Newer
Older
/*
* Copyright 2008, Freescale Semiconductor, Inc
* Andy Fleming
*
* Based vaguely on the Linux code
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <config.h>
#include <common.h>
#include <command.h>
#include <dm.h>
#include <dm/device-internal.h>
#include <errno.h>
#include <mmc.h>
#include <part.h>
#include <malloc.h>
#include <memalign.h>
__weak int board_mmc_getwp(struct mmc *mmc)
{
return -1;
}
int mmc_getwp(struct mmc *mmc)
{
int wp;
wp = board_mmc_getwp(mmc);
if (mmc->cfg->ops->getwp)
wp = mmc->cfg->ops->getwp(mmc);
__weak int board_mmc_getcd(struct mmc *mmc)
{
int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data)
int i;
u8 *ptr;
printf("CMD_SEND:%d\n", cmd->cmdidx);
printf("\t\tARG\t\t\t 0x%08X\n", cmd->cmdarg);
ret = mmc->cfg->ops->send_cmd(mmc, cmd, data);
if (ret) {
printf("\t\tRET\t\t\t %d\n", ret);
} else {
switch (cmd->resp_type) {
case MMC_RSP_NONE:
printf("\t\tMMC_RSP_NONE\n");
break;
case MMC_RSP_R1:
printf("\t\tMMC_RSP_R1,5,6,7 \t 0x%08X \n",
cmd->response[0]);
break;
case MMC_RSP_R1b:
printf("\t\tMMC_RSP_R1b\t\t 0x%08X \n",
cmd->response[0]);
break;
case MMC_RSP_R2:
printf("\t\tMMC_RSP_R2\t\t 0x%08X \n",
cmd->response[0]);
printf("\t\t \t\t 0x%08X \n",
cmd->response[1]);
printf("\t\t \t\t 0x%08X \n",
cmd->response[2]);
printf("\t\t \t\t 0x%08X \n",
cmd->response[3]);
printf("\t\t\t\t\tDUMPING DATA\n");
for (i = 0; i < 4; i++) {
int j;
printf("\t\t\t\t\t%03d - ", i*4);
ptr = (u8 *)&cmd->response[i];
ptr += 3;
for (j = 0; j < 4; j++)
printf("%02X ", *ptr--);
printf("\n");
}
break;
case MMC_RSP_R3:
printf("\t\tMMC_RSP_R3,4\t\t 0x%08X \n",
cmd->response[0]);
break;
default:
printf("\t\tERROR MMC rsp not supported\n");
break;
ret = mmc->cfg->ops->send_cmd(mmc, cmd, data);
int mmc_send_status(struct mmc *mmc, int timeout)
{
struct mmc_cmd cmd;
#ifdef CONFIG_MMC_TRACE
int status;
#endif
cmd.cmdidx = MMC_CMD_SEND_STATUS;
cmd.resp_type = MMC_RSP_R1;
if (!mmc_host_is_spi(mmc))
cmd.cmdarg = mmc->rca << 16;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (!err) {
if ((cmd.response[0] & MMC_STATUS_RDY_FOR_DATA) &&
(cmd.response[0] & MMC_STATUS_CURR_STATE) !=
MMC_STATE_PRG)
break;
else if (cmd.response[0] & MMC_STATUS_MASK) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("Status Error: 0x%08X\n",
cmd.response[0]);
#endif
return COMM_ERR;
}
} else if (--retries < 0)
return err;
if (timeout-- <= 0)
break;
udelay(1000);
}
#ifdef CONFIG_MMC_TRACE
status = (cmd.response[0] & MMC_STATUS_CURR_STATE) >> 9;
printf("CURR STATE:%d\n", status);
#endif
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("Timeout waiting card ready\n");
#endif
return TIMEOUT;
}
return 0;
}
int mmc_set_blocklen(struct mmc *mmc, int len)
if (mmc->ddr_mode)
cmd.cmdidx = MMC_CMD_SET_BLOCKLEN;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = len;
return mmc_send_cmd(mmc, &cmd, NULL);
}
static int mmc_read_blocks(struct mmc *mmc, void *dst, lbaint_t start,
{
struct mmc_cmd cmd;
struct mmc_data data;
if (blkcnt > 1)
cmd.cmdidx = MMC_CMD_READ_MULTIPLE_BLOCK;
else
cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK;
cmd.cmdarg = start;
cmd.cmdarg = start * mmc->read_bl_len;
cmd.resp_type = MMC_RSP_R1;
data.dest = dst;
data.blocks = blkcnt;
data.blocksize = mmc->read_bl_len;
data.flags = MMC_DATA_READ;
if (mmc_send_cmd(mmc, &cmd, &data))
return 0;
if (blkcnt > 1) {
cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_R1b;
if (mmc_send_cmd(mmc, &cmd, NULL)) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("mmc fail to send stop cmd\n");
#endif
return 0;
}
return blkcnt;
#ifdef CONFIG_BLK
static ulong mmc_bread(struct udevice *dev, lbaint_t start, lbaint_t blkcnt,
void *dst)
#else
static ulong mmc_bread(struct blk_desc *block_dev, lbaint_t start,
lbaint_t blkcnt, void *dst)
#ifdef CONFIG_BLK
struct blk_desc *block_dev = dev_get_uclass_platdata(dev);
#endif
int dev_num = block_dev->devnum;
lbaint_t cur, blocks_todo = blkcnt;
if (blkcnt == 0)
return 0;
struct mmc *mmc = find_mmc_device(dev_num);
err = blk_dselect_hwpart(block_dev, block_dev->hwpart);
if ((start + blkcnt) > block_dev->lba) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("MMC: block number 0x" LBAF " exceeds max(0x" LBAF ")\n",
start + blkcnt, block_dev->lba);
#endif
if (mmc_set_blocklen(mmc, mmc->read_bl_len)) {
debug("%s: Failed to set blocklen\n", __func__);
cur = (blocks_todo > mmc->cfg->b_max) ?
mmc->cfg->b_max : blocks_todo;
if (mmc_read_blocks(mmc, dst, start, cur) != cur) {
debug("%s: Failed to read blocks\n", __func__);
blocks_todo -= cur;
start += cur;
dst += cur * mmc->read_bl_len;
} while (blocks_todo > 0);
{
struct mmc_cmd cmd;
int err;
udelay(1000);
cmd.cmdidx = MMC_CMD_GO_IDLE_STATE;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_NONE;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
udelay(2000);
return 0;
}
static int sd_send_op_cond(struct mmc *mmc)
{
int timeout = 1000;
int err;
struct mmc_cmd cmd;
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SEND_OP_COND;
cmd.resp_type = MMC_RSP_R3;
/*
* Most cards do not answer if some reserved bits
* in the ocr are set. However, Some controller
* can set bit 7 (reserved for low voltages), but
* how to manage low voltages SD card is not yet
* specified.
