Newer
Older
/*
* Copyright 2008, Freescale Semiconductor, Inc
* Andy Fleming
*
* Based vaguely on the Linux code
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <config.h>
#include <common.h>
#include <command.h>
#include <errno.h>
#include <mmc.h>
#include <part.h>
#include <malloc.h>
#include <linux/list.h>
static struct list_head mmc_devices;
static int cur_dev_num = -1;
__weak int board_mmc_getwp(struct mmc *mmc)
{
return -1;
}
int mmc_getwp(struct mmc *mmc)
{
int wp;
wp = board_mmc_getwp(mmc);
if (mmc->cfg->ops->getwp)
wp = mmc->cfg->ops->getwp(mmc);
__weak int board_mmc_getcd(struct mmc *mmc)
{
int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data)
int i;
u8 *ptr;
printf("CMD_SEND:%d\n", cmd->cmdidx);
printf("\t\tARG\t\t\t 0x%08X\n", cmd->cmdarg);
ret = mmc->cfg->ops->send_cmd(mmc, cmd, data);
switch (cmd->resp_type) {
case MMC_RSP_NONE:
printf("\t\tMMC_RSP_NONE\n");
break;
case MMC_RSP_R1:
printf("\t\tMMC_RSP_R1,5,6,7 \t 0x%08X \n",
cmd->response[0]);
break;
case MMC_RSP_R1b:
printf("\t\tMMC_RSP_R1b\t\t 0x%08X \n",
cmd->response[0]);
break;
case MMC_RSP_R2:
printf("\t\tMMC_RSP_R2\t\t 0x%08X \n",
cmd->response[0]);
printf("\t\t \t\t 0x%08X \n",
cmd->response[1]);
printf("\t\t \t\t 0x%08X \n",
cmd->response[2]);
printf("\t\t \t\t 0x%08X \n",
cmd->response[3]);
printf("\n");
printf("\t\t\t\t\tDUMPING DATA\n");
for (i = 0; i < 4; i++) {
int j;
printf("\t\t\t\t\t%03d - ", i*4);
ptr = (u8 *)&cmd->response[i];
ptr += 3;
for (j = 0; j < 4; j++)
printf("%02X ", *ptr--);
printf("\n");
}
break;
case MMC_RSP_R3:
printf("\t\tMMC_RSP_R3,4\t\t 0x%08X \n",
cmd->response[0]);
break;
default:
printf("\t\tERROR MMC rsp not supported\n");
break;
}
#else
ret = mmc->cfg->ops->send_cmd(mmc, cmd, data);
int mmc_send_status(struct mmc *mmc, int timeout)
{
struct mmc_cmd cmd;
#ifdef CONFIG_MMC_TRACE
int status;
#endif
cmd.cmdidx = MMC_CMD_SEND_STATUS;
cmd.resp_type = MMC_RSP_R1;
if (!mmc_host_is_spi(mmc))
cmd.cmdarg = mmc->rca << 16;
do {
err = mmc_send_cmd(mmc, &cmd, NULL);
if (!err) {
if ((cmd.response[0] & MMC_STATUS_RDY_FOR_DATA) &&
(cmd.response[0] & MMC_STATUS_CURR_STATE) !=
MMC_STATE_PRG)
break;
else if (cmd.response[0] & MMC_STATUS_MASK) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("Status Error: 0x%08X\n",
cmd.response[0]);
#endif
return COMM_ERR;
}
} else if (--retries < 0)
return err;
udelay(1000);
} while (timeout--);
#ifdef CONFIG_MMC_TRACE
status = (cmd.response[0] & MMC_STATUS_CURR_STATE) >> 9;
printf("CURR STATE:%d\n", status);
#endif
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("Timeout waiting card ready\n");
#endif
return TIMEOUT;
}
if (cmd.response[0] & MMC_STATUS_SWITCH_ERROR)
return SWITCH_ERR;
return 0;
}
int mmc_set_blocklen(struct mmc *mmc, int len)
if (mmc->card_caps & MMC_MODE_DDR_52MHz)
return 0;
cmd.cmdidx = MMC_CMD_SET_BLOCKLEN;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = len;
return mmc_send_cmd(mmc, &cmd, NULL);
}
struct mmc *find_mmc_device(int dev_num)
{
struct mmc *m;
struct list_head *entry;
list_for_each(entry, &mmc_devices) {
m = list_entry(entry, struct mmc, link);
if (m->block_dev.dev == dev_num)
return m;
}
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
#endif
static int mmc_read_blocks(struct mmc *mmc, void *dst, lbaint_t start,
