Newer
Older
/*
* Copyright 2008, Freescale Semiconductor, Inc
* Andy Fleming
*
* Based vaguely on the Linux code
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <config.h>
#include <common.h>
#include <command.h>
#include <mmc.h>
#include <part.h>
#include <malloc.h>
#include <linux/list.h>
/* Set block count limit because of 16 bit register limit on some hardware*/
#ifndef CONFIG_SYS_MMC_MAX_BLK_COUNT
#define CONFIG_SYS_MMC_MAX_BLK_COUNT 65535
#endif
static struct list_head mmc_devices;
static int cur_dev_num = -1;
int __weak board_mmc_getwp(struct mmc *mmc)
{
return -1;
}
int mmc_getwp(struct mmc *mmc)
{
int wp;
wp = board_mmc_getwp(mmc);
if (wp < 0) {
if (mmc->getwp)
wp = mmc->getwp(mmc);
else
wp = 0;
}
int __board_mmc_getcd(struct mmc *mmc) {
int board_mmc_getcd(struct mmc *mmc)__attribute__((weak,
alias("__board_mmc_getcd")));
static int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
struct mmc_data *data)
int i;
u8 *ptr;
printf("CMD_SEND:%d\n", cmd->cmdidx);
printf("\t\tARG\t\t\t 0x%08X\n", cmd->cmdarg);
ret = mmc->send_cmd(mmc, cmd, data);
switch (cmd->resp_type) {
case MMC_RSP_NONE:
printf("\t\tMMC_RSP_NONE\n");
break;
case MMC_RSP_R1:
printf("\t\tMMC_RSP_R1,5,6,7 \t 0x%08X \n",
cmd->response[0]);
break;
case MMC_RSP_R1b:
printf("\t\tMMC_RSP_R1b\t\t 0x%08X \n",
cmd->response[0]);
break;
case MMC_RSP_R2:
printf("\t\tMMC_RSP_R2\t\t 0x%08X \n",
cmd->response[0]);
printf("\t\t \t\t 0x%08X \n",
cmd->response[1]);
printf("\t\t \t\t 0x%08X \n",
cmd->response[2]);
printf("\t\t \t\t 0x%08X \n",
cmd->response[3]);
printf("\n");
printf("\t\t\t\t\tDUMPING DATA\n");
for (i = 0; i < 4; i++) {
int j;
printf("\t\t\t\t\t%03d - ", i*4);
ptr = (u8 *)&cmd->response[i];
ptr += 3;
for (j = 0; j < 4; j++)
printf("%02X ", *ptr--);
printf("\n");
}
break;
case MMC_RSP_R3:
printf("\t\tMMC_RSP_R3,4\t\t 0x%08X \n",
cmd->response[0]);
break;
default:
printf("\t\tERROR MMC rsp not supported\n");
break;
}
#else
static int mmc_send_status(struct mmc *mmc, int timeout)
{
struct mmc_cmd cmd;
#ifdef CONFIG_MMC_TRACE
int status;
#endif
cmd.cmdidx = MMC_CMD_SEND_STATUS;
cmd.resp_type = MMC_RSP_R1;
if (!mmc_host_is_spi(mmc))
cmd.cmdarg = mmc->rca << 16;
do {
err = mmc_send_cmd(mmc, &cmd, NULL);
if (!err) {
if ((cmd.response[0] & MMC_STATUS_RDY_FOR_DATA) &&
(cmd.response[0] & MMC_STATUS_CURR_STATE) !=
MMC_STATE_PRG)
break;
else if (cmd.response[0] & MMC_STATUS_MASK) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("Status Error: 0x%08X\n",
cmd.response[0]);
#endif
return COMM_ERR;
}
} else if (--retries < 0)
return err;
udelay(1000);
} while (timeout--);
#ifdef CONFIG_MMC_TRACE
status = (cmd.response[0] & MMC_STATUS_CURR_STATE) >> 9;
printf("CURR STATE:%d\n", status);
#endif
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("Timeout waiting card ready\n");
#endif
return TIMEOUT;
}
return 0;
}
static int mmc_set_blocklen(struct mmc *mmc, int len)
{
struct mmc_cmd cmd;
