Skip to content
Snippets Groups Projects
sequencer.c 118 KiB
Newer Older
  • Learn to ignore specific revisions
  • 	 * significant bits
    	 */
    
    	/* start with memory RESET activated */
    
    	/* tINIT = 200us */
    
    	/*
    	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
    	 * If a and b are the number of iteration in 2 nested loops
    	 * it takes the following number of cycles to complete the operation:
    	 * number_of_cycles = ((2 + n) * a + 2) * b
    	 * where n is the number of instruction in the inner loop
    	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
    	 * b = 6A
    	 */
    
    	/* Load counters */
    
    	addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
    
    	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL),
    	       SOCFPGA_SDR_ADDRESS + addr);
    
    	addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
    
    	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL),
    	       SOCFPGA_SDR_ADDRESS + addr);
    
    	addr = (u32)&sdr_rw_load_mgr_regs->load_cntr2;
    
    	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL),
    	       SOCFPGA_SDR_ADDRESS + addr);
    
    	/* Load jump address */
    
    	addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
    
    	writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
    
    
    	addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
    
    	writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
    
    
    	addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add2;
    
    	writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
    
    	/* Execute count instruction */
    	addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
    	writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
    
    	/* indicate that memory is stable */
    	addr = sdr_get_addr(&phy_mgr_cfg->reset_mem_stbl);
    	writel(1, SOCFPGA_SDR_ADDRESS + addr);
    
    	/*
    	 * transition the RESET to high
    	 * Wait for 500us
    	 */
    
    	/*
    	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
    	 * If a and b are the number of iteration in 2 nested loops
    	 * it takes the following number of cycles to complete the operation
    	 * number_of_cycles = ((2 + n) * a + 2) * b
    	 * where n is the number of instruction in the inner loop
    	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
    	 * b = FF
    	 */
    
    	/* Load counters */
    
    	addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
    
    	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL),
    	       SOCFPGA_SDR_ADDRESS + addr);
    
    	addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
    
    	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL),
    	       SOCFPGA_SDR_ADDRESS + addr);
    
    	addr = (u32)&sdr_rw_load_mgr_regs->load_cntr2;
    
    	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL),
    	       SOCFPGA_SDR_ADDRESS + addr);
    
    	/* Load jump address */
    
    	addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
    
    	writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
    
    	addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
    
    	writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
    
    	addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add2;
    
    	writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
    
    	addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
    	writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
    
    	/* bring up clock enable */
    
    	/* tXRP < 250 ck cycles */
    	delay_for_n_mem_clocks(250);
    
    	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
    		if (param->skip_ranks[r]) {
    			/* request to skip the rank */
    			continue;
    		}
    
    		/* set rank */
    		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
    
    		/*
    		 * USER Use Mirror-ed commands for odd ranks if address
    		 * mirrorring is on
    		 */
    		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
    			set_jump_as_return();
    			addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
    			writel(RW_MGR_MRS2_MIRR, SOCFPGA_SDR_ADDRESS + addr);
    			delay_for_n_mem_clocks(4);
    			set_jump_as_return();
    			writel(RW_MGR_MRS3_MIRR, SOCFPGA_SDR_ADDRESS + addr);
    			delay_for_n_mem_clocks(4);
    			set_jump_as_return();
    			writel(RW_MGR_MRS1_MIRR, SOCFPGA_SDR_ADDRESS + addr);
    			delay_for_n_mem_clocks(4);
    			set_jump_as_return();
    			writel(RW_MGR_MRS0_DLL_RESET_MIRR, SOCFPGA_SDR_ADDRESS + addr);
    		} else {
    			set_jump_as_return();
    			addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
    			writel(RW_MGR_MRS2, SOCFPGA_SDR_ADDRESS + addr);
    			delay_for_n_mem_clocks(4);
    			set_jump_as_return();
    			writel(RW_MGR_MRS3, SOCFPGA_SDR_ADDRESS + addr);
    			delay_for_n_mem_clocks(4);
    			set_jump_as_return();
    			writel(RW_MGR_MRS1, SOCFPGA_SDR_ADDRESS + addr);
    			set_jump_as_return();
    			writel(RW_MGR_MRS0_DLL_RESET, SOCFPGA_SDR_ADDRESS + addr);
    		}
    		set_jump_as_return();
    		addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
    		writel(RW_MGR_ZQCL, SOCFPGA_SDR_ADDRESS + addr);
    