{
struct mmc_cmd cmd;
struct mmc_data data;
if (blkcnt > 1)
cmd.cmdidx = MMC_CMD_READ_MULTIPLE_BLOCK;
else
cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK;
cmd.cmdarg = start;
cmd.cmdarg = start * mmc->read_bl_len;
cmd.resp_type = MMC_RSP_R1;
data.dest = dst;
data.blocks = blkcnt;
data.blocksize = mmc->read_bl_len;
data.flags = MMC_DATA_READ;
if (mmc_send_cmd(mmc, &cmd, &data))
return 0;
if (blkcnt > 1) {
cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_R1b;
if (mmc_send_cmd(mmc, &cmd, NULL)) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("mmc fail to send stop cmd\n");
#endif
return 0;
}
return blkcnt;
static ulong mmc_bread(int dev_num, lbaint_t start, lbaint_t blkcnt, void *dst)
lbaint_t cur, blocks_todo = blkcnt;
if (blkcnt == 0)
return 0;
struct mmc *mmc = find_mmc_device(dev_num);
if ((start + blkcnt) > mmc->block_dev.lba) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("MMC: block number 0x" LBAF " exceeds max(0x" LBAF ")\n",
start + blkcnt, mmc->block_dev.lba);
#endif
if (mmc_set_blocklen(mmc, mmc->read_bl_len))
cur = (blocks_todo > mmc->cfg->b_max) ?
mmc->cfg->b_max : blocks_todo;
if(mmc_read_blocks(mmc, dst, start, cur) != cur)
return 0;
blocks_todo -= cur;
start += cur;
dst += cur * mmc->read_bl_len;
} while (blocks_todo > 0);
{
struct mmc_cmd cmd;
int err;
udelay(1000);
cmd.cmdidx = MMC_CMD_GO_IDLE_STATE;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_NONE;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
udelay(2000);
return 0;
}
static int sd_send_op_cond(struct mmc *mmc)
{
int timeout = 1000;
int err;
struct mmc_cmd cmd;
do {
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SEND_OP_COND;
cmd.resp_type = MMC_RSP_R3;
/*
* Most cards do not answer if some reserved bits
* in the ocr are set. However, Some controller
* can set bit 7 (reserved for low voltages), but
* how to manage low voltages SD card is not yet
* specified.
*/
(mmc->cfg->voltages & 0xff8000);
if (mmc->version == SD_VERSION_2)
cmd.cmdarg |= OCR_HCS;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
udelay(1000);
} while ((!(cmd.response[0] & OCR_BUSY)) && timeout--);
if (timeout <= 0)
return UNUSABLE_ERR;
if (mmc->version != SD_VERSION_2)
mmc->version = SD_VERSION_1_0;
if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
}
mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
mmc->rca = 0;
return 0;
}
/* We pass in the cmd since otherwise the init seems to fail */
static int mmc_send_op_cond_iter(struct mmc *mmc, struct mmc_cmd *cmd,
int use_arg)
cmd->cmdidx = MMC_CMD_SEND_OP_COND;
cmd->resp_type = MMC_RSP_R3;
cmd->cmdarg = 0;
if (use_arg && !mmc_host_is_spi(mmc)) {
cmd->cmdarg =
(mmc->cfg->voltages &
(mmc->op_cond_response & OCR_VOLTAGE_MASK)) |
(mmc->op_cond_response & OCR_ACCESS_MODE);
if (mmc->cfg->host_caps & MMC_MODE_HC)
cmd->cmdarg |= OCR_HCS;
}
err = mmc_send_cmd(mmc, cmd, NULL);
if (err)
return err;
mmc->op_cond_response = cmd->response[0];
return 0;
}
static int mmc_send_op_cond(struct mmc *mmc)
{
struct mmc_cmd cmd;
int err, i;
/* Some cards seem to need this */
mmc_go_idle(mmc);
/* Asking to the card its capabilities */
mmc->op_cond_pending = 1;
for (i = 0; i < 2; i++) {
err = mmc_send_op_cond_iter(mmc, &cmd, i != 0);
if (err)
return err;
