Newer
Older
/*
* Copyright Altera Corporation (C) 2012-2015
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/sdram.h>
#include "sequencer.h"
#include "sequencer_auto.h"
#include "sequencer_auto_ac_init.h"
#include "sequencer_auto_inst_init.h"
#include "sequencer_defines.h"
static void scc_mgr_load_dqs_for_write_group(uint32_t write_group);
static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
static struct socfpga_sdr_reg_file *sdr_reg_file =
(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
static struct socfpga_data_mgr *data_mgr =
(struct socfpga_data_mgr *)(BASE_DATA_MGR);
#define DELTA_D 1
#define MGR_SELECT_MASK 0xf8000
/*
* In order to reduce ROM size, most of the selectable calibration steps are
* decided at compile time based on the user's calibration mode selection,
* as captured by the STATIC_CALIB_STEPS selection below.
*
* However, to support simulation-time selection of fast simulation mode, where
* we skip everything except the bare minimum, we need a few of the steps to
* be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the
* check, which is based on the rtl-supplied value, or we dynamically compute
* the value to use based on the dynamically-chosen calibration mode
*/
#define DLEVEL 0
#define STATIC_IN_RTL_SIM 0
#define STATIC_SKIP_DELAY_LOOPS 0
#define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
STATIC_SKIP_DELAY_LOOPS)
/* calibration steps requested by the rtl */
uint16_t dyn_calib_steps;
/*
* To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
* instead of static, we use boolean logic to select between
* non-skip and skip values
*
* The mask is set to include all bits when not-skipping, but is
* zero when skipping
*/
uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */
#define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
((non_skip_value) & skip_delay_mask)
struct gbl_type *gbl;
struct param_type *param;
uint32_t curr_shadow_reg;
static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
uint32_t write_group, uint32_t use_dm,
uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
static u32 sdr_get_addr(u32 *base)
{
u32 addr = (u32)base & MGR_SELECT_MASK;
switch (addr) {
case BASE_PHY_MGR:
addr = (((u32)base >> 8) & (1 << 6)) | ((u32)base & 0x3f) |
SDR_PHYGRP_PHYMGRGRP_ADDRESS;
break;
case BASE_RW_MGR:
addr = ((u32)base & 0x1fff) | SDR_PHYGRP_RWMGRGRP_ADDRESS;
break;
case BASE_DATA_MGR:
addr = ((u32)base & 0x7ff) | SDR_PHYGRP_DATAMGRGRP_ADDRESS;
break;
case BASE_SCC_MGR:
addr = ((u32)base & 0xfff) | SDR_PHYGRP_SCCGRP_ADDRESS;
break;
case BASE_REG_FILE:
addr = ((u32)base & 0x7ff) | SDR_PHYGRP_REGFILEGRP_ADDRESS;
break;
case BASE_MMR:
addr = ((u32)base & 0xfff) | SDR_CTRLGRP_ADDRESS;
break;
default:
return -1;
}
return addr;
}
static void set_failing_group_stage(uint32_t group, uint32_t stage,
uint32_t substage)
{
/*
* Only set the global stage if there was not been any other
* failing group
*/
if (gbl->error_stage == CAL_STAGE_NIL) {
gbl->error_substage = substage;
gbl->error_stage = stage;
gbl->error_group = group;
}
}
static void reg_file_set_group(uint32_t set_group)
{
u32 addr = (u32)&sdr_reg_file->cur_stage;
/* Read the current group and stage */
uint32_t cur_stage_group = readl(SOCFPGA_SDR_ADDRESS + addr);
/* Clear the group */
cur_stage_group &= 0x0000FFFF;
/* Set the group */
cur_stage_group |= (set_group << 16);
/* Write the data back */
writel(cur_stage_group, SOCFPGA_SDR_ADDRESS + addr);
}
static void reg_file_set_stage(uint32_t set_stage)
{
u32 addr = (u32)&sdr_reg_file->cur_stage;
/* Read the current group and stage */
uint32_t cur_stage_group = readl(SOCFPGA_SDR_ADDRESS + addr);
/* Clear the stage and substage */
cur_stage_group &= 0xFFFF0000;
/* Set the stage */
cur_stage_group |= (set_stage & 0x000000FF);
/* Write the data back */
writel(cur_stage_group, SOCFPGA_SDR_ADDRESS + addr);
}
static void reg_file_set_sub_stage(uint32_t set_sub_stage)
{
u32 addr = (u32)&sdr_reg_file->cur_stage;
/* Read the current group and stage */
uint32_t cur_stage_group = readl(SOCFPGA_SDR_ADDRESS + addr);
/* Clear the substage */
cur_stage_group &= 0xFFFF00FF;
/* Set the sub stage */
cur_stage_group |= ((set_sub_stage << 8) & 0x0000FF00);
/* Write the data back */
writel(cur_stage_group, SOCFPGA_SDR_ADDRESS + addr);
}
static void initialize(void)
{
u32 addr = (u32)&phy_mgr_cfg->mux_sel;
debug("%s:%d\n", __func__, __LINE__);
/* USER calibration has control over path to memory */
/*
* In Hard PHY this is a 2-bit control:
* 0: AFI Mux Select
* 1: DDIO Mux Select
*/
writel(0x3, SOCFPGA_SDR_ADDRESS + addr);
/* USER memory clock is not stable we begin initialization */
addr = (u32)&phy_mgr_cfg->reset_mem_stbl;
writel(0, SOCFPGA_SDR_ADDRESS + addr);
/* USER calibration status all set to zero */
addr = (u32)&phy_mgr_cfg->cal_status;
writel(0, SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&phy_mgr_cfg->cal_debug_info;
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
writel(0, SOCFPGA_SDR_ADDRESS + addr);
if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
param->read_correct_mask_vg = ((uint32_t)1 <<
(RW_MGR_MEM_DQ_PER_READ_DQS /
RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
param->write_correct_mask_vg = ((uint32_t)1 <<
(RW_MGR_MEM_DQ_PER_READ_DQS /
RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
param->read_correct_mask = ((uint32_t)1 <<
RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
param->write_correct_mask = ((uint32_t)1 <<
RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
param->dm_correct_mask = ((uint32_t)1 <<
(RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH))
- 1;
}
}
static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
{
uint32_t odt_mask_0 = 0;
uint32_t odt_mask_1 = 0;
uint32_t cs_and_odt_mask;
uint32_t addr;
if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
/*
* 1 Rank
* Read: ODT = 0
* Write: ODT = 1
*/
odt_mask_0 = 0x0;
odt_mask_1 = 0x1;
} else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
/* 2 Ranks */
if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
