Newer
Older
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
* testing the left edge, so it must be
* marginal, set it to -1
*/
if (right_edge[i] == delay_max + 1 &&
left_edge[i] != delay_max + 1)
right_edge[i] = -1;
}
}
break;
}
/* stop != 1 */
for (i = 0; i < per_dqs; i++) {
if (*bit_chk & 1) {
/*
* Remember a passing test as
* the right_edge.
*/
right_edge[i] = d;
} else {
if (d != 0) {
/*
* If a right edge has not
* been seen yet, then a future
* passing test will mark this
* edge as the left edge.
*/
if (right_edge[i] == delay_max + 1)
left_edge[i] = -(d + 1);
} else {
/*
* d = 0 failed, but it passed
* when testing the left edge,
* so it must be marginal, set
* it to -1
*/
if (right_edge[i] == delay_max + 1 &&
left_edge[i] != delay_max + 1)
right_edge[i] = -1;
/*
* If a right edge has not been
* seen yet, then a future
* passing test will mark this
* edge as the left edge.
*/
else if (right_edge[i] == delay_max + 1)
left_edge[i] = -(d + 1);
}
}
debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ",
__func__, __LINE__, d);
debug_cond(DLEVEL == 2,
"bit_chk_test=%i left_edge[%u]: %d ",
*bit_chk & 1, i, left_edge[i]);
debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
right_edge[i]);
*bit_chk = *bit_chk >> 1;
}
}
/* Check that all bits have a window */
for (i = 0; i < per_dqs; i++) {
debug_cond(DLEVEL == 2,
"%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
__func__, __LINE__, i, left_edge[i],
i, right_edge[i]);
if ((left_edge[i] == dqs_max + 1) ||
(right_edge[i] == dqs_max + 1))
return i + 1; /* FIXME: If we fail, retval > 0 */
}
return 0;
}
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
/**
* get_window_mid_index() - Find the best middle setting of DQ/DQS phase
* @write: Perform read (Stage 2) or write (Stage 3) calibration
* @left_edge: Left edge of the DQ/DQS phase
* @right_edge: Right edge of the DQ/DQS phase
* @mid_min: Best DQ/DQS phase middle setting
*
* Find index and value of the middle of the DQ/DQS working phase.
*/
static int get_window_mid_index(const int write, int *left_edge,
int *right_edge, int *mid_min)
{
const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
RW_MGR_MEM_DQ_PER_READ_DQS;
int i, mid, min_index;
/* Find middle of window for each DQ bit */
*mid_min = left_edge[0] - right_edge[0];
min_index = 0;
for (i = 1; i < per_dqs; i++) {
mid = left_edge[i] - right_edge[i];
if (mid < *mid_min) {
*mid_min = mid;
min_index = i;
}
}
/*
* -mid_min/2 represents the amount that we need to move DQS.
* If mid_min is odd and positive we'll need to add one to make
* sure the rounding in further calculations is correct (always
* bias to the right), so just add 1 for all positive values.
*/
if (*mid_min > 0)
(*mid_min)++;
*mid_min = *mid_min / 2;
debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
__func__, __LINE__, *mid_min, min_index);
return min_index;
}
/* per-bit deskew DQ and center */
static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
uint32_t use_read_test, uint32_t update_fom)
{
uint32_t p, min_index;
int i;
/*
* Store these as signed since there are comparisons with
* signed numbers.