cmd.cmdidx = MMC_CMD_SET_BLOCKLEN;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = len;
return mmc_send_cmd(mmc, &cmd, NULL);
}
struct mmc *find_mmc_device(int dev_num)
{
struct mmc *m;
struct list_head *entry;
list_for_each(entry, &mmc_devices) {
m = list_entry(entry, struct mmc, link);
if (m->block_dev.dev == dev_num)
return m;
}
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
#endif
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
static ulong mmc_erase_t(struct mmc *mmc, ulong start, lbaint_t blkcnt)
{
struct mmc_cmd cmd;
ulong end;
int err, start_cmd, end_cmd;
if (mmc->high_capacity)
end = start + blkcnt - 1;
else {
end = (start + blkcnt - 1) * mmc->write_bl_len;
start *= mmc->write_bl_len;
}
if (IS_SD(mmc)) {
start_cmd = SD_CMD_ERASE_WR_BLK_START;
end_cmd = SD_CMD_ERASE_WR_BLK_END;
} else {
start_cmd = MMC_CMD_ERASE_GROUP_START;
end_cmd = MMC_CMD_ERASE_GROUP_END;
}
cmd.cmdidx = start_cmd;
cmd.cmdarg = start;
cmd.resp_type = MMC_RSP_R1;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
goto err_out;
cmd.cmdidx = end_cmd;
cmd.cmdarg = end;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
goto err_out;
cmd.cmdidx = MMC_CMD_ERASE;
cmd.cmdarg = SECURE_ERASE;
cmd.resp_type = MMC_RSP_R1b;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
goto err_out;
return 0;
err_out:
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
#endif
return err;
}
static unsigned long
mmc_berase(int dev_num, lbaint_t start, lbaint_t blkcnt)
{
int err = 0;
struct mmc *mmc = find_mmc_device(dev_num);
lbaint_t blk = 0, blk_r = 0;
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
if ((start % mmc->erase_grp_size) || (blkcnt % mmc->erase_grp_size))
printf("\n\nCaution! Your devices Erase group is 0x%x\n"
"The erase range would be change to "
"0x" LBAF "~0x" LBAF "\n\n",
mmc->erase_grp_size, start & ~(mmc->erase_grp_size - 1),
((start + blkcnt + mmc->erase_grp_size)
& ~(mmc->erase_grp_size - 1)) - 1);
#endif
while (blk < blkcnt) {
blk_r = ((blkcnt - blk) > mmc->erase_grp_size) ?
mmc->erase_grp_size : (blkcnt - blk);
err = mmc_erase_t(mmc, start + blk, blk_r);
if (err)
break;
blk += blk_r;
/* Waiting for the ready status */
if (mmc_send_status(mmc, timeout))
return 0;
mmc_write_blocks(struct mmc *mmc, lbaint_t start, lbaint_t blkcnt, const void*src)
int timeout = 1000;
if ((start + blkcnt) > mmc->block_dev.lba) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("MMC: block number 0x" LBAF " exceeds max(0x" LBAF ")\n",
start + blkcnt, mmc->block_dev.lba);
#endif
if (blkcnt == 0)
return 0;
else if (blkcnt == 1)
if (mmc->high_capacity)
cmd.cmdarg = start;
else
cmd.cmdarg = start * mmc->write_bl_len;
cmd.resp_type = MMC_RSP_R1;
data.src = src;
data.blocks = blkcnt;
data.blocksize = mmc->write_bl_len;
if (mmc_send_cmd(mmc, &cmd, &data)) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("mmc write failed\n");
#endif
/* SPI multiblock writes terminate using a special
* token, not a STOP_TRANSMISSION request.