    		/* tZQinit = tDLLK = 512 ck cycles */
    		delay_for_n_mem_clocks(512);
    	}
    }
    
    /*
     * At the end of calibration we have to program the user settings in, and
     * USER  hand off the memory to the user.
     */
    static void rw_mgr_mem_handoff(void)
    {
    	uint32_t r;
    	uint32_t addr;
    
    	debug("%s:%d\n", __func__, __LINE__);
    	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
    		if (param->skip_ranks[r])
    			/* request to skip the rank */
    			continue;
    		/* set rank */
    		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
    
    		/* precharge all banks ... */
    		addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
    		writel(RW_MGR_PRECHARGE_ALL, SOCFPGA_SDR_ADDRESS + addr);
    
    		/* load up MR settings specified by user */
    
    		/*
    		 * Use Mirror-ed commands for odd ranks if address
    		 * mirrorring is on
    		 */
    		addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
    		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
    			set_jump_as_return();
    			writel(RW_MGR_MRS2_MIRR, SOCFPGA_SDR_ADDRESS + addr);
    			delay_for_n_mem_clocks(4);
    			set_jump_as_return();
    			writel(RW_MGR_MRS3_MIRR, SOCFPGA_SDR_ADDRESS + addr);
    			delay_for_n_mem_clocks(4);
    			set_jump_as_return();
    			writel(RW_MGR_MRS1_MIRR, SOCFPGA_SDR_ADDRESS + addr);
    			delay_for_n_mem_clocks(4);
    			set_jump_as_return();
    			writel(RW_MGR_MRS0_USER_MIRR, SOCFPGA_SDR_ADDRESS + addr);
    		} else {
    			set_jump_as_return();
    			writel(RW_MGR_MRS2, SOCFPGA_SDR_ADDRESS + addr);
    			delay_for_n_mem_clocks(4);
    			set_jump_as_return();
    			writel(RW_MGR_MRS3, SOCFPGA_SDR_ADDRESS + addr);
    			delay_for_n_mem_clocks(4);
    			set_jump_as_return();
    			writel(RW_MGR_MRS1, SOCFPGA_SDR_ADDRESS + addr);
    			delay_for_n_mem_clocks(4);
    			set_jump_as_return();
    			writel(RW_MGR_MRS0_USER, SOCFPGA_SDR_ADDRESS + addr);
    		}
    		/*
    		 * USER  need to wait tMOD (12CK or 15ns) time before issuing
    		 * other commands, but we will have plenty of NIOS cycles before
    		 * actual handoff so its okay.
    		 */
    	}
    }
    
    /*
     * performs a guaranteed read on the patterns we are going to use during a
     * read test to ensure memory works
     */
    static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
    	uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
    	uint32_t all_ranks)
    {
    	uint32_t r, vg;
    	uint32_t correct_mask_vg;
    	uint32_t tmp_bit_chk;
    	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
    		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
    	uint32_t addr;
    	uint32_t base_rw_mgr;
    
    	*bit_chk = param->read_correct_mask;
    	correct_mask_vg = param->read_correct_mask_vg;
    
    	for (r = rank_bgn; r < rank_end; r++) {
    		if (param->skip_ranks[r])
    			/* request to skip the rank */
    			continue;
    
    		/* set rank */
    		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
    
    		/* Load up a constant bursts of read commands */
    
    		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
    
    		writel(0x20, SOCFPGA_SDR_ADDRESS + addr);
    
    		addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
    
    		writel(RW_MGR_GUARANTEED_READ, SOCFPGA_SDR_ADDRESS + addr);
    