/* - Dual-Slot , Single-Rank
* (1 chip-select per DIMM)
* OR
* - RDIMM, 4 total CS (2 CS per DIMM)
* means 2 DIMM
* Since MEM_NUMBER_OF_RANKS is 2 they are
* both single rank
* with 2 CS each (special for RDIMM)
* Read: Turn on ODT on the opposite rank
* Write: Turn on ODT on all ranks
*/
odt_mask_0 = 0x3 & ~(1 << rank);
odt_mask_1 = 0x3;
} else {
/*
* USER - Single-Slot , Dual-rank DIMMs
* (2 chip-selects per DIMM)
* USER Read: Turn on ODT off on all ranks
* USER Write: Turn on ODT on active rank
*/
odt_mask_0 = 0x0;
odt_mask_1 = 0x3 & (1 << rank);
}
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
/* 4 Ranks
* Read:
* ----------+-----------------------+
* | |
* | ODT |
* Read From +-----------------------+
* Rank | 3 | 2 | 1 | 0 |
* ----------+-----+-----+-----+-----+
* 0 | 0 | 1 | 0 | 0 |
* 1 | 1 | 0 | 0 | 0 |
* 2 | 0 | 0 | 0 | 1 |
* 3 | 0 | 0 | 1 | 0 |
* ----------+-----+-----+-----+-----+
*
* Write:
* ----------+-----------------------+
* | |
* | ODT |
* Write To +-----------------------+
* Rank | 3 | 2 | 1 | 0 |
* ----------+-----+-----+-----+-----+
* 0 | 0 | 1 | 0 | 1 |
* 1 | 1 | 0 | 1 | 0 |
* 2 | 0 | 1 | 0 | 1 |
* 3 | 1 | 0 | 1 | 0 |
* ----------+-----+-----+-----+-----+
*/
switch (rank) {
case 0:
odt_mask_0 = 0x4;
odt_mask_1 = 0x5;
break;
case 1:
odt_mask_0 = 0x8;
odt_mask_1 = 0xA;
break;
case 2:
odt_mask_0 = 0x1;
odt_mask_1 = 0x5;
break;
case 3:
odt_mask_0 = 0x2;
odt_mask_1 = 0xA;
break;
}
}
} else {
odt_mask_0 = 0x0;
odt_mask_1 = 0x0;
}
cs_and_odt_mask =
(0xFF & ~(1 << rank)) |
((0xFF & odt_mask_0) << 8) |
((0xFF & odt_mask_1) << 16);
addr = sdr_get_addr((u32 *)RW_MGR_SET_CS_AND_ODT_MASK);
writel(cs_and_odt_mask, SOCFPGA_SDR_ADDRESS + addr);
}
static void scc_mgr_initialize(void)
{
u32 addr = sdr_get_addr((u32 *)SCC_MGR_HHP_RFILE);
/*
* Clear register file for HPS
* 16 (2^4) is the size of the full register file in the scc mgr:
* RFILE_DEPTH = log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
* MEM_IF_READ_DQS_WIDTH - 1) + 1;
*/
uint32_t i;
for (i = 0; i < 16; i++) {
debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
__func__, __LINE__, i);
writel(0, SOCFPGA_SDR_ADDRESS + addr + (i << 2));
}
}
static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group,
uint32_t delay)
{
u32 addr = sdr_get_addr((u32 *)SCC_MGR_DQS_IN_DELAY);
/* Load the setting in the SCC manager */
writel(delay, SOCFPGA_SDR_ADDRESS + addr + (read_group << 2));
}
static void scc_mgr_set_dqs_io_in_delay(uint32_t write_group,
uint32_t delay)
{
u32 addr = sdr_get_addr((u32 *)SCC_MGR_IO_IN_DELAY);
writel(delay, SOCFPGA_SDR_ADDRESS + addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
}
static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
{
u32 addr = sdr_get_addr((u32 *)SCC_MGR_DQS_EN_PHASE);
/* Load the setting in the SCC manager */
writel(phase, SOCFPGA_SDR_ADDRESS + addr + (read_group << 2));
}
static void scc_mgr_set_dqs_en_phase_all_ranks(uint32_t read_group,
uint32_t phase)
{
uint32_t r;
uint32_t update_scan_chains;
uint32_t addr;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
/*
* USER although the h/w doesn't support different phases per
* shadow register, for simplicity our scc manager modeling
* keeps different phase settings per shadow reg, and it's
* important for us to keep them in sync to match h/w.
* for efficiency, the scan chain update should occur only
* once to sr0.
*/
update_scan_chains = (r == 0) ? 1 : 0;
scc_mgr_set_dqs_en_phase(read_group, phase);
if (update_scan_chains) {
addr = (u32)&sdr_scc_mgr->dqs_ena;
writel(read_group, SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_scc_mgr->update;
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
writel(0, SOCFPGA_SDR_ADDRESS + addr);
}
}
}
static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group,
uint32_t phase)
{
u32 addr = sdr_get_addr((u32 *)SCC_MGR_DQDQS_OUT_PHASE);
/* Load the setting in the SCC manager */
writel(phase, SOCFPGA_SDR_ADDRESS + addr + (write_group << 2));
}
static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
uint32_t phase)
{
uint32_t r;
uint32_t update_scan_chains;
uint32_t addr;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
/*
* USER although the h/w doesn't support different phases per
* shadow register, for simplicity our scc manager modeling
* keeps different phase settings per shadow reg, and it's
* important for us to keep them in sync to match h/w.
* for efficiency, the scan chain update should occur only
* once to sr0.
*/
update_scan_chains = (r == 0) ? 1 : 0;
scc_mgr_set_dqdqs_output_phase(write_group, phase);
if (update_scan_chains) {
addr = (u32)&sdr_scc_mgr->dqs_ena;
writel(write_group, SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_scc_mgr->update;
writel(0, SOCFPGA_SDR_ADDRESS + addr);
}
}
}
static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
{
uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_DQS_EN_DELAY);
/* Load the setting in the SCC manager */
writel(delay + IO_DQS_EN_DELAY_OFFSET, SOCFPGA_SDR_ADDRESS + addr +
(read_group << 2));
}
static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
uint32_t delay)
{
uint32_t r;
uint32_t addr;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
scc_mgr_set_dqs_en_delay(read_group, delay);
addr = (u32)&sdr_scc_mgr->dqs_ena;
writel(read_group, SOCFPGA_SDR_ADDRESS + addr);
/*
* In shadow register mode, the T11 settings are stored in
* registers in the core, which are updated by the DQS_ENA
* signals. Not issuing the SCC_MGR_UPD command allows us to
* save lots of rank switching overhead, by calling
* select_shadow_regs_for_update with update_scan_chains
* set to 0.
*/
addr = (u32)&sdr_scc_mgr->update;
writel(0, SOCFPGA_SDR_ADDRESS + addr);
}
/*
* In shadow register mode, the T11 settings are stored in
* registers in the core, which are updated by the DQS_ENA
* signals. Not issuing the SCC_MGR_UPD command allows us to
* save lots of rank switching overhead, by calling
* select_shadow_regs_for_update with update_scan_chains
* set to 0.