*/
(mmc->cfg->voltages & 0xff8000);
if (mmc->version == SD_VERSION_2)
cmd.cmdarg |= OCR_HCS;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
if (cmd.response[0] & OCR_BUSY)
break;
if (timeout-- <= 0)
return UNUSABLE_ERR;
udelay(1000);
}
if (mmc->version != SD_VERSION_2)
mmc->version = SD_VERSION_1_0;
if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
}
mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
mmc->rca = 0;
return 0;
}
static int mmc_send_op_cond_iter(struct mmc *mmc, int use_arg)
struct mmc_cmd cmd;
cmd.cmdidx = MMC_CMD_SEND_OP_COND;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg = 0;
if (use_arg && !mmc_host_is_spi(mmc))
cmd.cmdarg = OCR_HCS |
(mmc->cfg->voltages &
(mmc->ocr & OCR_VOLTAGE_MASK)) |
(mmc->ocr & OCR_ACCESS_MODE);
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
mmc->ocr = cmd.response[0];
return 0;
}
static int mmc_send_op_cond(struct mmc *mmc)
{
int err, i;
/* Some cards seem to need this */
mmc_go_idle(mmc);
/* Asking to the card its capabilities */
for (i = 0; i < 2; i++) {
err = mmc_send_op_cond_iter(mmc, i != 0);
if (err)
return err;
/* exit if not busy (flag seems to be inverted) */
if (mmc->ocr & OCR_BUSY)
mmc->op_cond_pending = 1;
return 0;
static int mmc_complete_op_cond(struct mmc *mmc)
{
struct mmc_cmd cmd;
int timeout = 1000;
uint start;
int err;
mmc->op_cond_pending = 0;
if (!(mmc->ocr & OCR_BUSY)) {
start = get_timer(0);
err = mmc_send_op_cond_iter(mmc, 1);
if (err)
return err;
if (mmc->ocr & OCR_BUSY)
break;
if (get_timer(start) > timeout)
return UNUSABLE_ERR;
udelay(100);
}
if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
mmc->ocr = cmd.response[0];
mmc->version = MMC_VERSION_UNKNOWN;
mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
static int mmc_send_ext_csd(struct mmc *mmc, u8 *ext_csd)
{
struct mmc_cmd cmd;
struct mmc_data data;
int err;
/* Get the Card Status Register */
cmd.cmdidx = MMC_CMD_SEND_EXT_CSD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
data.dest = (char *)ext_csd;
data.blocksize = MMC_MAX_BLOCK_LEN;
data.flags = MMC_DATA_READ;
err = mmc_send_cmd(mmc, &cmd, &data);
return err;
}
static int mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value)
int timeout = 1000;
int ret;
cmd.cmdidx = MMC_CMD_SWITCH;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
(index << 16) |
(value << 8);
ret = mmc_send_cmd(mmc, &cmd, NULL);
/* Waiting for the ready status */
if (!ret)
ret = mmc_send_status(mmc, timeout);
return ret;
static int mmc_change_freq(struct mmc *mmc)
ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN);
mmc->card_caps = 0;
if (mmc_host_is_spi(mmc))
return 0;
/* Only version 4 supports high-speed */
if (mmc->version < MMC_VERSION_4)
return 0;
mmc->card_caps |= MMC_MODE_4BIT | MMC_MODE_8BIT;
err = mmc_send_ext_csd(mmc, ext_csd);
if (err)
return err;
cardtype = ext_csd[EXT_CSD_CARD_TYPE] & 0xf;
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1);
if (err)
return err;
/* Now check to see that it worked */
err = mmc_send_ext_csd(mmc, ext_csd);
if (err)
return err;
/* No high-speed support */
return 0;
/* High Speed is set, there are two types: 52MHz and 26MHz */
if (cardtype & EXT_CSD_CARD_TYPE_52) {
if (cardtype & EXT_CSD_CARD_TYPE_DDR_1_8V)
mmc->card_caps |= MMC_MODE_DDR_52MHz;
static int mmc_set_capacity(struct mmc *mmc, int part_num)
{
switch (part_num) {
case 0:
mmc->capacity = mmc->capacity_user;
break;
case 1:
case 2:
mmc->capacity = mmc->capacity_boot;
break;
case 3:
mmc->capacity = mmc->capacity_rpmb;
break;
case 4:
case 5:
case 6:
case 7:
mmc->capacity = mmc->capacity_gp[part_num - 4];
break;
default:
return -1;
}
mmc_get_blk_desc(mmc)->lba = lldiv(mmc->capacity, mmc->read_bl_len);
return 0;
}
static int mmc_switch_part(struct mmc *mmc, unsigned int part_num)
ret = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONF,
(mmc->part_config & ~PART_ACCESS_MASK)
| (part_num & PART_ACCESS_MASK));
/*
* Set the capacity if the switch succeeded or was intended
* to return to representing the raw device.