*/
uint32_t bit_chk;
uint32_t sticky_bit_chk;
int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
int32_t mid;
int32_t orig_mid_min, mid_min;
int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
final_dqs_en;
int32_t dq_margin, dqs_margin;
uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
uint32_t addr;
int ret;
debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
start_dqs = readl(addr + (read_group << 2));
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
start_dqs_en = readl(addr + ((read_group << 2)
- IO_DQS_EN_DELAY_OFFSET));
/* set the left and right edge of each bit to an illegal value */
/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
sticky_bit_chk = 0;
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
left_edge[i] = IO_IO_IN_DELAY_MAX + 1;
right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
}
/* Search for the left edge of the window for each bit */
search_left_edge(0, rank_bgn, write_group, read_group, test_bgn,
&bit_chk, &sticky_bit_chk,
left_edge, right_edge, use_read_test);
/* Search for the right edge of the window for each bit */
ret = search_right_edge(0, rank_bgn, write_group, read_group,
start_dqs, start_dqs_en,
&bit_chk, &sticky_bit_chk,
left_edge, right_edge, use_read_test);
if (ret) {
* Restore delay chain settings before letting the loop
* in rw_mgr_mem_calibrate_vfifo to retry different
* dqs/ck relationships.
scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
scc_mgr_set_dqs_en_delay(read_group, start_dqs_en);
scc_mgr_load_dqs(read_group);
writel(0, &sdr_scc_mgr->update);
debug_cond(DLEVEL == 1,
"%s:%d vfifo_center: failed to find edge [%u]: %d %d",
__func__, __LINE__, i, left_edge[i], right_edge[i]);
if (use_read_test) {
set_failing_group_stage(read_group *
RW_MGR_MEM_DQ_PER_READ_DQS + i,
CAL_STAGE_VFIFO,
CAL_SUBSTAGE_VFIFO_CENTER);
set_failing_group_stage(read_group *
RW_MGR_MEM_DQ_PER_READ_DQS + i,
CAL_STAGE_VFIFO_AFTER_WRITES,
CAL_SUBSTAGE_VFIFO_CENTER);
return 0;
min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
/* Determine the amount we can change DQS (which is -mid_min) */
orig_mid_min = mid_min;
new_dqs = start_dqs - mid_min;
if (new_dqs > IO_DQS_IN_DELAY_MAX)
new_dqs = IO_DQS_IN_DELAY_MAX;
else if (new_dqs < 0)
new_dqs = 0;
mid_min = start_dqs - new_dqs;
debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
mid_min, new_dqs);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
else if (start_dqs_en - mid_min < 0)
mid_min += start_dqs_en - mid_min;
}
new_dqs = start_dqs - mid_min;
debug_cond(DLEVEL == 1,
"vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
start_dqs,
IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
new_dqs, mid_min);
/* Initialize data for export structures */
dqs_margin = IO_IO_IN_DELAY_MAX + 1;
dq_margin = IO_IO_IN_DELAY_MAX + 1;
/* add delay to bring centre of all DQ windows to the same "level" */
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
/* Use values before divide by 2 to reduce round off error */
shift_dq = (left_edge[i] - right_edge[i] -
(left_edge[min_index] - right_edge[min_index]))/2 +
(orig_mid_min - mid_min);
debug_cond(DLEVEL == 2,
"vfifo_center: before: shift_dq[%u]=%d\n",
i, shift_dq);
addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
temp_dq_in_delay1 = readl(addr + (p << 2));
temp_dq_in_delay2 = readl(addr + (i << 2));
if (shift_dq + temp_dq_in_delay1 > IO_IO_IN_DELAY_MAX)
shift_dq = IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
else if (shift_dq + temp_dq_in_delay1 < 0)
shift_dq = -temp_dq_in_delay1;
debug_cond(DLEVEL == 2,
"vfifo_center: after: shift_dq[%u]=%d\n",
i, shift_dq);
final_dq[i] = temp_dq_in_delay1 + shift_dq;
scc_mgr_set_dq_in_delay(p, final_dq[i]);
scc_mgr_load_dq(p);
debug_cond(DLEVEL == 2,
"vfifo_center: margin[%u]=[%d,%d]\n", i,
left_edge[i] - shift_dq + (-mid_min),
right_edge[i] + shift_dq - (-mid_min));
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
/* To determine values for export structures */
if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
dq_margin = left_edge[i] - shift_dq + (-mid_min);
if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
dqs_margin = right_edge[i] + shift_dq - (-mid_min);
}
final_dqs = new_dqs;
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
final_dqs_en = start_dqs_en - mid_min;
/* Move DQS-en */
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
scc_mgr_load_dqs(read_group);
}
/* Move DQS */
scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
scc_mgr_load_dqs(read_group);
debug_cond(DLEVEL == 2,
"%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
__func__, __LINE__, dq_margin, dqs_margin);
/*
* Do not remove this line as it makes sure all of our decisions
* have been applied. Apply the update bit.