/* exit if not busy (flag seems to be inverted) */
if (mmc->op_cond_response & OCR_BUSY)
return 0;
}
return IN_PROGRESS;
}
static int mmc_complete_op_cond(struct mmc *mmc)
{
struct mmc_cmd cmd;
int timeout = 1000;
uint start;
int err;
mmc->op_cond_pending = 0;
start = get_timer(0);
err = mmc_send_op_cond_iter(mmc, &cmd, 1);
if (get_timer(start) > timeout)
return UNUSABLE_ERR;
udelay(100);
} while (!(mmc->op_cond_response & OCR_BUSY));
if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
}
mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
static int mmc_send_ext_csd(struct mmc *mmc, u8 *ext_csd)
{
struct mmc_cmd cmd;
struct mmc_data data;
int err;
/* Get the Card Status Register */
cmd.cmdidx = MMC_CMD_SEND_EXT_CSD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
data.dest = (char *)ext_csd;
data.blocksize = MMC_MAX_BLOCK_LEN;
data.flags = MMC_DATA_READ;
err = mmc_send_cmd(mmc, &cmd, &data);
return err;
}
static int mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value)
int timeout = 1000;
int ret;
cmd.cmdidx = MMC_CMD_SWITCH;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
(index << 16) |
(value << 8);
ret = mmc_send_cmd(mmc, &cmd, NULL);
/* Waiting for the ready status */
if (!ret)
ret = mmc_send_status(mmc, timeout);
return ret;
static int mmc_change_freq(struct mmc *mmc)
ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN);
char cardtype;
int err;
mmc->card_caps = 0;
if (mmc_host_is_spi(mmc))
return 0;
/* Only version 4 supports high-speed */
if (mmc->version < MMC_VERSION_4)
return 0;
err = mmc_send_ext_csd(mmc, ext_csd);
if (err)
return err;
cardtype = ext_csd[EXT_CSD_CARD_TYPE] & 0xf;
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1);
if (err)
return err == SWITCH_ERR ? 0 : err;
/* Now check to see that it worked */
err = mmc_send_ext_csd(mmc, ext_csd);
if (err)
return err;
/* No high-speed support */
return 0;
/* High Speed is set, there are two types: 52MHz and 26MHz */
if (cardtype & EXT_CSD_CARD_TYPE_52) {
if (cardtype & EXT_CSD_CARD_TYPE_DDR_52)
mmc->card_caps |= MMC_MODE_DDR_52MHz;
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
static int mmc_set_capacity(struct mmc *mmc, int part_num)
{
switch (part_num) {
case 0:
mmc->capacity = mmc->capacity_user;
break;
case 1:
case 2:
mmc->capacity = mmc->capacity_boot;
break;
case 3:
mmc->capacity = mmc->capacity_rpmb;
break;
case 4:
case 5:
case 6:
case 7:
mmc->capacity = mmc->capacity_gp[part_num - 4];
break;
default:
return -1;
}
mmc->block_dev.lba = lldiv(mmc->capacity, mmc->read_bl_len);
return 0;
}
int mmc_select_hwpart(int dev_num, int hwpart)
{
struct mmc *mmc = find_mmc_device(dev_num);
int ret;
if (!mmc)
return -ENODEV;
if (mmc->part_num == hwpart)
return 0;
if (mmc->part_config == MMCPART_NOAVAILABLE) {
printf("Card doesn't support part_switch\n");
return -EMEDIUMTYPE;
}
ret = mmc_switch_part(dev_num, hwpart);
if (ret)
mmc->part_num = hwpart;
return 0;
}
int mmc_switch_part(int dev_num, unsigned int part_num)
{
struct mmc *mmc = find_mmc_device(dev_num);
if (!mmc)
return -1;
ret = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONF,
(mmc->part_config & ~PART_ACCESS_MASK)
| (part_num & PART_ACCESS_MASK));
/*
* Set the capacity if the switch succeeded or was intended
* to return to representing the raw device.