*/
if ((ret == 0) || ((ret == -ENODEV) && (part_num == 0))) {
ret = mmc_set_capacity(mmc, part_num);
mmc_get_blk_desc(mmc)->hwpart = part_num;
#ifdef CONFIG_BLK
static int mmc_select_hwpart(struct udevice *bdev, int hwpart)
struct udevice *mmc_dev = dev_get_parent(bdev);
struct mmc *mmc = mmc_get_mmc_dev(mmc_dev);
struct blk_desc *desc = dev_get_uclass_platdata(bdev);
if (desc->hwpart == hwpart)
return 0;
if (mmc->part_config == MMCPART_NOAVAILABLE)
return -EMEDIUMTYPE;
ret = mmc_switch_part(mmc, hwpart);
if (ret)
return ret;
return 0;
}
#else
static int mmc_select_hwpartp(struct blk_desc *desc, int hwpart)
struct mmc *mmc = find_mmc_device(desc->devnum);
int ret;
if (!mmc)
return -ENODEV;
if (mmc->block_dev.hwpart == hwpart)
return 0;
if (mmc->part_config == MMCPART_NOAVAILABLE)
return -EMEDIUMTYPE;
ret = mmc_switch_part(mmc, hwpart);
if (ret)
return ret;
return 0;
}
int mmc_hwpart_config(struct mmc *mmc,
const struct mmc_hwpart_conf *conf,
enum mmc_hwpart_conf_mode mode)
{
u8 part_attrs = 0;
u32 enh_size_mult;
u32 enh_start_addr;
u32 gp_size_mult[4];
u32 max_enh_size_mult;
u32 tot_enh_size_mult = 0;
u8 wr_rel_set;
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
int i, pidx, err;
ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN);
if (mode < MMC_HWPART_CONF_CHECK || mode > MMC_HWPART_CONF_COMPLETE)
return -EINVAL;
if (IS_SD(mmc) || (mmc->version < MMC_VERSION_4_41)) {
printf("eMMC >= 4.4 required for enhanced user data area\n");
return -EMEDIUMTYPE;
}
if (!(mmc->part_support & PART_SUPPORT)) {
printf("Card does not support partitioning\n");
return -EMEDIUMTYPE;
}
if (!mmc->hc_wp_grp_size) {
printf("Card does not define HC WP group size\n");
return -EMEDIUMTYPE;
}
/* check partition alignment and total enhanced size */
if (conf->user.enh_size) {
if (conf->user.enh_size % mmc->hc_wp_grp_size ||
conf->user.enh_start % mmc->hc_wp_grp_size) {
printf("User data enhanced area not HC WP group "
"size aligned\n");
return -EINVAL;
}
part_attrs |= EXT_CSD_ENH_USR;
enh_size_mult = conf->user.enh_size / mmc->hc_wp_grp_size;
if (mmc->high_capacity) {
enh_start_addr = conf->user.enh_start;
} else {
enh_start_addr = (conf->user.enh_start << 9);
}
} else {
enh_size_mult = 0;
enh_start_addr = 0;
}
tot_enh_size_mult += enh_size_mult;
for (pidx = 0; pidx < 4; pidx++) {
if (conf->gp_part[pidx].size % mmc->hc_wp_grp_size) {
printf("GP%i partition not HC WP group size "
"aligned\n", pidx+1);
return -EINVAL;
}
gp_size_mult[pidx] = conf->gp_part[pidx].size / mmc->hc_wp_grp_size;
if (conf->gp_part[pidx].size && conf->gp_part[pidx].enhanced) {
part_attrs |= EXT_CSD_ENH_GP(pidx);
tot_enh_size_mult += gp_size_mult[pidx];
}
}
if (part_attrs && ! (mmc->part_support & ENHNCD_SUPPORT)) {
printf("Card does not support enhanced attribute\n");
return -EMEDIUMTYPE;
}
err = mmc_send_ext_csd(mmc, ext_csd);
if (err)
return err;
max_enh_size_mult =
(ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT+2] << 16) +
(ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT+1] << 8) +
ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT];
if (tot_enh_size_mult > max_enh_size_mult) {
printf("Total enhanced size exceeds maximum (%u > %u)\n",
tot_enh_size_mult, max_enh_size_mult);
return -EMEDIUMTYPE;
}
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
/* The default value of EXT_CSD_WR_REL_SET is device
* dependent, the values can only be changed if the
* EXT_CSD_HS_CTRL_REL bit is set. The values can be
* changed only once and before partitioning is completed. */
wr_rel_set = ext_csd[EXT_CSD_WR_REL_SET];
if (conf->user.wr_rel_change) {
if (conf->user.wr_rel_set)
wr_rel_set |= EXT_CSD_WR_DATA_REL_USR;
else
wr_rel_set &= ~EXT_CSD_WR_DATA_REL_USR;
}
for (pidx = 0; pidx < 4; pidx++) {
if (conf->gp_part[pidx].wr_rel_change) {
if (conf->gp_part[pidx].wr_rel_set)
wr_rel_set |= EXT_CSD_WR_DATA_REL_GP(pidx);
else
wr_rel_set &= ~EXT_CSD_WR_DATA_REL_GP(pidx);
}
}
if (wr_rel_set != ext_csd[EXT_CSD_WR_REL_SET] &&
!(ext_csd[EXT_CSD_WR_REL_PARAM] & EXT_CSD_HS_CTRL_REL)) {
puts("Card does not support host controlled partition write "
"reliability settings\n");
return -EMEDIUMTYPE;
}
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
if (ext_csd[EXT_CSD_PARTITION_SETTING] &
EXT_CSD_PARTITION_SETTING_COMPLETED) {
printf("Card already partitioned\n");
return -EPERM;
}
if (mode == MMC_HWPART_CONF_CHECK)
return 0;
/* Partitioning requires high-capacity size definitions */
if (!(ext_csd[EXT_CSD_ERASE_GROUP_DEF] & 0x01)) {
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_ERASE_GROUP_DEF, 1);
if (err)
return err;
ext_csd[EXT_CSD_ERASE_GROUP_DEF] = 1;
/* update erase group size to be high-capacity */
mmc->erase_grp_size =
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] * 1024;
}
/* all OK, write the configuration */
for (i = 0; i < 4; i++) {
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_ENH_START_ADDR+i,
(enh_start_addr >> (i*8)) & 0xFF);
if (err)
return err;
}
for (i = 0; i < 3; i++) {
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_ENH_SIZE_MULT+i,
(enh_size_mult >> (i*8)) & 0xFF);
if (err)
return err;