*/
addr = (u32)&sdr_scc_mgr->update;
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
writel(0, SOCFPGA_SDR_ADDRESS + addr);
}
static void scc_mgr_set_oct_out1_delay(uint32_t write_group, uint32_t delay)
{
uint32_t read_group;
uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_OCT_OUT1_DELAY);
/*
* Load the setting in the SCC manager
* Although OCT affects only write data, the OCT delay is controlled
* by the DQS logic block which is instantiated once per read group.
* For protocols where a write group consists of multiple read groups,
* the setting must be set multiple times.
*/
for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
writel(delay, SOCFPGA_SDR_ADDRESS + addr + (read_group << 2));
}
static void scc_mgr_set_dq_out1_delay(uint32_t write_group,
uint32_t dq_in_group, uint32_t delay)
{
uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
/* Load the setting in the SCC manager */
writel(delay, SOCFPGA_SDR_ADDRESS + addr + (dq_in_group << 2));
}
static void scc_mgr_set_dq_in_delay(uint32_t write_group,
uint32_t dq_in_group, uint32_t delay)
{
uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_IN_DELAY);
/* Load the setting in the SCC manager */
writel(delay, SOCFPGA_SDR_ADDRESS + addr + (dq_in_group << 2));
}
static void scc_mgr_set_hhp_extras(void)
{
/*
* Load the fixed setting in the SCC manager
* bits: 0:0 = 1'b1 - dqs bypass
* bits: 1:1 = 1'b1 - dq bypass
* bits: 4:2 = 3'b001 - rfifo_mode
* bits: 6:5 = 2'b01 - rfifo clock_select
* bits: 7:7 = 1'b0 - separate gating from ungating setting
* bits: 8:8 = 1'b0 - separate OE from Output delay setting
*/
uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0);
uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_HHP_GLOBALS);
writel(value, SOCFPGA_SDR_ADDRESS + addr + SCC_MGR_HHP_EXTRAS_OFFSET);
}
static void scc_mgr_set_dqs_out1_delay(uint32_t write_group,
uint32_t delay)
{
uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
/* Load the setting in the SCC manager */
writel(delay, SOCFPGA_SDR_ADDRESS + addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
}
static void scc_mgr_set_dm_out1_delay(uint32_t write_group,
uint32_t dm, uint32_t delay)
{
uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
/* Load the setting in the SCC manager */
writel(delay, SOCFPGA_SDR_ADDRESS + addr +
((RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm) << 2));
}
/*
* USER Zero all DQS config
* TODO: maybe rename to scc_mgr_zero_dqs_config (or something)
*/
static void scc_mgr_zero_all(void)
{
uint32_t i, r;
uint32_t addr;
/*
* USER Zero all DQS config settings, across all groups and all
* shadow registers
*/
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
NUM_RANKS_PER_SHADOW_REG) {
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
/*
* The phases actually don't exist on a per-rank basis,
* but there's no harm updating them several times, so
* let's keep the code simple.
*/
scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
scc_mgr_set_dqs_en_phase(i, 0);
scc_mgr_set_dqs_en_delay(i, 0);
}
for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
scc_mgr_set_dqdqs_output_phase(i, 0);
/* av/cv don't have out2 */
scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
}
}
/* multicast to all DQS group enables */
addr = (u32)&sdr_scc_mgr->dqs_ena;
writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_scc_mgr->update;
writel(0, SOCFPGA_SDR_ADDRESS + addr);
}
static void scc_set_bypass_mode(uint32_t write_group, uint32_t mode)
{
uint32_t addr;
/* mode = 0 : Do NOT bypass - Half Rate Mode */
/* mode = 1 : Bypass - Full Rate Mode */
/* only need to set once for all groups, pins, dq, dqs, dm */
if (write_group == 0) {
debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", __func__,
__LINE__);
scc_mgr_set_hhp_extras();
debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
__func__, __LINE__);
}
/* multicast to all DQ enables */
addr = (u32)&sdr_scc_mgr->dq_ena;
writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_scc_mgr->dm_ena;
writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
/* update current DQS IO enable */
addr = (u32)&sdr_scc_mgr->dqs_io_ena;
writel(0, SOCFPGA_SDR_ADDRESS + addr);
/* update the DQS logic */
addr = (u32)&sdr_scc_mgr->dqs_ena;
writel(write_group, SOCFPGA_SDR_ADDRESS + addr);
/* hit update */
addr = (u32)&sdr_scc_mgr->update;
writel(0, SOCFPGA_SDR_ADDRESS + addr);
}
static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin,
int32_t out_only)
{
uint32_t i, r;
uint32_t addr;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
NUM_RANKS_PER_SHADOW_REG) {
/* Zero all DQ config settings */
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
scc_mgr_set_dq_out1_delay(write_group, i, 0);
if (!out_only)
scc_mgr_set_dq_in_delay(write_group, i, 0);
}
/* multicast to all DQ enables */
addr = (u32)&sdr_scc_mgr->dq_ena;
writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
/* Zero all DM config settings */
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
scc_mgr_set_dm_out1_delay(write_group, i, 0);
}
/* multicast to all DM enables */
addr = (u32)&sdr_scc_mgr->dm_ena;
writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
/* zero all DQS io settings */
if (!out_only)
scc_mgr_set_dqs_io_in_delay(write_group, 0);
/* av/cv don't have out2 */
scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE);
scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
scc_mgr_load_dqs_for_write_group(write_group);
/* multicast to all DQS IO enables (only 1) */
addr = (u32)&sdr_scc_mgr->dqs_io_ena;
writel(0, SOCFPGA_SDR_ADDRESS + addr);
/* hit update to zero everything */
addr = (u32)&sdr_scc_mgr->update;
writel(0, SOCFPGA_SDR_ADDRESS + addr);
}
}
/* load up dqs config settings */
static void scc_mgr_load_dqs(uint32_t dqs)
{
uint32_t addr = (u32)&sdr_scc_mgr->dqs_ena;
writel(dqs, SOCFPGA_SDR_ADDRESS + addr);
}
static void scc_mgr_load_dqs_for_write_group(uint32_t write_group)
{
uint32_t read_group;
uint32_t addr = (u32)&sdr_scc_mgr->dqs_ena;
/*
* Although OCT affects only write data, the OCT delay is controlled
* by the DQS logic block which is instantiated once per read group.
* For protocols where a write group consists of multiple read groups,
* the setting must be scanned multiple times.