*/
writel(0, &sdr_scc_mgr->update);
return (dq_margin >= 0) && (dqs_margin >= 0);
}
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
/**
* rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
* @rw_group: Read/Write Group
* @phase: DQ/DQS phase
*
* Because initially no communication ca be reliably performed with the memory
* device, the sequencer uses a guaranteed write mechanism to write data into
* the memory device.
*/
static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
const u32 phase)
{
int ret;
/* Set a particular DQ/DQS phase. */
scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
__func__, __LINE__, rw_group, phase);
/*
* Altera EMI_RM 2015.05.04 :: Figure 1-25
* Load up the patterns used by read calibration using the
* current DQDQS phase.
*/
rw_mgr_mem_calibrate_read_load_patterns(0, 1);
if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
return 0;
/*
* Altera EMI_RM 2015.05.04 :: Figure 1-26
* Back-to-Back reads of the patterns used for calibration.
*/
ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
if (ret)
debug_cond(DLEVEL == 1,
"%s:%d Guaranteed read test failed: g=%u p=%u\n",
__func__, __LINE__, rw_group, phase);
return ret;
}
/**
* rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
* @rw_group: Read/Write Group
* @test_bgn: Rank at which the test begins
*
* DQS enable calibration ensures reliable capture of the DQ signal without
* glitches on the DQS line.
*/
static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
const u32 test_bgn)
{
/*
* Altera EMI_RM 2015.05.04 :: Figure 1-27
* DQS and DQS Eanble Signal Relationships.
*/
Marek Vasut
committed
/* We start at zero, so have one less dq to devide among */
const u32 delay_step = IO_IO_IN_DELAY_MAX /
(RW_MGR_MEM_DQ_PER_READ_DQS - 1);
int ret;
Marek Vasut
committed
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
u32 i, p, d, r;
debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
/* Try different dq_in_delays since the DQ path is shorter than DQS. */
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
for (i = 0, p = test_bgn, d = 0;
i < RW_MGR_MEM_DQ_PER_READ_DQS;
i++, p++, d += delay_step) {
debug_cond(DLEVEL == 1,
"%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
__func__, __LINE__, rw_group, r, i, p, d);
scc_mgr_set_dq_in_delay(p, d);
scc_mgr_load_dq(p);
}
writel(0, &sdr_scc_mgr->update);
}
/*
* Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
* dq_in_delay values
*/
ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
Marek Vasut
committed
debug_cond(DLEVEL == 1,
"%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
__func__, __LINE__, rw_group, !ret);
Marek Vasut
committed
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
writel(0, &sdr_scc_mgr->update);
}
return ret;
}
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
/**
* rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
* @rw_group: Read/Write Group
* @test_bgn: Rank at which the test begins
* @use_read_test: Perform a read test
* @update_fom: Update FOM
*
* The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
* within a group.
*/
static int
rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
const int use_read_test,
const int update_fom)
{
int ret, grp_calibrated;
u32 rank_bgn, sr;
/*
* Altera EMI_RM 2015.05.04 :: Figure 1-28
* Read per-bit deskew can be done on a per shadow register basis.
*/
grp_calibrated = 1;
for (rank_bgn = 0, sr = 0;
rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
/* Check if this set of ranks should be skipped entirely. */
if (param->skip_shadow_regs[sr])
continue;
ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
rw_group, test_bgn,
use_read_test,
update_fom);
if (ret)
continue;
grp_calibrated = 0;
}
if (!grp_calibrated)
return -EIO;
return 0;
}
/**
* rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
* @rw_group: Read/Write Group
* @test_bgn: Rank at which the test begins
*
* Stage 1: Calibrate the read valid prediction FIFO.