}
for (pidx = 0; pidx < 4; pidx++) {
for (i = 0; i < 3; i++) {
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_GP_SIZE_MULT+pidx*3+i,
(gp_size_mult[pidx] >> (i*8)) & 0xFF);
if (err)
return err;
}
}
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_PARTITIONS_ATTRIBUTE, part_attrs);
if (err)
return err;
if (mode == MMC_HWPART_CONF_SET)
return 0;
/* The WR_REL_SET is a write-once register but shall be
* written before setting PART_SETTING_COMPLETED. As it is
* write-once we can only write it when completing the
* partitioning. */
if (wr_rel_set != ext_csd[EXT_CSD_WR_REL_SET]) {
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_WR_REL_SET, wr_rel_set);
if (err)
return err;
}
/* Setting PART_SETTING_COMPLETED confirms the partition
* configuration but it only becomes effective after power
* cycle, so we do not adjust the partition related settings
* in the mmc struct. */
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_PARTITION_SETTING,
EXT_CSD_PARTITION_SETTING_COMPLETED);
if (err)
return err;
return 0;
}
int mmc_getcd(struct mmc *mmc)
{
int cd;
cd = board_mmc_getcd(mmc);
if (mmc->cfg->ops->getcd)
cd = mmc->cfg->ops->getcd(mmc);
static int sd_switch(struct mmc *mmc, int mode, int group, u8 value, u8 *resp)
{
struct mmc_cmd cmd;
struct mmc_data data;
/* Switch the frequency */
cmd.cmdidx = SD_CMD_SWITCH_FUNC;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = (mode << 31) | 0xffffff;
cmd.cmdarg &= ~(0xf << (group * 4));
cmd.cmdarg |= value << (group * 4);
data.dest = (char *)resp;
data.blocksize = 64;
data.blocks = 1;
data.flags = MMC_DATA_READ;
return mmc_send_cmd(mmc, &cmd, &data);
}
static int sd_change_freq(struct mmc *mmc)
ALLOC_CACHE_ALIGN_BUFFER(uint, scr, 2);
ALLOC_CACHE_ALIGN_BUFFER(uint, switch_status, 16);
struct mmc_data data;
int timeout;
mmc->card_caps = 0;
if (mmc_host_is_spi(mmc))
return 0;
/* Read the SCR to find out if this card supports higher speeds */
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SEND_SCR;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
timeout = 3;
retry_scr:
data.dest = (char *)scr;
data.blocksize = 8;
data.blocks = 1;
data.flags = MMC_DATA_READ;
err = mmc_send_cmd(mmc, &cmd, &data);
if (err) {
if (timeout--)
goto retry_scr;
return err;
}
mmc->scr[0] = __be32_to_cpu(scr[0]);
mmc->scr[1] = __be32_to_cpu(scr[1]);
case 0:
mmc->version = SD_VERSION_1_0;
break;
case 1:
mmc->version = SD_VERSION_1_10;
break;
case 2:
mmc->version = SD_VERSION_2;
if ((mmc->scr[0] >> 15) & 0x1)
mmc->version = SD_VERSION_3;
break;
default:
mmc->version = SD_VERSION_1_0;
break;
if (mmc->scr[0] & SD_DATA_4BIT)
mmc->card_caps |= MMC_MODE_4BIT;
/* Version 1.0 doesn't support switching */
if (mmc->version == SD_VERSION_1_0)
return 0;
timeout = 4;
while (timeout--) {
err = sd_switch(mmc, SD_SWITCH_CHECK, 0, 1,
(u8 *)switch_status);
if (err)
return err;
/* The high-speed function is busy. Try again */
if (!(__be32_to_cpu(switch_status[7]) & SD_HIGHSPEED_BUSY))
break;
}
/* If high-speed isn't supported, we return */
if (!(__be32_to_cpu(switch_status[3]) & SD_HIGHSPEED_SUPPORTED))
/*
* If the host doesn't support SD_HIGHSPEED, do not switch card to
* HIGHSPEED mode even if the card support SD_HIGHSPPED.
* This can avoid furthur problem when the card runs in different
* mode between the host.
*/
if (!((mmc->cfg->host_caps & MMC_MODE_HS_52MHz) &&
(mmc->cfg->host_caps & MMC_MODE_HS)))
err = sd_switch(mmc, SD_SWITCH_SWITCH, 0, 1, (u8 *)switch_status);
if ((__be32_to_cpu(switch_status[4]) & 0x0f000000) == 0x01000000)
mmc->card_caps |= MMC_MODE_HS;
return 0;
}
/* frequency bases */
/* divided by 10 to be nice to platforms without floating point */
10000,
100000,
1000000,
10000000,
};
/* Multiplier values for TRAN_SPEED. Multiplied by 10 to be nice
* to platforms without floating point.
*/
0, /* reserved */
10,
12,
13,
15,
20,
25,
30,
35,
40,
45,
50,
55,
60,
70,
80,
};
static void mmc_set_ios(struct mmc *mmc)
if (mmc->cfg->ops->set_ios)
mmc->cfg->ops->set_ios(mmc);
}
void mmc_set_clock(struct mmc *mmc, uint clock)
{
if (clock > mmc->cfg->f_max)
clock = mmc->cfg->f_max;
if (clock < mmc->cfg->f_min)
clock = mmc->cfg->f_min;
mmc->clock = clock;
mmc_set_ios(mmc);
}
static void mmc_set_bus_width(struct mmc *mmc, uint width)
{
mmc->bus_width = width;
mmc_set_ios(mmc);
}
u64 cmult, csize, capacity;
ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN);
ALLOC_CACHE_ALIGN_BUFFER(u8, test_csd, MMC_MAX_BLOCK_LEN);
int timeout = 1000;
bool has_parts = false;
bool part_completed;
struct blk_desc *bdesc;
#ifdef CONFIG_MMC_SPI_CRC_ON
if (mmc_host_is_spi(mmc)) { /* enable CRC check for spi */
cmd.cmdidx = MMC_CMD_SPI_CRC_ON_OFF;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 1;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
}
#endif
cmd.cmdidx = mmc_host_is_spi(mmc) ? MMC_CMD_SEND_CID :
MMC_CMD_ALL_SEND_CID; /* cmd not supported in spi */
cmd.resp_type = MMC_RSP_R2;
cmd.cmdarg = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
memcpy(mmc->cid, cmd.response, 16);
/*
* For MMC cards, set the Relative Address.
* For SD cards, get the Relatvie Address.