*/
for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
writel(read_group, SOCFPGA_SDR_ADDRESS + addr);
}
/* load up dqs io config settings */
static void scc_mgr_load_dqs_io(void)
{
uint32_t addr = (u32)&sdr_scc_mgr->dqs_io_ena;
writel(0, SOCFPGA_SDR_ADDRESS + addr);
}
/* load up dq config settings */
static void scc_mgr_load_dq(uint32_t dq_in_group)
{
uint32_t addr = (u32)&sdr_scc_mgr->dq_ena;
writel(dq_in_group, SOCFPGA_SDR_ADDRESS + addr);
}
/* load up dm config settings */
static void scc_mgr_load_dm(uint32_t dm)
{
uint32_t addr = (u32)&sdr_scc_mgr->dm_ena;
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
writel(dm, SOCFPGA_SDR_ADDRESS + addr);
}
/*
* apply and load a particular input delay for the DQ pins in a group
* group_bgn is the index of the first dq pin (in the write group)
*/
static void scc_mgr_apply_group_dq_in_delay(uint32_t write_group,
uint32_t group_bgn, uint32_t delay)
{
uint32_t i, p;
for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
scc_mgr_set_dq_in_delay(write_group, p, delay);
scc_mgr_load_dq(p);
}
}
/* apply and load a particular output delay for the DQ pins in a group */
static void scc_mgr_apply_group_dq_out1_delay(uint32_t write_group,
uint32_t group_bgn,
uint32_t delay1)
{
uint32_t i, p;
for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
scc_mgr_set_dq_out1_delay(write_group, i, delay1);
scc_mgr_load_dq(i);
}
}
/* apply and load a particular output delay for the DM pins in a group */
static void scc_mgr_apply_group_dm_out1_delay(uint32_t write_group,
uint32_t delay1)
{
uint32_t i;
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
scc_mgr_set_dm_out1_delay(write_group, i, delay1);
scc_mgr_load_dm(i);
}
}
/* apply and load delay on both DQS and OCT out1 */
static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
uint32_t delay)
{
scc_mgr_set_dqs_out1_delay(write_group, delay);
scc_mgr_load_dqs_io();
scc_mgr_set_oct_out1_delay(write_group, delay);
scc_mgr_load_dqs_for_write_group(write_group);
}
/* apply a delay to the entire output side: DQ, DM, DQS, OCT */
static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group,
uint32_t group_bgn,
uint32_t delay)
{
uint32_t i, p, new_delay;
/* dq shift */
for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
new_delay = READ_SCC_DQ_OUT2_DELAY;
new_delay += delay;
if (new_delay > IO_IO_OUT2_DELAY_MAX) {
debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\
%u > %lu => %lu", __func__, __LINE__,
write_group, group_bgn, delay, i, p, new_delay,
(long unsigned int)IO_IO_OUT2_DELAY_MAX,
(long unsigned int)IO_IO_OUT2_DELAY_MAX);
new_delay = IO_IO_OUT2_DELAY_MAX;
}
scc_mgr_load_dq(i);
}
/* dm shift */
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
new_delay = READ_SCC_DM_IO_OUT2_DELAY;
new_delay += delay;
if (new_delay > IO_IO_OUT2_DELAY_MAX) {
debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\
%u > %lu => %lu\n", __func__, __LINE__,
write_group, group_bgn, delay, i, new_delay,
(long unsigned int)IO_IO_OUT2_DELAY_MAX,
(long unsigned int)IO_IO_OUT2_DELAY_MAX);
new_delay = IO_IO_OUT2_DELAY_MAX;
}
scc_mgr_load_dm(i);
}
/* dqs shift */
new_delay = READ_SCC_DQS_IO_OUT2_DELAY;
new_delay += delay;
if (new_delay > IO_IO_OUT2_DELAY_MAX) {
debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
" adding %u to OUT1\n", __func__, __LINE__,
write_group, group_bgn, delay, new_delay,
IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
new_delay - IO_IO_OUT2_DELAY_MAX);
scc_mgr_set_dqs_out1_delay(write_group, new_delay -
IO_IO_OUT2_DELAY_MAX);
new_delay = IO_IO_OUT2_DELAY_MAX;
}
scc_mgr_load_dqs_io();
/* oct shift */
new_delay = READ_SCC_OCT_OUT2_DELAY;
new_delay += delay;
if (new_delay > IO_IO_OUT2_DELAY_MAX) {
debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
" adding %u to OUT1\n", __func__, __LINE__,
write_group, group_bgn, delay, new_delay,
IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
new_delay - IO_IO_OUT2_DELAY_MAX);
scc_mgr_set_oct_out1_delay(write_group, new_delay -
IO_IO_OUT2_DELAY_MAX);
new_delay = IO_IO_OUT2_DELAY_MAX;
}
scc_mgr_load_dqs_for_write_group(write_group);
}
/*
* USER apply a delay to the entire output side (DQ, DM, DQS, OCT)
* and to all ranks
*/
static void scc_mgr_apply_group_all_out_delay_add_all_ranks(
uint32_t write_group, uint32_t group_bgn, uint32_t delay)
{
uint32_t r;
uint32_t addr = (u32)&sdr_scc_mgr->update;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
scc_mgr_apply_group_all_out_delay_add(write_group,
group_bgn, delay);
writel(0, SOCFPGA_SDR_ADDRESS + addr);
}
}
/* optimization used to recover some slots in ddr3 inst_rom */
/* could be applied to other protocols if we wanted to */
static void set_jump_as_return(void)
{
uint32_t addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
/*
* to save space, we replace return with jump to special shared
* RETURN instruction so we set the counter to large value so that
* we always jump
*/
writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
writel(RW_MGR_RETURN, SOCFPGA_SDR_ADDRESS + addr);
}
/*
* should always use constants as argument to ensure all computations are
* performed at compile time
*/
static void delay_for_n_mem_clocks(const uint32_t clocks)
{
uint32_t afi_clocks;
uint8_t inner = 0;
uint8_t outer = 0;
uint16_t c_loop = 0;
uint32_t addr;
debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
/* scale (rounding up) to get afi clocks */
/*
* Note, we don't bother accounting for being off a little bit
* because of a few extra instructions in outer loops
* Note, the loops have a test at the end, and do the test before
* the decrement, and so always perform the loop
* 1 time more than the counter value
*/
if (afi_clocks == 0) {
;
} else if (afi_clocks <= 0x100) {
inner = afi_clocks-1;
outer = 0;
c_loop = 0;
} else if (afi_clocks <= 0x10000) {
inner = 0xff;
outer = (afi_clocks-1) >> 8;
c_loop = 0;
} else {
inner = 0xff;
outer = 0xff;
c_loop = (afi_clocks-1) >> 16;
}
/*
* rom instructions are structured as follows:
*
* IDLE_LOOP2: jnz cntr0, TARGET_A
* IDLE_LOOP1: jnz cntr1, TARGET_B
* return
*
* so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
* TARGET_B is set to IDLE_LOOP2 as well
*
* if we have no outer loop, though, then we can use IDLE_LOOP1 only,
* and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
*
* a little confusing, but it helps save precious space in the inst_rom
* and sequencer rom and keeps the delays more accurate and reduces
* overhead
*/
if (afi_clocks <= 0x100) {
addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
writel(RW_MGR_IDLE_LOOP1, SOCFPGA_SDR_ADDRESS + addr);
addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
writel(RW_MGR_IDLE_LOOP1, SOCFPGA_SDR_ADDRESS + addr);
} else {
addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr);
/* hack to get around compiler not being smart enough */
if (afi_clocks <= 0x10000) {
/* only need to run once */
addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr);
} else {
do {
addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr);
} while (c_loop-- != 0);
}
}
debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
}
static void rw_mgr_mem_initialize(void)
{
uint32_t r;
uint32_t addr;
debug("%s:%d\n", __func__, __LINE__);
/* The reset / cke part of initialization is broadcasted to all ranks */
addr = sdr_get_addr((u32 *)RW_MGR_SET_CS_AND_ODT_MASK);
writel(RW_MGR_RANK_ALL, SOCFPGA_SDR_ADDRESS + addr);
/*
* Here's how you load register for a loop
* Counters are located @ 0x800
* Jump address are located @ 0xC00
* For both, registers 0 to 3 are selected using bits 3 and 2, like
* in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
* I know this ain't pretty, but Avalon bus throws away the 2 least
* significant bits
*/
/* start with memory RESET activated */
/* tINIT = 200us */
/*
* 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
* If a and b are the number of iteration in 2 nested loops
* it takes the following number of cycles to complete the operation:
* number_of_cycles = ((2 + n) * a + 2) * b
* where n is the number of instruction in the inner loop
* One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
* b = 6A
*/
/* Load counters */
addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL),
SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL),
SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_mgr_regs->load_cntr2;
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL),
SOCFPGA_SDR_ADDRESS + addr);
/* Load jump address */
addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add2;
writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
/* Execute count instruction */
addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
/* indicate that memory is stable */
addr = (u32)&phy_mgr_cfg->reset_mem_stbl;
writel(1, SOCFPGA_SDR_ADDRESS + addr);
/*
* transition the RESET to high
* Wait for 500us
*/
/*
* 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
* If a and b are the number of iteration in 2 nested loops
* it takes the following number of cycles to complete the operation
* number_of_cycles = ((2 + n) * a + 2) * b
* where n is the number of instruction in the inner loop
* One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
* b = FF
*/
/* Load counters */
addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL),
SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL),
SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_mgr_regs->load_cntr2;
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL),
SOCFPGA_SDR_ADDRESS + addr);
/* Load jump address */
addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add2;
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
/* bring up clock enable */
/* tXRP < 250 ck cycles */
delay_for_n_mem_clocks(250);
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
if (param->skip_ranks[r]) {
/* request to skip the rank */
continue;
}
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
/*
* USER Use Mirror-ed commands for odd ranks if address
* mirrorring is on
*/
if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
set_jump_as_return();
addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
writel(RW_MGR_MRS2_MIRR, SOCFPGA_SDR_ADDRESS + addr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS3_MIRR, SOCFPGA_SDR_ADDRESS + addr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS1_MIRR, SOCFPGA_SDR_ADDRESS + addr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS0_DLL_RESET_MIRR, SOCFPGA_SDR_ADDRESS + addr);
} else {
set_jump_as_return();
addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
writel(RW_MGR_MRS2, SOCFPGA_SDR_ADDRESS + addr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS3, SOCFPGA_SDR_ADDRESS + addr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS1, SOCFPGA_SDR_ADDRESS + addr);
set_jump_as_return();
writel(RW_MGR_MRS0_DLL_RESET, SOCFPGA_SDR_ADDRESS + addr);
}
set_jump_as_return();
addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
writel(RW_MGR_ZQCL, SOCFPGA_SDR_ADDRESS + addr);
/* tZQinit = tDLLK = 512 ck cycles */
delay_for_n_mem_clocks(512);
}
}
/*
* At the end of calibration we have to program the user settings in, and
* USER hand off the memory to the user.
*/
static void rw_mgr_mem_handoff(void)
{
uint32_t r;
uint32_t addr;
debug("%s:%d\n", __func__, __LINE__);
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
if (param->skip_ranks[r])
/* request to skip the rank */
continue;
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
/* precharge all banks ... */
addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
writel(RW_MGR_PRECHARGE_ALL, SOCFPGA_SDR_ADDRESS + addr);
/* load up MR settings specified by user */
/*
* Use Mirror-ed commands for odd ranks if address
* mirrorring is on
*/
addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
set_jump_as_return();
writel(RW_MGR_MRS2_MIRR, SOCFPGA_SDR_ADDRESS + addr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS3_MIRR, SOCFPGA_SDR_ADDRESS + addr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS1_MIRR, SOCFPGA_SDR_ADDRESS + addr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS0_USER_MIRR, SOCFPGA_SDR_ADDRESS + addr);
} else {
set_jump_as_return();
writel(RW_MGR_MRS2, SOCFPGA_SDR_ADDRESS + addr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS3, SOCFPGA_SDR_ADDRESS + addr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS1, SOCFPGA_SDR_ADDRESS + addr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS0_USER, SOCFPGA_SDR_ADDRESS + addr);
}
/*
* USER need to wait tMOD (12CK or 15ns) time before issuing
* other commands, but we will have plenty of NIOS cycles before
* actual handoff so its okay.
*/
}
}
/*
* performs a guaranteed read on the patterns we are going to use during a
* read test to ensure memory works
*/
static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
uint32_t all_ranks)
{
uint32_t r, vg;
uint32_t correct_mask_vg;
uint32_t tmp_bit_chk;
uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
uint32_t addr;
uint32_t base_rw_mgr;
*bit_chk = param->read_correct_mask;
correct_mask_vg = param->read_correct_mask_vg;
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r])
/* request to skip the rank */
continue;
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
/* Load up a constant bursts of read commands */
addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
writel(0x20, SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
writel(RW_MGR_GUARANTEED_READ, SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
writel(0x20, SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
writel(RW_MGR_GUARANTEED_READ_CONT, SOCFPGA_SDR_ADDRESS + addr);
tmp_bit_chk = 0;
for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
/* reset the fifos to get pointers to known state */
addr = (u32)&phy_mgr_cmd->fifo_reset;
writel(0, SOCFPGA_SDR_ADDRESS + addr);
addr = sdr_get_addr((u32 *)RW_MGR_RESET_READ_DATAPATH);
writel(0, SOCFPGA_SDR_ADDRESS + addr);
tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
writel(RW_MGR_GUARANTEED_READ, SOCFPGA_SDR_ADDRESS + addr +
((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
vg) << 2));
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
base_rw_mgr = readl(SOCFPGA_SDR_ADDRESS + addr);
tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
if (vg == 0)
break;
}
*bit_chk &= tmp_bit_chk;
}
addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
writel(RW_MGR_CLEAR_DQS_ENABLE, SOCFPGA_SDR_ADDRESS + addr + (group << 2));
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
%lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
(long unsigned int)(*bit_chk == param->read_correct_mask));
return *bit_chk == param->read_correct_mask;
}
static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
(uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
{
return rw_mgr_mem_calibrate_read_test_patterns(0, group,
num_tries, bit_chk, 1);
}
/* load up the patterns we are going to use during a read test */
static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
uint32_t all_ranks)
{
uint32_t r;
uint32_t addr;
uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
debug("%s:%d\n", __func__, __LINE__);
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r])
/* request to skip the rank */
continue;
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
/* Load up a constant bursts */
addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
writel(0x20, SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
writel(RW_MGR_GUARANTEED_WRITE_WAIT0, SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
writel(0x20, SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
writel(RW_MGR_GUARANTEED_WRITE_WAIT1, SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_mgr_regs->load_cntr2;
writel(0x04, SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add2;
writel(RW_MGR_GUARANTEED_WRITE_WAIT2, SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_mgr_regs->load_cntr3;
writel(0x04, SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add3;
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
writel(RW_MGR_GUARANTEED_WRITE_WAIT3, SOCFPGA_SDR_ADDRESS + addr);
addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
writel(RW_MGR_GUARANTEED_WRITE, SOCFPGA_SDR_ADDRESS + addr);
}
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
}
/*
* try a read and see if it returns correct data back. has dummy reads
* inserted into the mix used to align dqs enable. has more thorough checks
* than the regular read test.