*
* This function implements UniPHY calibration Stage 1, as explained in
* detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
* - read valid prediction will consist of finding:
* - DQS enable phase and DQS enable delay (DQS Enable Calibration)
* - DQS input phase and DQS input delay (DQ/DQS Centering)
* - we also do a per-bit deskew on the DQ lines.
*/
static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
uint32_t p, d;
uint32_t dtaps_per_ptap;
uint32_t failed_substage;
int ret;
debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
/* Update info for sims */
reg_file_set_group(rw_group);
reg_file_set_stage(CAL_STAGE_VFIFO);
reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
/* USER Determine number of delay taps for each phase tap. */
dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
for (d = 0; d <= dtaps_per_ptap; d += 2) {
/*
* In RLDRAMX we may be messing the delay of pins in
* the same write rw_group but outside of the current read
* the rw_group, but that's ok because we haven't calibrated
* output side yet.
*/
if (d > 0) {
scc_mgr_apply_group_all_out_delay_add_all_ranks(
rw_group, d);
for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
/* 1) Guaranteed Write */
ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
if (ret)
break;
/* 2) DQS Enable Calibration */
ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
test_bgn);
if (ret) {
failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
continue;
}
/* 3) Centering DQ/DQS */
* If doing read after write calibration, do not update
* FOM now. Do it then.
ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
test_bgn, 1, 0);
if (ret) {
failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
continue;
/* All done. */
goto cal_done_ok;
/* Calibration Stage 1 failed. */
set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
return 0;
/* Calibration Stage 1 completed OK. */
cal_done_ok:
/*
* Reset the delay chains back to zero if they have moved > 1
* (check for > 1 because loop will increase d even when pass in
* first case).
*/
if (d > 2)
scc_mgr_zero_group(rw_group, 1);
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
return 1;
}
/* VFIFO Calibration -- Read Deskew Calibration after write deskew */
static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
uint32_t test_bgn)
{
uint32_t rank_bgn, sr;
uint32_t grp_calibrated;
uint32_t write_group;
debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
/* update info for sims */
reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
write_group = read_group;
/* update info for sims */
reg_file_set_group(read_group);
grp_calibrated = 1;
/* Read per-bit deskew can be done on a per shadow register basis */
for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
/* Determine if this set of ranks should be skipped entirely */
if (!param->skip_shadow_regs[sr]) {
/* This is the last calibration round, update FOM here */
if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
write_group,
read_group,
test_bgn, 0,
1)) {
grp_calibrated = 0;
}
}
}
if (grp_calibrated == 0) {
set_failing_group_stage(write_group,
CAL_STAGE_VFIFO_AFTER_WRITES,
CAL_SUBSTAGE_VFIFO_CENTER);
return 0;
}
return 1;
}
/* Calibrate LFIFO to find smallest read latency */
static uint32_t rw_mgr_mem_calibrate_lfifo(void)
{
uint32_t found_one;
debug("%s:%d\n", __func__, __LINE__);
/* update info for sims */
reg_file_set_stage(CAL_STAGE_LFIFO);
reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
/* Load up the patterns used by read calibration for all ranks */
rw_mgr_mem_calibrate_read_load_patterns(0, 1);
found_one = 0;
do {
writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
__func__, __LINE__, gbl->curr_read_lat);
if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
NUM_READ_TESTS,
PASS_ALL_BITS,
break;
}
found_one = 1;
/* reduce read latency and see if things are working */
/* correctly */
gbl->curr_read_lat--;
} while (gbl->curr_read_lat > 0);
/* reset the fifos to get pointers to known state */
writel(0, &phy_mgr_cmd->fifo_reset);
if (found_one) {
/* add a fudge factor to the read latency that was determined */
gbl->curr_read_lat += 2;
writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
read_lat=%u\n", __func__, __LINE__,
gbl->curr_read_lat);
return 1;
} else {
set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
CAL_SUBSTAGE_READ_LATENCY);
debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
read_lat=%u\n", __func__, __LINE__,
gbl->curr_read_lat);
return 0;
}
}
/*
* issue write test command.