* This also puts the cards into Standby State
*/
if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
cmd.cmdidx = SD_CMD_SEND_RELATIVE_ADDR;
cmd.cmdarg = mmc->rca << 16;
cmd.resp_type = MMC_RSP_R6;
if (IS_SD(mmc))
mmc->rca = (cmd.response[0] >> 16) & 0xffff;
}
/* Get the Card-Specific Data */
cmd.cmdidx = MMC_CMD_SEND_CSD;
cmd.resp_type = MMC_RSP_R2;
cmd.cmdarg = mmc->rca << 16;
err = mmc_send_cmd(mmc, &cmd, NULL);
/* Waiting for the ready status */
mmc_send_status(mmc, timeout);
mmc->csd[0] = cmd.response[0];
mmc->csd[1] = cmd.response[1];
mmc->csd[2] = cmd.response[2];
mmc->csd[3] = cmd.response[3];
int version = (cmd.response[0] >> 26) & 0xf;
case 0:
mmc->version = MMC_VERSION_1_2;
break;
case 1:
mmc->version = MMC_VERSION_1_4;
break;
case 2:
mmc->version = MMC_VERSION_2_2;
break;
case 3:
mmc->version = MMC_VERSION_3;
break;
case 4:
mmc->version = MMC_VERSION_4;
break;
default:
mmc->version = MMC_VERSION_1_2;
break;
}
}
/* divide frequency by 10, since the mults are 10x bigger */
freq = fbase[(cmd.response[0] & 0x7)];
mult = multipliers[((cmd.response[0] >> 3) & 0xf)];
mmc->dsr_imp = ((cmd.response[1] >> 12) & 0x1);
mmc->read_bl_len = 1 << ((cmd.response[1] >> 16) & 0xf);
if (IS_SD(mmc))
mmc->write_bl_len = mmc->read_bl_len;
else
mmc->write_bl_len = 1 << ((cmd.response[3] >> 22) & 0xf);
if (mmc->high_capacity) {
csize = (mmc->csd[1] & 0x3f) << 16
| (mmc->csd[2] & 0xffff0000) >> 16;
cmult = 8;
} else {
csize = (mmc->csd[1] & 0x3ff) << 2
| (mmc->csd[2] & 0xc0000000) >> 30;
cmult = (mmc->csd[2] & 0x00038000) >> 15;
}
mmc->capacity_user = (csize + 1) << (cmult + 2);
mmc->capacity_user *= mmc->read_bl_len;
mmc->capacity_boot = 0;
mmc->capacity_rpmb = 0;
for (i = 0; i < 4; i++)
mmc->capacity_gp[i] = 0;
if (mmc->read_bl_len > MMC_MAX_BLOCK_LEN)
mmc->read_bl_len = MMC_MAX_BLOCK_LEN;
if (mmc->write_bl_len > MMC_MAX_BLOCK_LEN)
mmc->write_bl_len = MMC_MAX_BLOCK_LEN;
if ((mmc->dsr_imp) && (0xffffffff != mmc->dsr)) {
cmd.cmdidx = MMC_CMD_SET_DSR;
cmd.cmdarg = (mmc->dsr & 0xffff) << 16;
cmd.resp_type = MMC_RSP_NONE;
if (mmc_send_cmd(mmc, &cmd, NULL))
printf("MMC: SET_DSR failed\n");
}
if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
cmd.cmdidx = MMC_CMD_SELECT_CARD;
cmd.cmdarg = mmc->rca << 16;
err = mmc_send_cmd(mmc, &cmd, NULL);
/*
* For SD, its erase group is always one sector
*/
mmc->erase_grp_size = 1;
mmc->part_config = MMCPART_NOAVAILABLE;
if (!IS_SD(mmc) && (mmc->version >= MMC_VERSION_4)) {
/* check ext_csd version and capacity */
err = mmc_send_ext_csd(mmc, ext_csd);
if (err)
return err;
if (ext_csd[EXT_CSD_REV] >= 2) {
/*
* According to the JEDEC Standard, the value of
* ext_csd's capacity is valid if the value is more
* than 2GB
*/
capacity = ext_csd[EXT_CSD_SEC_CNT] << 0
| ext_csd[EXT_CSD_SEC_CNT + 1] << 8
| ext_csd[EXT_CSD_SEC_CNT + 2] << 16
| ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
capacity *= MMC_MAX_BLOCK_LEN;
if ((capacity >> 20) > 2 * 1024)
mmc->capacity_user = capacity;
switch (ext_csd[EXT_CSD_REV]) {
case 1:
mmc->version = MMC_VERSION_4_1;
break;
case 2:
mmc->version = MMC_VERSION_4_2;
break;
case 3:
mmc->version = MMC_VERSION_4_3;
break;
case 5:
mmc->version = MMC_VERSION_4_41;
break;
case 6:
mmc->version = MMC_VERSION_4_5;
break;
case 7:
mmc->version = MMC_VERSION_5_0;
break;
case 8:
mmc->version = MMC_VERSION_5_1;
break;
/* The partition data may be non-zero but it is only
* effective if PARTITION_SETTING_COMPLETED is set in
* EXT_CSD, so ignore any data if this bit is not set,
* except for enabling the high-capacity group size
* definition (see below). */
part_completed = !!(ext_csd[EXT_CSD_PARTITION_SETTING] &
EXT_CSD_PARTITION_SETTING_COMPLETED);
/* store the partition info of emmc */
mmc->part_support = ext_csd[EXT_CSD_PARTITIONING_SUPPORT];
if ((ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & PART_SUPPORT) ||
ext_csd[EXT_CSD_BOOT_MULT])
mmc->part_config = ext_csd[EXT_CSD_PART_CONF];
if (part_completed &&
(ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & ENHNCD_SUPPORT))
mmc->part_attr = ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE];
mmc->capacity_boot = ext_csd[EXT_CSD_BOOT_MULT] << 17;
mmc->capacity_rpmb = ext_csd[EXT_CSD_RPMB_MULT] << 17;
for (i = 0; i < 4; i++) {
int idx = EXT_CSD_GP_SIZE_MULT + i * 3;
uint mult = (ext_csd[idx + 2] << 16) +
(ext_csd[idx + 1] << 8) + ext_csd[idx];
if (mult)
has_parts = true;
if (!part_completed)
continue;
mmc->capacity_gp[i] = mult;
mmc->capacity_gp[i] *=
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
mmc->capacity_gp[i] *= ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
mmc->capacity_gp[i] <<= 19;
}
if (part_completed) {
mmc->enh_user_size =
(ext_csd[EXT_CSD_ENH_SIZE_MULT+2] << 16) +
(ext_csd[EXT_CSD_ENH_SIZE_MULT+1] << 8) +
ext_csd[EXT_CSD_ENH_SIZE_MULT];
mmc->enh_user_size *= ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
mmc->enh_user_size *= ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
mmc->enh_user_size <<= 19;
mmc->enh_user_start =
(ext_csd[EXT_CSD_ENH_START_ADDR+3] << 24) +
(ext_csd[EXT_CSD_ENH_START_ADDR+2] << 16) +
(ext_csd[EXT_CSD_ENH_START_ADDR+1] << 8) +
ext_csd[EXT_CSD_ENH_START_ADDR];
if (mmc->high_capacity)
mmc->enh_user_start <<= 9;
}
* Host needs to enable ERASE_GRP_DEF bit if device is
* partitioned. This bit will be lost every time after a reset
* or power off. This will affect erase size.