*/
static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
uint32_t all_groups, uint32_t all_ranks)
{
uint32_t r, vg;
uint32_t correct_mask_vg;
uint32_t tmp_bit_chk;
uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
uint32_t addr;
uint32_t base_rw_mgr;
*bit_chk = param->read_correct_mask;
correct_mask_vg = param->read_correct_mask_vg;
uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r])
/* request to skip the rank */
continue;
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
writel(0x10, SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
writel(RW_MGR_READ_B2B_WAIT1, SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_mgr_regs->load_cntr2;
writel(0x10, SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add2;
writel(RW_MGR_READ_B2B_WAIT2, SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
if (quick_read_mode)
writel(0x1, SOCFPGA_SDR_ADDRESS + addr);
/* need at least two (1+1) reads to capture failures */
else if (all_groups)
writel(0x06, SOCFPGA_SDR_ADDRESS + addr);
else
writel(0x32, SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
writel(RW_MGR_READ_B2B, SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_mgr_regs->load_cntr3;
if (all_groups)
writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
SOCFPGA_SDR_ADDRESS + addr);
else
writel(0x0, SOCFPGA_SDR_ADDRESS + addr);
addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add3;
writel(RW_MGR_READ_B2B, SOCFPGA_SDR_ADDRESS + addr);
tmp_bit_chk = 0;
for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
/* reset the fifos to get pointers to known state */
addr = (u32)&phy_mgr_cmd->fifo_reset;
writel(0, SOCFPGA_SDR_ADDRESS + addr);
addr = sdr_get_addr((u32 *)RW_MGR_RESET_READ_DATAPATH);
writel(0, SOCFPGA_SDR_ADDRESS + addr);
tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
addr = sdr_get_addr((u32 *)(all_groups ? RW_MGR_RUN_ALL_GROUPS :
RW_MGR_RUN_SINGLE_GROUP));
writel(RW_MGR_READ_B2B, SOCFPGA_SDR_ADDRESS + addr +
((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
vg) << 2));
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
base_rw_mgr = readl(SOCFPGA_SDR_ADDRESS + addr);
tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
if (vg == 0)
break;
}
*bit_chk &= tmp_bit_chk;
}
addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
writel(RW_MGR_CLEAR_DQS_ENABLE, SOCFPGA_SDR_ADDRESS + addr + (group << 2));
if (all_correct) {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
(%u == %u) => %lu", __func__, __LINE__, group,
all_groups, *bit_chk, param->read_correct_mask,
(long unsigned int)(*bit_chk ==
param->read_correct_mask));
return *bit_chk == param->read_correct_mask;
} else {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
(%u != %lu) => %lu\n", __func__, __LINE__,
group, all_groups, *bit_chk, (long unsigned int)0,
(long unsigned int)(*bit_chk != 0x00));
return *bit_chk != 0x00;
}
}
static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
uint32_t all_groups)
{
return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
bit_chk, all_groups, 1);
}
static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
{
uint32_t addr = (u32)&phy_mgr_cmd->inc_vfifo_hard_phy;
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
writel(grp, SOCFPGA_SDR_ADDRESS + addr);
(*v)++;
}
static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
{
uint32_t i;
for (i = 0; i < VFIFO_SIZE-1; i++)
rw_mgr_incr_vfifo(grp, v);
}
static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
{
uint32_t v;
uint32_t fail_cnt = 0;
uint32_t test_status;
for (v = 0; v < VFIFO_SIZE; ) {
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
__func__, __LINE__, v);
test_status = rw_mgr_mem_calibrate_read_test_all_ranks
(grp, 1, PASS_ONE_BIT, bit_chk, 0);
if (!test_status) {
fail_cnt++;
if (fail_cnt == 2)
break;
}
/* fiddle with FIFO */
rw_mgr_incr_vfifo(grp, &v);
}
if (v >= VFIFO_SIZE) {
/* no failing read found!! Something must have gone wrong */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
__func__, __LINE__);
return 0;
} else {
return v;
}
}
static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
uint32_t dtaps_per_ptap, uint32_t *work_bgn,
uint32_t *v, uint32_t *d, uint32_t *p,
uint32_t *i, uint32_t *max_working_cnt)
{
uint32_t found_begin = 0;
uint32_t tmp_delay = 0;
uint32_t test_status;
for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
*work_bgn = tmp_delay;
scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
IO_DELAY_PER_OPA_TAP) {
scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
test_status =
rw_mgr_mem_calibrate_read_test_all_ranks
(*grp, 1, PASS_ONE_BIT, bit_chk, 0);
if (test_status) {
*max_working_cnt = 1;
found_begin = 1;
break;
}
}
if (found_begin)
break;
if (*p > IO_DQS_EN_PHASE_MAX)
/* fiddle with FIFO */
rw_mgr_incr_vfifo(*grp, v);
}
if (found_begin)
break;
}
if (*i >= VFIFO_SIZE) {
/* cannot find working solution */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
ptap/dtap\n", __func__, __LINE__);
return 0;
} else {
return 1;
}
}
static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
uint32_t *work_bgn, uint32_t *v, uint32_t *d,
uint32_t *p, uint32_t *max_working_cnt)
{
uint32_t found_begin = 0;
uint32_t tmp_delay;
/* Special case code for backing up a phase */
if (*p == 0) {
*p = IO_DQS_EN_PHASE_MAX;
rw_mgr_decr_vfifo(*grp, v);
} else {
(*p)--;
}
tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
PASS_ONE_BIT,
bit_chk, 0)) {
found_begin = 1;
*work_bgn = tmp_delay;
break;
}
}
/* We have found a working dtap before the ptap found above */
if (found_begin == 1)
(*max_working_cnt)++;
/*
* Restore VFIFO to old state before we decremented it
* (if needed).
