (stderr, "Write error on %s: %s\n",
    				 DEVNAME (dev), strerror (errno));
    			return -1;
    
    			ioctl(fd, MEMLOCK, &erase);
    
    		block_seek = 0;
    
    	}
    
    	if (write_total > count)
    		free (data);
    
    	return processed;
    }
    
    /*
     * Set obsolete flag at offset - NOR flash only
     */
    static int flash_flag_obsolete (int dev, int fd, off_t offset)
    {
    	int rc;
    
    	erase.start  = DEVOFFSET (dev);
    	erase.length = DEVESIZE (dev);
    
    	/* This relies on the fact, that obsolete_flag == 0 */
    	rc = lseek (fd, offset, SEEK_SET);
    	if (rc < 0) {
    		fprintf (stderr, "Cannot seek to set the flag on %s \n",
    			 DEVNAME (dev));
    		return rc;
    	}
    
    	rc = write (fd, &obsolete_flag, sizeof (obsolete_flag));
    
    	if (rc < 0)
    		perror ("Could not set obsolete flag");
    
    	return rc;
    }
    
    
    /* Encrypt or decrypt the environment before writing or reading it. */
    
    static int env_aes_cbc_crypt(char *payload, const int enc, uint8_t *key)
    
    {
    	uint8_t *data = (uint8_t *)payload;
    
    	const int len = usable_envsize;
    
    	uint8_t key_exp[AES_EXPAND_KEY_LENGTH];
    	uint32_t aes_blocks;
    
    	/* First we expand the key. */
    
    	aes_expand_key(key, key_exp);
    
    
    	/* Calculate the number of AES blocks to encrypt. */
    	aes_blocks = DIV_ROUND_UP(len, AES_KEY_LENGTH);
    
    	if (enc)
    		aes_cbc_encrypt_blocks(key_exp, data, data, aes_blocks);
    	else
    		aes_cbc_decrypt_blocks(key_exp, data, data, aes_blocks);
    
    	return 0;
    }
    
    
    static int flash_write (int fd_current, int fd_target, int dev_target)
    {
    	int rc;
    
    	switch (environment.flag_scheme) {
    	case FLAG_NONE:
    		break;
    	case FLAG_INCREMENTAL:
    		(*environment.flags)++;
    		break;
    	case FLAG_BOOLEAN:
    		*environment.flags = active_flag;
    		break;
    	default:
    		fprintf (stderr, "Unimplemented flash scheme %u \n",