if (part_completed)
has_parts = true;
if ((ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & PART_SUPPORT) &&
(ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE] & PART_ENH_ATTRIB))
has_parts = true;
if (has_parts) {
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_ERASE_GROUP_DEF, 1);
if (err)
return err;
else
ext_csd[EXT_CSD_ERASE_GROUP_DEF] = 1;
if (ext_csd[EXT_CSD_ERASE_GROUP_DEF] & 0x01) {
/* Read out group size from ext_csd */
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] * 1024;
/*
* if high capacity and partition setting completed
* SEC_COUNT is valid even if it is smaller than 2 GiB
* JEDEC Standard JESD84-B45, 6.2.4
*/
if (mmc->high_capacity && part_completed) {
capacity = (ext_csd[EXT_CSD_SEC_CNT]) |
(ext_csd[EXT_CSD_SEC_CNT + 1] << 8) |
(ext_csd[EXT_CSD_SEC_CNT + 2] << 16) |
(ext_csd[EXT_CSD_SEC_CNT + 3] << 24);
capacity *= MMC_MAX_BLOCK_LEN;
mmc->capacity_user = capacity;
}
/* Calculate the group size from the csd value. */
int erase_gsz, erase_gmul;
erase_gsz = (mmc->csd[2] & 0x00007c00) >> 10;
erase_gmul = (mmc->csd[2] & 0x000003e0) >> 5;
mmc->erase_grp_size = (erase_gsz + 1)
* (erase_gmul + 1);
}
mmc->hc_wp_grp_size = 1024
* ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]
* ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
mmc->wr_rel_set = ext_csd[EXT_CSD_WR_REL_SET];
err = mmc_set_capacity(mmc, mmc_get_blk_desc(mmc)->hwpart);
if (err)
return err;
if (IS_SD(mmc))
err = sd_change_freq(mmc);
else
err = mmc_change_freq(mmc);
if (err)
return err;
/* Restrict card's capabilities by what the host can do */
mmc->card_caps &= mmc->cfg->host_caps;
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
if (IS_SD(mmc)) {
if (mmc->card_caps & MMC_MODE_4BIT) {
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SET_BUS_WIDTH;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 2;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
mmc_set_bus_width(mmc, 4);
}
if (mmc->card_caps & MMC_MODE_HS)
mmc->tran_speed = 50000000;
mmc->tran_speed = 25000000;
} else if (mmc->version >= MMC_VERSION_4) {
/* Only version 4 of MMC supports wider bus widths */
int idx;
/* An array of possible bus widths in order of preference */
static unsigned ext_csd_bits[] = {
EXT_CSD_DDR_BUS_WIDTH_8,
EXT_CSD_DDR_BUS_WIDTH_4,
EXT_CSD_BUS_WIDTH_8,
EXT_CSD_BUS_WIDTH_4,
EXT_CSD_BUS_WIDTH_1,
};
/* An array to map CSD bus widths to host cap bits */
static unsigned ext_to_hostcaps[] = {
[EXT_CSD_DDR_BUS_WIDTH_4] =
MMC_MODE_DDR_52MHz | MMC_MODE_4BIT,
[EXT_CSD_DDR_BUS_WIDTH_8] =
MMC_MODE_DDR_52MHz | MMC_MODE_8BIT,
[EXT_CSD_BUS_WIDTH_4] = MMC_MODE_4BIT,
[EXT_CSD_BUS_WIDTH_8] = MMC_MODE_8BIT,
};
/* An array to map chosen bus width to an integer */
static unsigned widths[] = {
};
for (idx=0; idx < ARRAY_SIZE(ext_csd_bits); idx++) {
unsigned int extw = ext_csd_bits[idx];
unsigned int caps = ext_to_hostcaps[extw];
/*
* If the bus width is still not changed,
* don't try to set the default again.
* Otherwise, recover from switch attempts
* by switching to 1-bit bus width.