*/
if (!mmc_host_is_spi(mmc) && blkcnt > 1) {
cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_R1b;
if (mmc_send_cmd(mmc, &cmd, NULL)) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("mmc fail to send stop cmd\n");
#endif
/* Waiting for the ready status */
if (mmc_send_status(mmc, timeout))
return 0;
mmc_bwrite(int dev_num, lbaint_t start, lbaint_t blkcnt, const void*src)
{
lbaint_t cur, blocks_todo = blkcnt;
struct mmc *mmc = find_mmc_device(dev_num);
if (mmc_set_blocklen(mmc, mmc->write_bl_len))
return 0;
cur = (blocks_todo > mmc->b_max) ? mmc->b_max : blocks_todo;
if(mmc_write_blocks(mmc, start, cur, src) != cur)
blocks_todo -= cur;
start += cur;
src += cur * mmc->write_bl_len;
} while (blocks_todo > 0);
return blkcnt;
}
static int mmc_read_blocks(struct mmc *mmc, void *dst, lbaint_t start,
{
struct mmc_cmd cmd;
struct mmc_data data;
if (blkcnt > 1)
cmd.cmdidx = MMC_CMD_READ_MULTIPLE_BLOCK;
else
cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK;
cmd.cmdarg = start;
cmd.cmdarg = start * mmc->read_bl_len;
cmd.resp_type = MMC_RSP_R1;
data.dest = dst;
data.blocks = blkcnt;
data.blocksize = mmc->read_bl_len;
data.flags = MMC_DATA_READ;
if (mmc_send_cmd(mmc, &cmd, &data))
return 0;
if (blkcnt > 1) {
cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_R1b;
if (mmc_send_cmd(mmc, &cmd, NULL)) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("mmc fail to send stop cmd\n");
#endif
return 0;
}
return blkcnt;
static ulong mmc_bread(int dev_num, lbaint_t start, lbaint_t blkcnt, void *dst)
lbaint_t cur, blocks_todo = blkcnt;
if (blkcnt == 0)
return 0;
struct mmc *mmc = find_mmc_device(dev_num);
if ((start + blkcnt) > mmc->block_dev.lba) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("MMC: block number 0x" LBAF " exceeds max(0x" LBAF ")\n",
start + blkcnt, mmc->block_dev.lba);
#endif
if (mmc_set_blocklen(mmc, mmc->read_bl_len))
cur = (blocks_todo > mmc->b_max) ? mmc->b_max : blocks_todo;
if(mmc_read_blocks(mmc, dst, start, cur) != cur)
return 0;
blocks_todo -= cur;
start += cur;
dst += cur * mmc->read_bl_len;
} while (blocks_todo > 0);
{
struct mmc_cmd cmd;
int err;
udelay(1000);
cmd.cmdidx = MMC_CMD_GO_IDLE_STATE;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_NONE;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
udelay(2000);
return 0;
}
static int sd_send_op_cond(struct mmc *mmc)
{
int timeout = 1000;
int err;
struct mmc_cmd cmd;
do {
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SEND_OP_COND;
cmd.resp_type = MMC_RSP_R3;
/*
* Most cards do not answer if some reserved bits
* in the ocr are set. However, Some controller
* can set bit 7 (reserved for low voltages), but
* how to manage low voltages SD card is not yet
* specified.
*/
cmd.cmdarg = mmc_host_is_spi(mmc) ? 0 :
(mmc->voltages & 0xff8000);
if (mmc->version == SD_VERSION_2)
cmd.cmdarg |= OCR_HCS;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
udelay(1000);
} while ((!(cmd.response[0] & OCR_BUSY)) && timeout--);
if (timeout <= 0)
return UNUSABLE_ERR;
if (mmc->version != SD_VERSION_2)
mmc->version = SD_VERSION_1_0;
if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
}
mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
mmc->rca = 0;
return 0;
}
/* We pass in the cmd since otherwise the init seems to fail */
static int mmc_send_op_cond_iter(struct mmc *mmc, struct mmc_cmd *cmd,
int use_arg)
cmd->cmdidx = MMC_CMD_SEND_OP_COND;
cmd->resp_type = MMC_RSP_R3;
cmd->cmdarg = 0;
if (use_arg && !mmc_host_is_spi(mmc)) {
cmd->cmdarg =
(mmc->voltages &
(mmc->op_cond_response & OCR_VOLTAGE_MASK)) |
(mmc->op_cond_response & OCR_ACCESS_MODE);
if (mmc->host_caps & MMC_MODE_HC)
cmd->cmdarg |= OCR_HCS;
}
err = mmc_send_cmd(mmc, cmd, NULL);