    
    		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
    
    		writel(0x20, SOCFPGA_SDR_ADDRESS + addr);
    
    		addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
    
    		writel(RW_MGR_GUARANTEED_READ_CONT, SOCFPGA_SDR_ADDRESS + addr);
    
    		tmp_bit_chk = 0;
    		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
    			/* reset the fifos to get pointers to known state */
    
    			addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset);
    			writel(0, SOCFPGA_SDR_ADDRESS + addr);
    			addr = sdr_get_addr((u32 *)RW_MGR_RESET_READ_DATAPATH);
    			writel(0, SOCFPGA_SDR_ADDRESS + addr);
    
    			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
    				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
    
    			addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
    			writel(RW_MGR_GUARANTEED_READ, SOCFPGA_SDR_ADDRESS + addr +
    			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
    				vg) << 2));
    
    
    			addr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
    
    			base_rw_mgr = readl(SOCFPGA_SDR_ADDRESS + addr);
    			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
    
    			if (vg == 0)
    				break;
    		}
    		*bit_chk &= tmp_bit_chk;
    	}
    
    	addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
    	writel(RW_MGR_CLEAR_DQS_ENABLE, SOCFPGA_SDR_ADDRESS + addr + (group << 2));
    
    	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
    	debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
    		   %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
    		   (long unsigned int)(*bit_chk == param->read_correct_mask));
    	return *bit_chk == param->read_correct_mask;
    }
    
    static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
    	(uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
    {
    	return rw_mgr_mem_calibrate_read_test_patterns(0, group,
    		num_tries, bit_chk, 1);
    }
    
    /* load up the patterns we are going to use during a read test */
    static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
    	uint32_t all_ranks)
    {
    	uint32_t r;
    	uint32_t addr;
    	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
    		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
    
    	debug("%s:%d\n", __func__, __LINE__);
    	for (r = rank_bgn; r < rank_end; r++) {
    		if (param->skip_ranks[r])
    			/* request to skip the rank */
    			continue;
    
    		/* set rank */
    		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
    
    		/* Load up a constant bursts */
    
    		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
    
    		writel(0x20, SOCFPGA_SDR_ADDRESS + addr);
    
    
    		addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
    
    		writel(RW_MGR_GUARANTEED_WRITE_WAIT0, SOCFPGA_SDR_ADDRESS + addr);
    
    
    		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
    
    		writel(0x20, SOCFPGA_SDR_ADDRESS + addr);
    
    
    		addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
    
    		writel(RW_MGR_GUARANTEED_WRITE_WAIT1, SOCFPGA_SDR_ADDRESS + addr);
    
    
    		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr2;
    
    		writel(0x04, SOCFPGA_SDR_ADDRESS + addr);
    
    
    		addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add2;
    
    		writel(RW_MGR_GUARANTEED_WRITE_WAIT2, SOCFPGA_SDR_ADDRESS + addr);
    
    
    		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr3;
    
    		writel(0x04, SOCFPGA_SDR_ADDRESS + addr);
    
    
    		addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add3;
    
    		writel(RW_MGR_GUARANTEED_WRITE_WAIT3, SOCFPGA_SDR_ADDRESS + addr);
    
    		addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
    		writel(RW_MGR_GUARANTEED_WRITE, SOCFPGA_SDR_ADDRESS + addr);
    	}
    
    	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
    }
    
    /*
     * try a read and see if it returns correct data back. has dummy reads
     * inserted into the mix used to align dqs enable. has more thorough checks
     * than the regular read test.
     */
    static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
    	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
    	uint32_t all_groups, uint32_t all_ranks)
    {
    	uint32_t r, vg;
    	uint32_t correct_mask_vg;
    	uint32_t tmp_bit_chk;
    	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
    		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
    	uint32_t addr;
    	uint32_t base_rw_mgr;
    
    	*bit_chk = param->read_correct_mask;
    	correct_mask_vg = param->read_correct_mask_vg;
    
    	uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
    		CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
    
    	for (r = rank_bgn; r < rank_end; r++) {
    		if (param->skip_ranks[r])
    			/* request to skip the rank */
    			continue;
    