*/
if (extw == EXT_CSD_BUS_WIDTH_1 &&
mmc->bus_width == 1) {
err = 0;
break;
}
* Check to make sure the card and controller support
* these capabilities
if ((mmc->card_caps & caps) != caps)
EXT_CSD_BUS_WIDTH, extw);
mmc->ddr_mode = (caps & MMC_MODE_DDR_52MHz) ? 1 : 0;
mmc_set_bus_width(mmc, widths[idx]);
err = mmc_send_ext_csd(mmc, test_csd);
if (err)
continue;
if (ext_csd[EXT_CSD_PARTITIONING_SUPPORT]
== test_csd[EXT_CSD_PARTITIONING_SUPPORT] &&
ext_csd[EXT_CSD_HC_WP_GRP_SIZE]
== test_csd[EXT_CSD_HC_WP_GRP_SIZE] &&
ext_csd[EXT_CSD_REV]
== test_csd[EXT_CSD_REV] &&
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]
== test_csd[EXT_CSD_HC_ERASE_GRP_SIZE] &&
memcmp(&ext_csd[EXT_CSD_SEC_CNT],
&test_csd[EXT_CSD_SEC_CNT], 4) == 0)
else
err = SWITCH_ERR;
if (err)
return err;
if (mmc->card_caps & MMC_MODE_HS) {
if (mmc->card_caps & MMC_MODE_HS_52MHz)
mmc->tran_speed = 52000000;
mmc->tran_speed = 26000000;
}
mmc_set_clock(mmc, mmc->tran_speed);
/* Fix the block length for DDR mode */
if (mmc->ddr_mode) {
mmc->read_bl_len = MMC_MAX_BLOCK_LEN;
mmc->write_bl_len = MMC_MAX_BLOCK_LEN;
}
bdesc = mmc_get_blk_desc(mmc);
bdesc->lun = 0;
bdesc->hwpart = 0;
bdesc->type = 0;
bdesc->blksz = mmc->read_bl_len;
bdesc->log2blksz = LOG2(bdesc->blksz);
bdesc->lba = lldiv(mmc->capacity, mmc->read_bl_len);
#if !defined(CONFIG_SPL_BUILD) || \
(defined(CONFIG_SPL_LIBCOMMON_SUPPORT) && \
!defined(CONFIG_USE_TINY_PRINTF))
sprintf(bdesc->vendor, "Man %06x Snr %04x%04x",
mmc->cid[0] >> 24, (mmc->cid[2] & 0xffff),
(mmc->cid[3] >> 16) & 0xffff);
sprintf(bdesc->product, "%c%c%c%c%c%c", mmc->cid[0] & 0xff,
(mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff,
(mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff,
(mmc->cid[2] >> 24) & 0xff);
sprintf(bdesc->revision, "%d.%d", (mmc->cid[2] >> 20) & 0xf,
(mmc->cid[2] >> 16) & 0xf);
#else
bdesc->vendor[0] = 0;
bdesc->product[0] = 0;
bdesc->revision[0] = 0;
#endif
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBDISK_SUPPORT)
static int mmc_send_if_cond(struct mmc *mmc)
{
struct mmc_cmd cmd;
int err;
cmd.cmdidx = SD_CMD_SEND_IF_COND;
/* We set the bit if the host supports voltages between 2.7 and 3.6 V */
cmd.cmdarg = ((mmc->cfg->voltages & 0xff8000) != 0) << 8 | 0xaa;
cmd.resp_type = MMC_RSP_R7;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
return UNUSABLE_ERR;
else
mmc->version = SD_VERSION_2;
return 0;
}
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
#ifdef CONFIG_BLK
int mmc_bind(struct udevice *dev, struct mmc *mmc, const struct mmc_config *cfg)
{
struct blk_desc *bdesc;
struct udevice *bdev;
int ret;
ret = blk_create_devicef(dev, "mmc_blk", "blk", IF_TYPE_MMC, -1, 512,
0, &bdev);
if (ret) {
debug("Cannot create block device\n");
return ret;
}
bdesc = dev_get_uclass_platdata(bdev);
mmc->cfg = cfg;
mmc->priv = dev;
/* the following chunk was from mmc_register() */
/* Setup dsr related values */
mmc->dsr_imp = 0;
mmc->dsr = 0xffffffff;
/* Setup the universal parts of the block interface just once */
bdesc->removable = 1;
/* setup initial part type */
bdesc->part_type = cfg->part_type;
mmc->dev = dev;
return 0;
}
int mmc_unbind(struct udevice *dev)
{
struct udevice *bdev;
device_find_first_child(dev, &bdev);
if (bdev) {
device_remove(bdev);
device_unbind(bdev);
}
return 0;
}
#else
struct mmc *mmc_create(const struct mmc_config *cfg, void *priv)
struct blk_desc *bdesc;
struct mmc *mmc;
/* quick validation */
if (cfg == NULL || cfg->ops == NULL || cfg->ops->send_cmd == NULL ||
cfg->f_min == 0 || cfg->f_max == 0 || cfg->b_max == 0)
return NULL;
mmc = calloc(1, sizeof(*mmc));
if (mmc == NULL)
return NULL;
mmc->cfg = cfg;
mmc->priv = priv;
/* the following chunk was mmc_register() */
/* Setup dsr related values */
mmc->dsr_imp = 0;
mmc->dsr = 0xffffffff;
/* Setup the universal parts of the block interface just once */
bdesc = mmc_get_blk_desc(mmc);
bdesc->if_type = IF_TYPE_MMC;
bdesc->removable = 1;
bdesc->devnum = mmc_get_next_devnum();
bdesc->block_read = mmc_bread;
bdesc->block_write = mmc_bwrite;
bdesc->block_erase = mmc_berase;
/* setup initial part type */
bdesc->part_type = mmc->cfg->part_type;
mmc_list_add(mmc);
return mmc;
}
void mmc_destroy(struct mmc *mmc)
{
/* only freeing memory for now */
free(mmc);
static int mmc_get_dev(int dev, struct blk_desc **descp)
{
struct mmc *mmc = find_mmc_device(dev);
int ret;
if (!mmc)
return -ENODEV;
ret = mmc_init(mmc);
if (ret)
return ret;
*descp = &mmc->block_dev;
return 0;
}
/* board-specific MMC power initializations. */
__weak void board_mmc_power_init(void)
{
}
int mmc_start_init(struct mmc *mmc)
int err;
/* we pretend there's no card when init is NULL */
if (mmc_getcd(mmc) == 0 || mmc->cfg->ops->init == NULL) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
#endif
if (mmc->has_init)
return 0;
#ifdef CONFIG_FSL_ESDHC_ADAPTER_IDENT
mmc_adapter_card_type_ident();
#endif
board_mmc_power_init();
/* made sure it's not NULL earlier */
err = mmc->cfg->ops->init(mmc);
mmc->ddr_mode = 0;
mmc_set_bus_width(mmc, 1);
mmc_set_clock(mmc, 1);
/* Reset the Card */
err = mmc_go_idle(mmc);
if (err)
return err;
/* The internal partition reset to user partition(0) at every CMD0*/
mmc_get_blk_desc(mmc)->hwpart = 0;
err = mmc_send_if_cond(mmc);
/* Now try to get the SD card's operating condition */
err = sd_send_op_cond(mmc);
/* If the command timed out, we check for an MMC card */
if (err == TIMEOUT) {
err = mmc_send_op_cond(mmc);
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
#endif
mmc->init_in_progress = 1;
return err;
}
static int mmc_complete_init(struct mmc *mmc)
{
int err = 0;
if (mmc->op_cond_pending)
err = mmc_complete_op_cond(mmc);
if (!err)
err = mmc_startup(mmc);
if (err)
mmc->has_init = 0;
else
mmc->has_init = 1;
return err;
}
int mmc_init(struct mmc *mmc)
{
#ifdef CONFIG_DM_MMC
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(mmc->dev);
upriv->mmc = mmc;
#endif
if (mmc->has_init)
return 0;
start = get_timer(0);
if (!mmc->init_in_progress)
err = mmc_start_init(mmc);
err = mmc_complete_init(mmc);
debug("%s: %d, time %lu\n", __func__, err, get_timer(start));
int mmc_set_dsr(struct mmc *mmc, u16 val)
{
mmc->dsr = val;
return 0;
}
/* CPU-specific MMC initializations */
__weak int cpu_mmc_init(bd_t *bis)
/* board-specific MMC initializations. */
__weak int board_mmc_init(bd_t *bis)
{
return -1;
}
void mmc_set_preinit(struct mmc *mmc, int preinit)
{
mmc->preinit = preinit;
}
#if defined(CONFIG_DM_MMC) && defined(CONFIG_SPL_BUILD)
static int mmc_probe(bd_t *bis)
{
return 0;
}
#elif defined(CONFIG_DM_MMC)
static int mmc_probe(bd_t *bis)
{
ret = uclass_get(UCLASS_MMC, &uc);
if (ret)
return ret;
/*
* Try to add them in sequence order. Really with driver model we
* should allow holes, but the current MMC list does not allow that.