if (err)
return err;
mmc->op_cond_response = cmd->response[0];
return 0;
}
int mmc_send_op_cond(struct mmc *mmc)
{
struct mmc_cmd cmd;
int err, i;
/* Some cards seem to need this */
mmc_go_idle(mmc);
/* Asking to the card its capabilities */
mmc->op_cond_pending = 1;
for (i = 0; i < 2; i++) {
err = mmc_send_op_cond_iter(mmc, &cmd, i != 0);
if (err)
return err;
/* exit if not busy (flag seems to be inverted) */
if (mmc->op_cond_response & OCR_BUSY)
return 0;
}
return IN_PROGRESS;
}
int mmc_complete_op_cond(struct mmc *mmc)
{
struct mmc_cmd cmd;
int timeout = 1000;
uint start;
int err;
mmc->op_cond_pending = 0;
start = get_timer(0);
err = mmc_send_op_cond_iter(mmc, &cmd, 1);
if (get_timer(start) > timeout)
return UNUSABLE_ERR;
udelay(100);
} while (!(mmc->op_cond_response & OCR_BUSY));
if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
}
mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
mmc->rca = 0;
return 0;
}
static int mmc_send_ext_csd(struct mmc *mmc, u8 *ext_csd)
{
struct mmc_cmd cmd;
struct mmc_data data;
int err;
/* Get the Card Status Register */
cmd.cmdidx = MMC_CMD_SEND_EXT_CSD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
data.dest = (char *)ext_csd;
data.blocksize = MMC_MAX_BLOCK_LEN;
data.flags = MMC_DATA_READ;
err = mmc_send_cmd(mmc, &cmd, &data);
return err;
}
static int mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value)
int timeout = 1000;
int ret;
cmd.cmdidx = MMC_CMD_SWITCH;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
(index << 16) |
(value << 8);
ret = mmc_send_cmd(mmc, &cmd, NULL);
/* Waiting for the ready status */
if (!ret)
ret = mmc_send_status(mmc, timeout);
return ret;
static int mmc_change_freq(struct mmc *mmc)
ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN);
char cardtype;
int err;
mmc->card_caps = 0;
if (mmc_host_is_spi(mmc))
return 0;
/* Only version 4 supports high-speed */
if (mmc->version < MMC_VERSION_4)
return 0;
err = mmc_send_ext_csd(mmc, ext_csd);
if (err)
return err;
cardtype = ext_csd[EXT_CSD_CARD_TYPE] & 0xf;
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1);
if (err)
return err;
/* Now check to see that it worked */
err = mmc_send_ext_csd(mmc, ext_csd);
if (err)
return err;
/* No high-speed support */
return 0;
/* High Speed is set, there are two types: 52MHz and 26MHz */
if (cardtype & MMC_HS_52MHZ)
mmc->card_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
else
mmc->card_caps |= MMC_MODE_HS;
return 0;
}
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
static int mmc_set_capacity(struct mmc *mmc, int part_num)
{
switch (part_num) {
case 0:
mmc->capacity = mmc->capacity_user;
break;
case 1:
case 2:
mmc->capacity = mmc->capacity_boot;
break;
case 3:
mmc->capacity = mmc->capacity_rpmb;
break;
case 4:
case 5:
case 6:
case 7:
mmc->capacity = mmc->capacity_gp[part_num - 4];
break;
default:
return -1;
}
mmc->block_dev.lba = lldiv(mmc->capacity, mmc->read_bl_len);
return 0;
}
int mmc_switch_part(int dev_num, unsigned int part_num)
{
struct mmc *mmc = find_mmc_device(dev_num);
if (!mmc)
return -1;
ret = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONF,
(mmc->part_config & ~PART_ACCESS_MASK)
| (part_num & PART_ACCESS_MASK));
if (ret)
return ret;
return mmc_set_capacity(mmc, part_num);
int mmc_getcd(struct mmc *mmc)
{
int cd;
cd = board_mmc_getcd(mmc);
if (cd < 0) {
if (mmc->getcd)
cd = mmc->getcd(mmc);
else
cd = 1;
}
static int sd_switch(struct mmc *mmc, int mode, int group, u8 value, u8 *resp)
{
struct mmc_cmd cmd;
struct mmc_data data;
/* Switch the frequency */
cmd.cmdidx = SD_CMD_SWITCH_FUNC;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = (mode << 31) | 0xffffff;
cmd.cmdarg &= ~(0xf << (group * 4));