*/
if ((ret == 0) || ((ret == -ENODEV) && (part_num == 0)))
ret = mmc_set_capacity(mmc, part_num);
return ret;
int mmc_getcd(struct mmc *mmc)
{
int cd;
cd = board_mmc_getcd(mmc);
if (mmc->cfg->ops->getcd)
cd = mmc->cfg->ops->getcd(mmc);
static int sd_switch(struct mmc *mmc, int mode, int group, u8 value, u8 *resp)
{
struct mmc_cmd cmd;
struct mmc_data data;
/* Switch the frequency */
cmd.cmdidx = SD_CMD_SWITCH_FUNC;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = (mode << 31) | 0xffffff;
cmd.cmdarg &= ~(0xf << (group * 4));
cmd.cmdarg |= value << (group * 4);
data.dest = (char *)resp;
data.blocksize = 64;
data.blocks = 1;
data.flags = MMC_DATA_READ;
return mmc_send_cmd(mmc, &cmd, &data);
}
static int sd_change_freq(struct mmc *mmc)
ALLOC_CACHE_ALIGN_BUFFER(uint, scr, 2);
ALLOC_CACHE_ALIGN_BUFFER(uint, switch_status, 16);
struct mmc_data data;
int timeout;
mmc->card_caps = 0;
if (mmc_host_is_spi(mmc))
return 0;
/* Read the SCR to find out if this card supports higher speeds */
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SEND_SCR;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
timeout = 3;
retry_scr:
data.dest = (char *)scr;
data.blocksize = 8;
data.blocks = 1;
data.flags = MMC_DATA_READ;
err = mmc_send_cmd(mmc, &cmd, &data);
if (err) {
if (timeout--)
goto retry_scr;
return err;
}
mmc->scr[0] = __be32_to_cpu(scr[0]);
mmc->scr[1] = __be32_to_cpu(scr[1]);
switch ((mmc->scr[0] >> 24) & 0xf) {
case 0:
mmc->version = SD_VERSION_1_0;
break;
case 1:
mmc->version = SD_VERSION_1_10;
break;
case 2:
mmc->version = SD_VERSION_2;
if ((mmc->scr[0] >> 15) & 0x1)
mmc->version = SD_VERSION_3;
break;
default:
mmc->version = SD_VERSION_1_0;
break;
}
if (mmc->scr[0] & SD_DATA_4BIT)
mmc->card_caps |= MMC_MODE_4BIT;
/* Version 1.0 doesn't support switching */
if (mmc->version == SD_VERSION_1_0)
return 0;
timeout = 4;
while (timeout--) {
err = sd_switch(mmc, SD_SWITCH_CHECK, 0, 1,
(u8 *)switch_status);
if (err)
return err;
/* The high-speed function is busy. Try again */
if (!(__be32_to_cpu(switch_status[7]) & SD_HIGHSPEED_BUSY))
break;
}
/* If high-speed isn't supported, we return */
if (!(__be32_to_cpu(switch_status[3]) & SD_HIGHSPEED_SUPPORTED))
/*
* If the host doesn't support SD_HIGHSPEED, do not switch card to
* HIGHSPEED mode even if the card support SD_HIGHSPPED.
* This can avoid furthur problem when the card runs in different
* mode between the host.
*/
if (!((mmc->cfg->host_caps & MMC_MODE_HS_52MHz) &&
(mmc->cfg->host_caps & MMC_MODE_HS)))
err = sd_switch(mmc, SD_SWITCH_SWITCH, 0, 1, (u8 *)switch_status);
if ((__be32_to_cpu(switch_status[4]) & 0x0f000000) == 0x01000000)
mmc->card_caps |= MMC_MODE_HS;
return 0;
}
/* frequency bases */
/* divided by 10 to be nice to platforms without floating point */
10000,
100000,
1000000,
10000000,
};
/* Multiplier values for TRAN_SPEED. Multiplied by 10 to be nice
* to platforms without floating point.
*/
0, /* reserved */
10,
12,
13,
15,
20,
25,
30,
35,
40,
45,
50,
55,
60,
70,
80,
};
if (mmc->cfg->ops->set_ios)
mmc->cfg->ops->set_ios(mmc);
}
void mmc_set_clock(struct mmc *mmc, uint clock)
{
if (clock > mmc->cfg->f_max)
clock = mmc->cfg->f_max;
if (clock < mmc->cfg->f_min)
clock = mmc->cfg->f_min;
mmc->clock = clock;
mmc_set_ios(mmc);
}
static void mmc_set_bus_width(struct mmc *mmc, uint width)
{
mmc->bus_width = width;
mmc_set_ios(mmc);
}
u64 cmult, csize, capacity;
ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN);
ALLOC_CACHE_ALIGN_BUFFER(u8, test_csd, MMC_MAX_BLOCK_LEN);
int timeout = 1000;
#ifdef CONFIG_MMC_SPI_CRC_ON
if (mmc_host_is_spi(mmc)) { /* enable CRC check for spi */
cmd.cmdidx = MMC_CMD_SPI_CRC_ON_OFF;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 1;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
}
#endif
cmd.cmdidx = mmc_host_is_spi(mmc) ? MMC_CMD_SEND_CID :
MMC_CMD_ALL_SEND_CID; /* cmd not supported in spi */
cmd.resp_type = MMC_RSP_R2;
cmd.cmdarg = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
memcpy(mmc->cid, cmd.response, 16);
/*
* For MMC cards, set the Relative Address.
* For SD cards, get the Relatvie Address.