*/
(*p)++;
if (*p > IO_DQS_EN_PHASE_MAX) {
*p = 0;
rw_mgr_incr_vfifo(*grp, v);
}
scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
}
static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
uint32_t *work_bgn, uint32_t *v, uint32_t *d,
uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
uint32_t *work_end)
{
uint32_t found_end = 0;
(*p)++;
*work_end += IO_DELAY_PER_OPA_TAP;
if (*p > IO_DQS_EN_PHASE_MAX) {
/* fiddle with FIFO */
*p = 0;
rw_mgr_incr_vfifo(*grp, v);
}
for (; *i < VFIFO_SIZE + 1; (*i)++) {
for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
+= IO_DELAY_PER_OPA_TAP) {
scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
if (!rw_mgr_mem_calibrate_read_test_all_ranks
(*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
found_end = 1;
break;
} else {
(*max_working_cnt)++;
}
}
if (found_end)
break;
if (*p > IO_DQS_EN_PHASE_MAX) {
/* fiddle with FIFO */
rw_mgr_incr_vfifo(*grp, v);
*p = 0;
}
}
if (*i >= VFIFO_SIZE + 1) {
/* cannot see edge of failing read */
debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
failed\n", __func__, __LINE__);
return 0;
} else {
return 1;
}
}
static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
uint32_t *work_bgn, uint32_t *v, uint32_t *d,
uint32_t *p, uint32_t *work_mid,
uint32_t *work_end)
{
int i;
int tmp_delay = 0;
*work_mid = (*work_bgn + *work_end) / 2;
debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
*work_bgn, *work_end, *work_mid);
/* Get the middle delay to be less than a VFIFO delay */
for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
;
debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
while (*work_mid > tmp_delay)
*work_mid -= tmp_delay;
debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
tmp_delay = 0;
for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
;
tmp_delay -= IO_DELAY_PER_OPA_TAP;
debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
;
debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
/*
* push vfifo until we can successfully calibrate. We can do this
* because the largest possible margin in 1 VFIFO cycle.
*/
for (i = 0; i < VFIFO_SIZE; i++) {
debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
*v);
if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
PASS_ONE_BIT,
bit_chk, 0)) {
break;
}
/* fiddle with FIFO */
rw_mgr_incr_vfifo(*grp, v);
}
if (i >= VFIFO_SIZE) {
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
failed\n", __func__, __LINE__);
return 0;
} else {
return 1;
}
}
/* find a good dqs enable to use */
static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
{
uint32_t v, d, p, i;
uint32_t max_working_cnt;
uint32_t bit_chk;
uint32_t dtaps_per_ptap;
uint32_t work_bgn, work_mid, work_end;
uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
uint32_t addr;
debug("%s:%d %u\n", __func__, __LINE__, grp);
reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
/* ************************************************************** */
/* * Step 0 : Determine number of delay taps for each phase tap * */
dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
/* ********************************************************* */
/* * Step 1 : First push vfifo until we get a failing read * */
v = find_vfifo_read(grp, &bit_chk);
max_working_cnt = 0;
/* ******************************************************** */
/* * step 2: find first working phase, increment in ptaps * */
work_bgn = 0;
if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
&p, &i, &max_working_cnt) == 0)
return 0;
work_end = work_bgn;
/*
* If d is 0 then the working window covers a phase tap and
* we can follow the old procedure otherwise, we've found the beginning,
* and we need to increment the dtaps until we find the end.
*/
if (d == 0) {
/* ********************************************************* */
/* * step 3a: if we have room, back off by one and
increment in dtaps * */
sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
&max_working_cnt);
/* ********************************************************* */
/* * step 4a: go forward from working phase to non working
phase, increment in ptaps * */
if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
&i, &max_working_cnt, &work_end) == 0)
return 0;
/* ********************************************************* */
/* * step 5a: back off one from last, increment in dtaps * */
/* Special case code for backing up a phase */
if (p == 0) {
p = IO_DQS_EN_PHASE_MAX;
rw_mgr_decr_vfifo(grp, &v);
} else {
p = p - 1;
}
work_end -= IO_DELAY_PER_OPA_TAP;
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
/* * The actual increment of dtaps is done outside of
the if/else loop to share code */
d = 0;
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
vfifo=%u ptap=%u\n", __func__, __LINE__,
v, p);
} else {
/* ******************************************************* */
/* * step 3-5b: Find the right edge of the window using
delay taps * */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
v, p, d, work_bgn);
work_end = work_bgn;
/* * The actual increment of dtaps is done outside of the
if/else loop to share code */
/* Only here to counterbalance a subtract later on which is
not needed if this branch of the algorithm is taken */
max_working_cnt++;
}
/* The dtap increment to find the failing edge is done here */
for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
end-2: dtap=%u\n", __func__, __LINE__, d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
PASS_ONE_BIT,
&bit_chk, 0)) {
break;
}
}
/* Go back to working dtap */
if (d != 0)
work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
v, p, d-1, work_end);
if (work_end < work_bgn) {
/* nil range */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
failed\n", __func__, __LINE__);
return 0;
}
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
__func__, __LINE__, work_bgn, work_end);
/* *************************************************************** */
/*
* * We need to calculate the number of dtaps that equal a ptap
* * To do that we'll back up a ptap and re-find the edge of the
* * window using dtaps
*/
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
for tracking\n", __func__, __LINE__);
/* Special case code for backing up a phase */
if (p == 0) {
p = IO_DQS_EN_PHASE_MAX;
rw_mgr_decr_vfifo(grp, &v);
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
cycle/phase: v=%u p=%u\n", __func__, __LINE__,
v, p);
} else {
p = p - 1;
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
phase only: v=%u p=%u", __func__, __LINE__,
v, p);
}
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
/*
* Increase dtap until we first see a passing read (in case the
* window is smaller than a ptap),
* and then a failing read to mark the edge of the window again
*/
/* Find a passing read */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
__func__, __LINE__);
found_passing_read = 0;
found_failing_read = 0;
initial_failing_dtap = d;
for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
read d=%u\n", __func__, __LINE__, d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
PASS_ONE_BIT,
&bit_chk, 0)) {
found_passing_read = 1;
break;
}
}
if (found_passing_read) {
/* Find a failing read */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
read\n", __func__, __LINE__);
for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
testing read d=%u\n", __func__, __LINE__, d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (!rw_mgr_mem_calibrate_read_test_all_ranks
(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
found_failing_read = 1;
break;
}
}
} else {
debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
calculate dtaps", __func__, __LINE__);
debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
}
/*
* The dynamically calculated dtaps_per_ptap is only valid if we
* found a passing/failing read. If we didn't, it means d hit the max
* (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
* statically calculated value.