cmd.cmdarg |= value << (group * 4);
data.dest = (char *)resp;
data.blocksize = 64;
data.blocks = 1;
data.flags = MMC_DATA_READ;
return mmc_send_cmd(mmc, &cmd, &data);
}
static int sd_change_freq(struct mmc *mmc)
ALLOC_CACHE_ALIGN_BUFFER(uint, scr, 2);
ALLOC_CACHE_ALIGN_BUFFER(uint, switch_status, 16);
struct mmc_data data;
int timeout;
mmc->card_caps = 0;
if (mmc_host_is_spi(mmc))
return 0;
/* Read the SCR to find out if this card supports higher speeds */
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SEND_SCR;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
timeout = 3;
retry_scr:
data.dest = (char *)scr;
data.blocksize = 8;
data.blocks = 1;
data.flags = MMC_DATA_READ;
err = mmc_send_cmd(mmc, &cmd, &data);
if (err) {
if (timeout--)
goto retry_scr;
return err;
}
mmc->scr[0] = __be32_to_cpu(scr[0]);
mmc->scr[1] = __be32_to_cpu(scr[1]);
switch ((mmc->scr[0] >> 24) & 0xf) {
case 0:
mmc->version = SD_VERSION_1_0;
break;
case 1:
mmc->version = SD_VERSION_1_10;
break;
case 2:
mmc->version = SD_VERSION_2;
if ((mmc->scr[0] >> 15) & 0x1)
mmc->version = SD_VERSION_3;
break;
default:
mmc->version = SD_VERSION_1_0;
break;
}
if (mmc->scr[0] & SD_DATA_4BIT)
mmc->card_caps |= MMC_MODE_4BIT;
/* Version 1.0 doesn't support switching */
if (mmc->version == SD_VERSION_1_0)
return 0;
timeout = 4;
while (timeout--) {
err = sd_switch(mmc, SD_SWITCH_CHECK, 0, 1,
(u8 *)switch_status);
if (err)
return err;
/* The high-speed function is busy. Try again */
if (!(__be32_to_cpu(switch_status[7]) & SD_HIGHSPEED_BUSY))
break;
}
/* If high-speed isn't supported, we return */
if (!(__be32_to_cpu(switch_status[3]) & SD_HIGHSPEED_SUPPORTED))
/*
* If the host doesn't support SD_HIGHSPEED, do not switch card to
* HIGHSPEED mode even if the card support SD_HIGHSPPED.
* This can avoid furthur problem when the card runs in different
* mode between the host.
*/
if (!((mmc->host_caps & MMC_MODE_HS_52MHz) &&
(mmc->host_caps & MMC_MODE_HS)))
return 0;
err = sd_switch(mmc, SD_SWITCH_SWITCH, 0, 1, (u8 *)switch_status);
if ((__be32_to_cpu(switch_status[4]) & 0x0f000000) == 0x01000000)
mmc->card_caps |= MMC_MODE_HS;
return 0;
}
/* frequency bases */
/* divided by 10 to be nice to platforms without floating point */
10000,
100000,
1000000,
10000000,
};
/* Multiplier values for TRAN_SPEED. Multiplied by 10 to be nice
* to platforms without floating point.
*/
0, /* reserved */
10,
12,
13,
15,
20,
25,
30,
35,
40,
45,
50,
55,
60,
70,
80,
};
{
mmc->set_ios(mmc);
}
void mmc_set_clock(struct mmc *mmc, uint clock)
{
if (clock > mmc->f_max)
clock = mmc->f_max;
if (clock < mmc->f_min)
clock = mmc->f_min;
mmc->clock = clock;
mmc_set_ios(mmc);
}
static void mmc_set_bus_width(struct mmc *mmc, uint width)
{
mmc->bus_width = width;
mmc_set_ios(mmc);
}
u64 cmult, csize, capacity;
ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN);
ALLOC_CACHE_ALIGN_BUFFER(u8, test_csd, MMC_MAX_BLOCK_LEN);
int timeout = 1000;
#ifdef CONFIG_MMC_SPI_CRC_ON
if (mmc_host_is_spi(mmc)) { /* enable CRC check for spi */
cmd.cmdidx = MMC_CMD_SPI_CRC_ON_OFF;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 1;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
}
#endif
cmd.cmdidx = mmc_host_is_spi(mmc) ? MMC_CMD_SEND_CID :
MMC_CMD_ALL_SEND_CID; /* cmd not supported in spi */
cmd.resp_type = MMC_RSP_R2;
cmd.cmdarg = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
memcpy(mmc->cid, cmd.response, 16);
/*
* For MMC cards, set the Relative Address.
* For SD cards, get the Relatvie Address.
* This also puts the cards into Standby State
*/
if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
cmd.cmdidx = SD_CMD_SEND_RELATIVE_ADDR;
cmd.cmdarg = mmc->rca << 16;
cmd.resp_type = MMC_RSP_R6;