* This also puts the cards into Standby State
*/
if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
cmd.cmdidx = SD_CMD_SEND_RELATIVE_ADDR;
cmd.cmdarg = mmc->rca << 16;
cmd.resp_type = MMC_RSP_R6;
if (IS_SD(mmc))
mmc->rca = (cmd.response[0] >> 16) & 0xffff;
}
/* Get the Card-Specific Data */
cmd.cmdidx = MMC_CMD_SEND_CSD;
cmd.resp_type = MMC_RSP_R2;
cmd.cmdarg = mmc->rca << 16;
err = mmc_send_cmd(mmc, &cmd, NULL);
/* Waiting for the ready status */
mmc_send_status(mmc, timeout);
mmc->csd[0] = cmd.response[0];
mmc->csd[1] = cmd.response[1];
mmc->csd[2] = cmd.response[2];
mmc->csd[3] = cmd.response[3];
int version = (cmd.response[0] >> 26) & 0xf;
switch (version) {
case 0:
mmc->version = MMC_VERSION_1_2;
break;
case 1:
mmc->version = MMC_VERSION_1_4;
break;
case 2:
mmc->version = MMC_VERSION_2_2;
break;
case 3:
mmc->version = MMC_VERSION_3;
break;
case 4:
mmc->version = MMC_VERSION_4;
break;
default:
mmc->version = MMC_VERSION_1_2;
break;
}
}
/* divide frequency by 10, since the mults are 10x bigger */
freq = fbase[(cmd.response[0] & 0x7)];
mult = multipliers[((cmd.response[0] >> 3) & 0xf)];
mmc->read_bl_len = 1 << ((cmd.response[1] >> 16) & 0xf);
if (IS_SD(mmc))
mmc->write_bl_len = mmc->read_bl_len;
else
mmc->write_bl_len = 1 << ((cmd.response[3] >> 22) & 0xf);
if (mmc->high_capacity) {
csize = (mmc->csd[1] & 0x3f) << 16
| (mmc->csd[2] & 0xffff0000) >> 16;
cmult = 8;
} else {
csize = (mmc->csd[1] & 0x3ff) << 2
| (mmc->csd[2] & 0xc0000000) >> 30;
cmult = (mmc->csd[2] & 0x00038000) >> 15;
}
mmc->capacity_user = (csize + 1) << (cmult + 2);
mmc->capacity_user *= mmc->read_bl_len;
mmc->capacity_boot = 0;
mmc->capacity_rpmb = 0;
for (i = 0; i < 4; i++)
mmc->capacity_gp[i] = 0;
if (mmc->read_bl_len > MMC_MAX_BLOCK_LEN)
mmc->read_bl_len = MMC_MAX_BLOCK_LEN;
if (mmc->write_bl_len > MMC_MAX_BLOCK_LEN)
mmc->write_bl_len = MMC_MAX_BLOCK_LEN;
if ((mmc->dsr_imp) && (0xffffffff != mmc->dsr)) {
cmd.cmdidx = MMC_CMD_SET_DSR;
cmd.cmdarg = (mmc->dsr & 0xffff) << 16;
cmd.resp_type = MMC_RSP_NONE;
if (mmc_send_cmd(mmc, &cmd, NULL))
printf("MMC: SET_DSR failed\n");
}
if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
cmd.cmdidx = MMC_CMD_SELECT_CARD;
cmd.cmdarg = mmc->rca << 16;
err = mmc_send_cmd(mmc, &cmd, NULL);
/*
* For SD, its erase group is always one sector
*/
mmc->erase_grp_size = 1;
mmc->part_config = MMCPART_NOAVAILABLE;
if (!IS_SD(mmc) && (mmc->version >= MMC_VERSION_4)) {
/* check ext_csd version and capacity */
err = mmc_send_ext_csd(mmc, ext_csd);
if (!err && (ext_csd[EXT_CSD_REV] >= 2)) {
/*
* According to the JEDEC Standard, the value of
* ext_csd's capacity is valid if the value is more
* than 2GB
*/
capacity = ext_csd[EXT_CSD_SEC_CNT] << 0
| ext_csd[EXT_CSD_SEC_CNT + 1] << 8
| ext_csd[EXT_CSD_SEC_CNT + 2] << 16
| ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
capacity *= MMC_MAX_BLOCK_LEN;
if ((capacity >> 20) > 2 * 1024)
mmc->capacity_user = capacity;
switch (ext_csd[EXT_CSD_REV]) {
case 1:
mmc->version = MMC_VERSION_4_1;
break;
case 2:
mmc->version = MMC_VERSION_4_2;
break;
case 3:
mmc->version = MMC_VERSION_4_3;
break;
case 5:
mmc->version = MMC_VERSION_4_41;
break;