* two variants are provided. one that just tests a write pattern and
* another that tests datamask functionality.
*/
static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
uint32_t test_dm)
{
uint32_t mcc_instruction;
uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
ENABLE_SUPER_QUICK_CALIBRATION);
uint32_t rw_wl_nop_cycles;
uint32_t addr;
/*
* Set counter and jump addresses for the right
* number of NOP cycles.
* The number of supported NOP cycles can range from -1 to infinity
* Three different cases are handled:
*
* 1. For a number of NOP cycles greater than 0, the RW Mgr looping
* mechanism will be used to insert the right number of NOPs
*
* 2. For a number of NOP cycles equals to 0, the micro-instruction
* issuing the write command will jump straight to the
* micro-instruction that turns on DQS (for DDRx), or outputs write
* data (for RLD), skipping
* the NOP micro-instruction all together
*
* 3. A number of NOP cycles equal to -1 indicates that DQS must be
* turned on in the same micro-instruction that issues the write
* command. Then we need
* to directly jump to the micro-instruction that sends out the data
*
* NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
* (2 and 3). One jump-counter (0) is used to perform multiple
* write-read operations.
* one counter left to issue this command in "multiple-group" mode
*/
rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
if (rw_wl_nop_cycles == -1) {
/*
* CNTR 2 - We want to execute the special write operation that
* turns on DQS right away and then skip directly to the
* instruction that sends out the data. We set the counter to a
* large number so that the jump is always taken.
*/
writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
/* CNTR 3 - Not used */
if (test_dm) {
mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
} else {
mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
}
} else if (rw_wl_nop_cycles == 0) {
/*
* CNTR 2 - We want to skip the NOP operation and go straight
* to the DQS enable instruction. We set the counter to a large
* number so that the jump is always taken.
*/
writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
/* CNTR 3 - Not used */
if (test_dm) {
mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
} else {
mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
}
} else {
/*
* CNTR 2 - In this case we want to execute the next instruction
* and NOT take the jump. So we set the counter to 0. The jump
* address doesn't count.
*/
writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
/*
* CNTR 3 - Set the nop counter to the number of cycles we
* need to loop for, minus 1.
*/
writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
if (test_dm) {
mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
} else {
mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RESET_READ_DATAPATH_OFFSET);
if (quick_write_mode)
writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
/*
* CNTR 1 - This is used to ensure enough time elapses
* for read data to come back.
*/
writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
writel(mcc_instruction, addr + (group << 2));
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
}
/* Test writes, can check for a single bit pass or multiple bit pass */
static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
uint32_t *bit_chk, uint32_t all_ranks)
{
uint32_t r;
uint32_t correct_mask_vg;
uint32_t tmp_bit_chk;
uint32_t vg;
uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
uint32_t addr_rw_mgr;
uint32_t base_rw_mgr;
*bit_chk = param->write_correct_mask;
correct_mask_vg = param->write_correct_mask_vg;
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r]) {
/* request to skip the rank */
continue;
}
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
tmp_bit_chk = 0;
addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
/* reset the fifos to get pointers to known state */
writel(0, &phy_mgr_cmd->fifo_reset);
tmp_bit_chk = tmp_bit_chk <<
(RW_MGR_MEM_DQ_PER_WRITE_DQS /
RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
rw_mgr_mem_calibrate_write_test_issue(write_group *
RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
use_dm);
base_rw_mgr = readl(addr_rw_mgr);
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
if (vg == 0)
break;
}
*bit_chk &= tmp_bit_chk;
}
if (all_correct) {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
%u => %lu", write_group, use_dm,
*bit_chk, param->write_correct_mask,
(long unsigned int)(*bit_chk ==
param->write_correct_mask));
return *bit_chk == param->write_correct_mask;
} else {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
write_group, use_dm, *bit_chk);
debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
(long unsigned int)(*bit_chk != 0));
return *bit_chk != 0x00;
}
}
/*
* center all windows. do per-bit-deskew to possibly increase size of
* certain windows.