* So if we request 0, 1, 3 we will get 0, 1, 2.
*/
for (i = 0; ; i++) {
ret = uclass_get_device_by_seq(UCLASS_MMC, i, &dev);
if (ret == -ENODEV)
break;
}
uclass_foreach_dev(dev, uc) {
ret = device_probe(dev);
printf("%s - probe failed: %d\n", dev->name, ret);
}
return 0;
}
#else
static int mmc_probe(bd_t *bis)
{
if (board_mmc_init(bis) < 0)
cpu_mmc_init(bis);
return 0;
}
#endif
static int initialized = 0;
if (initialized) /* Avoid initializing mmc multiple times */
return 0;
initialized = 1;
#ifndef CONFIG_BLK
mmc_list_init();
#endif
ret = mmc_probe(bis);
if (ret)
return ret;
#ifndef CONFIG_SPL_BUILD
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
#ifdef CONFIG_SUPPORT_EMMC_BOOT
/*
* This function changes the size of boot partition and the size of rpmb
* partition present on EMMC devices.
*
* Input Parameters:
* struct *mmc: pointer for the mmc device strcuture
* bootsize: size of boot partition
* rpmbsize: size of rpmb partition
*
* Returns 0 on success.
*/
int mmc_boot_partition_size_change(struct mmc *mmc, unsigned long bootsize,
unsigned long rpmbsize)
{
int err;
struct mmc_cmd cmd;
/* Only use this command for raw EMMC moviNAND. Enter backdoor mode */
cmd.cmdidx = MMC_CMD_RES_MAN;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = MMC_CMD62_ARG1;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
debug("mmc_boot_partition_size_change: Error1 = %d\n", err);
return err;
}
/* Boot partition changing mode */
cmd.cmdidx = MMC_CMD_RES_MAN;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = MMC_CMD62_ARG2;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
debug("mmc_boot_partition_size_change: Error2 = %d\n", err);
return err;
}
/* boot partition size is multiple of 128KB */
bootsize = (bootsize * 1024) / 128;
/* Arg: boot partition size */
cmd.cmdidx = MMC_CMD_RES_MAN;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = bootsize;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
debug("mmc_boot_partition_size_change: Error3 = %d\n", err);
return err;
}
/* RPMB partition size is multiple of 128KB */
rpmbsize = (rpmbsize * 1024) / 128;
/* Arg: RPMB partition size */
cmd.cmdidx = MMC_CMD_RES_MAN;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = rpmbsize;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
debug("mmc_boot_partition_size_change: Error4 = %d\n", err);
return err;
}
return 0;
}
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
/*
* Modify EXT_CSD[177] which is BOOT_BUS_WIDTH
* based on the passed in values for BOOT_BUS_WIDTH, RESET_BOOT_BUS_WIDTH
* and BOOT_MODE.
*
* Returns 0 on success.
*/
int mmc_set_boot_bus_width(struct mmc *mmc, u8 width, u8 reset, u8 mode)
{
int err;
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_BUS_WIDTH,
EXT_CSD_BOOT_BUS_WIDTH_MODE(mode) |
EXT_CSD_BOOT_BUS_WIDTH_RESET(reset) |
EXT_CSD_BOOT_BUS_WIDTH_WIDTH(width));
if (err)
return err;
return 0;
}
/*
* Modify EXT_CSD[179] which is PARTITION_CONFIG (formerly BOOT_CONFIG)
* based on the passed in values for BOOT_ACK, BOOT_PARTITION_ENABLE and
* PARTITION_ACCESS.
*
* Returns 0 on success.
*/
int mmc_set_part_conf(struct mmc *mmc, u8 ack, u8 part_num, u8 access)
{
int err;
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONF,
EXT_CSD_BOOT_ACK(ack) |
EXT_CSD_BOOT_PART_NUM(part_num) |
EXT_CSD_PARTITION_ACCESS(access));
if (err)
return err;
return 0;
}
/*
* Modify EXT_CSD[162] which is RST_n_FUNCTION based on the given value
* for enable. Note that this is a write-once field for non-zero values.
*
* Returns 0 on success.
*/
int mmc_set_rst_n_function(struct mmc *mmc, u8 enable)
{
return mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_RST_N_FUNCTION,
enable);
}
#ifdef CONFIG_BLK
static const struct blk_ops mmc_blk_ops = {
.read = mmc_bread,
.write = mmc_bwrite,
.select_hwpart = mmc_select_hwpart,
};
U_BOOT_DRIVER(mmc_blk) = {
.name = "mmc_blk",
.id = UCLASS_BLK,
.ops = &mmc_blk_ops,
};
#else
U_BOOT_LEGACY_BLK(mmc) = {
.if_typename = "mmc",
.if_type = IF_TYPE_MMC,
.max_devs = -1,
.select_hwpart = mmc_select_hwpartp,