*/
if (found_passing_read && found_failing_read)
dtaps_per_ptap = d - initial_failing_dtap;
addr = (u32)&sdr_reg_file->dtaps_per_ptap;
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
writel(dtaps_per_ptap, SOCFPGA_SDR_ADDRESS + addr);
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
- %u = %u", __func__, __LINE__, d,
initial_failing_dtap, dtaps_per_ptap);
/* ******************************************** */
/* * step 6: Find the centre of the window * */
if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
&work_mid, &work_end) == 0)
return 0;
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
v, p-1, d);
return 1;
}
/*
* Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
* dq_in_delay values
*/
static uint32_t
rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
(uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
{
uint32_t found;
uint32_t i;
uint32_t p;
uint32_t d;
uint32_t r;
uint32_t addr;
const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
(RW_MGR_MEM_DQ_PER_READ_DQS-1);
/* we start at zero, so have one less dq to devide among */
debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
test_bgn);
/* try different dq_in_delays since the dq path is shorter than dqs */
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS;
i++, p++, d += delay_step) {
debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
vfifo_find_dqs_", __func__, __LINE__);
debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
write_group, read_group);
debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
scc_mgr_set_dq_in_delay(write_group, p, d);
scc_mgr_load_dq(p);
}
addr = (u32)&sdr_scc_mgr->update;
writel(0, SOCFPGA_SDR_ADDRESS + addr);
}
found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
en_phase_sweep_dq", __func__, __LINE__);
debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
chain to zero\n", write_group, read_group, found);
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
i++, p++) {
scc_mgr_set_dq_in_delay(write_group, p, 0);
scc_mgr_load_dq(p);
}
addr = (u32)&sdr_scc_mgr->update;
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
writel(0, SOCFPGA_SDR_ADDRESS + addr);
}
return found;
}
/* per-bit deskew DQ and center */
static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
uint32_t use_read_test, uint32_t update_fom)
{
uint32_t i, p, d, min_index;
/*
* Store these as signed since there are comparisons with
* signed numbers.
*/
uint32_t bit_chk;
uint32_t sticky_bit_chk;
int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
int32_t mid;
int32_t orig_mid_min, mid_min;
int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
final_dqs_en;
int32_t dq_margin, dqs_margin;
uint32_t stop;
uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
uint32_t addr;
debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
addr = sdr_get_addr((u32 *)SCC_MGR_DQS_IN_DELAY);
start_dqs = readl(SOCFPGA_SDR_ADDRESS + addr + (read_group << 2));
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
start_dqs_en = readl(SOCFPGA_SDR_ADDRESS + addr + ((read_group << 2)
- IO_DQS_EN_DELAY_OFFSET));
/* set the left and right edge of each bit to an illegal value */
/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
sticky_bit_chk = 0;
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
left_edge[i] = IO_IO_IN_DELAY_MAX + 1;
right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
}
addr = (u32)&sdr_scc_mgr->update;
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
/* Search for the left edge of the window for each bit */
for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
writel(0, SOCFPGA_SDR_ADDRESS + addr);
/*
* Stop searching when the read test doesn't pass AND when
* we've seen a passing read on every bit.
*/
if (use_read_test) {
stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
&bit_chk, 0, 0);
} else {
rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
0, PASS_ONE_BIT,
&bit_chk, 0);
bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
(read_group - (write_group *
RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
stop = (bit_chk == 0);
}
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->read_correct_mask);
debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
&& %u", __func__, __LINE__, d,
sticky_bit_chk,
param->read_correct_mask, stop);
if (stop == 1) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
if (bit_chk & 1) {
/* Remember a passing test as the
left_edge */
left_edge[i] = d;
} else {
/* If a left edge has not been seen yet,
then a future passing test will mark
this edge as the right edge */
if (left_edge[i] ==
IO_IO_IN_DELAY_MAX + 1) {
right_edge[i] = -(d + 1);
}
}
bit_chk = bit_chk >> 1;
}
}
}
/* Reset DQ delay chains to 0 */
scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, 0);
sticky_bit_chk = 0;
for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
%d right_edge[%u]: %d\n", __func__, __LINE__,
i, left_edge[i], i, right_edge[i]);
/*
* Check for cases where we haven't found the left edge,
* which makes our assignment of the the right edge invalid.
* Reset it to the illegal value.
*/
if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
right_edge[%u]: %d\n", __func__, __LINE__,
i, right_edge[i]);
}
/*
* Reset sticky bit (except for bits where we have seen
* both the left and right edge).
*/
sticky_bit_chk = sticky_bit_chk << 1;
if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
(right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
sticky_bit_chk = sticky_bit_chk | 1;
}
if (i == 0)
break;
}
addr = (u32)&sdr_scc_mgr->update;
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
/* Search for the right edge of the window for each bit */
for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
uint32_t delay = d + start_dqs_en;
if (delay > IO_DQS_EN_DELAY_MAX)
delay = IO_DQS_EN_DELAY_MAX;
scc_mgr_set_dqs_en_delay(read_group, delay);
}
scc_mgr_load_dqs(read_group);
writel(0, SOCFPGA_SDR_ADDRESS + addr);
/*
* Stop searching when the read test doesn't pass AND when
* we've seen a passing read on every bit.
*/
if (use_read_test) {
stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
&bit_chk, 0, 0);
} else {
rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
0, PASS_ONE_BIT,
&bit_chk, 0);
bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
(read_group - (write_group *
RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
stop = (bit_chk == 0);
}
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->read_correct_mask);
debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
%u && %u", __func__, __LINE__, d,
sticky_bit_chk, param->read_correct_mask, stop);
if (stop == 1) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
if (bit_chk & 1) {
/* Remember a passing test as
the right_edge */
right_edge[i] = d;
} else {
if (d != 0) {
/* If a right edge has not been
seen yet, then a future passing
test will mark this edge as the
left edge */
if (right_edge[i] ==
IO_IO_IN_DELAY_MAX + 1) {
left_edge[i] = -(d + 1);
}
} else {
/* d = 0 failed, but it passed
when testing the left edge,
so it must be marginal,
set it to -1 */
if (right_edge[i] ==
IO_IO_IN_DELAY_MAX + 1 &&
left_edge[i] !=
IO_IO_IN_DELAY_MAX
+ 1) {
right_edge[i] = -1;
}
/* If a right edge has not been
seen yet, then a future passing
test will mark this edge as the
left edge */
else if (right_edge[i] ==
IO_IO_IN_DELAY_MAX +
1) {
left_edge[i] = -(d + 1);
Loading
Loading full blame...