*/
static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
uint32_t write_group, uint32_t test_bgn)
{
uint32_t i, p, min_index;
int32_t d;
/*
* Store these as signed since there are comparisons with
* signed numbers.
*/
uint32_t bit_chk;
uint32_t sticky_bit_chk;
int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
int32_t mid;
int32_t mid_min, orig_mid_min;
int32_t new_dqs, start_dqs, shift_dq;
int32_t dq_margin, dqs_margin, dm_margin;
uint32_t temp_dq_out1_delay;
uint32_t addr;
int ret;
debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
dm_margin = 0;
addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
start_dqs = readl(addr +
(RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
/* per-bit deskew */
/*
* set the left and right edge of each bit to an illegal value
* use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
*/
sticky_bit_chk = 0;
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
}
/* Search for the left edge of the window for each bit */
search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
&bit_chk, &sticky_bit_chk,
left_edge, right_edge, 0);
/* Search for the right edge of the window for each bit */
ret = search_right_edge(1, rank_bgn, write_group, 0,
start_dqs, 0,
&bit_chk, &sticky_bit_chk,
left_edge, right_edge, 0);
if (ret) {
set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
CAL_SUBSTAGE_WRITES_CENTER);
return 0;
min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
/* Determine the amount we can change DQS (which is -mid_min) */
orig_mid_min = mid_min;
new_dqs = start_dqs;
mid_min = 0;
debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
/* Initialize data for export structures */
dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
dq_margin = IO_IO_OUT1_DELAY_MAX + 1;
/* add delay to bring centre of all DQ windows to the same "level" */
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
/* Use values before divide by 2 to reduce round off error */
shift_dq = (left_edge[i] - right_edge[i] -
(left_edge[min_index] - right_edge[min_index]))/2 +
(orig_mid_min - mid_min);
debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
[%u]=%d\n", __func__, __LINE__, i, shift_dq);
addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
temp_dq_out1_delay = readl(addr + (i << 2));
if (shift_dq + (int32_t)temp_dq_out1_delay >
(int32_t)IO_IO_OUT1_DELAY_MAX) {
shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
shift_dq = -(int32_t)temp_dq_out1_delay;
}
debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
i, shift_dq);
scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
scc_mgr_load_dq(i);
debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
left_edge[i] - shift_dq + (-mid_min),
right_edge[i] + shift_dq - (-mid_min));
/* To determine values for export structures */
if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
dq_margin = left_edge[i] - shift_dq + (-mid_min);
if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
dqs_margin = right_edge[i] + shift_dq - (-mid_min);
}
/* Move DQS */
scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
writel(0, &sdr_scc_mgr->update);
/* Centre DM */
debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
/*
* set the left and right edge of each bit to an illegal value,
* use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
*/
left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
int32_t win_best = 0;
/* Search for the/part of the window with DM shift */
for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
scc_mgr_apply_group_dm_out1_delay(d);
writel(0, &sdr_scc_mgr->update);
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
PASS_ALL_BITS, &bit_chk,
0)) {
/* USE Set current end of the window */
end_curr = -d;
/*
* If a starting edge of our window has not been seen
* this is our current start of the DM window.
*/
if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
bgn_curr = -d;
/*
* If current window is bigger than best seen.
* Set best seen to be current window.
*/
if ((end_curr-bgn_curr+1) > win_best) {
win_best = end_curr-bgn_curr+1;
bgn_best = bgn_curr;
end_best = end_curr;
}