    		/* set rank */
    		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
    
    
    		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
    
    		writel(0x10, SOCFPGA_SDR_ADDRESS + addr);
    
    
    		addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
    
    		writel(RW_MGR_READ_B2B_WAIT1, SOCFPGA_SDR_ADDRESS + addr);
    
    
    		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr2;
    
    		writel(0x10, SOCFPGA_SDR_ADDRESS + addr);
    
    		addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add2;
    
    		writel(RW_MGR_READ_B2B_WAIT2, SOCFPGA_SDR_ADDRESS + addr);
    
    
    		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
    
    		if (quick_read_mode)
    			writel(0x1, SOCFPGA_SDR_ADDRESS + addr);
    			/* need at least two (1+1) reads to capture failures */
    		else if (all_groups)
    			writel(0x06, SOCFPGA_SDR_ADDRESS + addr);
    		else
    			writel(0x32, SOCFPGA_SDR_ADDRESS + addr);
    
    
    		addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
    
    		writel(RW_MGR_READ_B2B, SOCFPGA_SDR_ADDRESS + addr);
    
    		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr3;
    
    		if (all_groups)
    			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
    			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
    			       SOCFPGA_SDR_ADDRESS + addr);
    		else
    			writel(0x0, SOCFPGA_SDR_ADDRESS + addr);
    
    
    		addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add3;
    
    		writel(RW_MGR_READ_B2B, SOCFPGA_SDR_ADDRESS + addr);
    
    		tmp_bit_chk = 0;
    		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
    			/* reset the fifos to get pointers to known state */
    			addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset);
    			writel(0, SOCFPGA_SDR_ADDRESS + addr);
    			addr = sdr_get_addr((u32 *)RW_MGR_RESET_READ_DATAPATH);
    			writel(0, SOCFPGA_SDR_ADDRESS + addr);
    
    			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
    				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
    
    			addr = sdr_get_addr((u32 *)(all_groups ? RW_MGR_RUN_ALL_GROUPS :
    					    RW_MGR_RUN_SINGLE_GROUP));
    			writel(RW_MGR_READ_B2B, SOCFPGA_SDR_ADDRESS + addr +
    			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
    			       vg) << 2));
    
    
    			addr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
    
    1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
    			base_rw_mgr = readl(SOCFPGA_SDR_ADDRESS + addr);
    			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
    
    			if (vg == 0)
    				break;
    		}
    		*bit_chk &= tmp_bit_chk;
    	}
    
    	addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
    	writel(RW_MGR_CLEAR_DQS_ENABLE, SOCFPGA_SDR_ADDRESS + addr + (group << 2));
    
    	if (all_correct) {
    		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
    		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
    			   (%u == %u) => %lu", __func__, __LINE__, group,
    			   all_groups, *bit_chk, param->read_correct_mask,
    			   (long unsigned int)(*bit_chk ==
    			   param->read_correct_mask));
    		return *bit_chk == param->read_correct_mask;
    	} else	{
    		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
    		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
    			   (%u != %lu) => %lu\n", __func__, __LINE__,
    			   group, all_groups, *bit_chk, (long unsigned int)0,
    			   (long unsigned int)(*bit_chk != 0x00));
    		return *bit_chk != 0x00;
    	}
    }
    
    static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
    	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
    	uint32_t all_groups)
    {
    	return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
    					      bit_chk, all_groups, 1);
    }
    
    static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
    {
    	uint32_t addr = sdr_get_addr(&phy_mgr_cmd->inc_vfifo_hard_phy);
    
    	writel(grp, SOCFPGA_SDR_ADDRESS + addr);
    	(*v)++;
    }
    
    static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
    {
    	uint32_t i;
    
    	for (i = 0; i < VFIFO_SIZE-1; i++)
    		rw_mgr_incr_vfifo(grp, v);
    }
    
    static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
    {
    	uint32_t  v;
    	uint32_t fail_cnt = 0;
    	uint32_t test_status;
    
    	for (v = 0; v < VFIFO_SIZE; ) {
    		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
    			   __func__, __LINE__, v);
    		test_status = rw_mgr_mem_calibrate_read_test_all_ranks
    			(grp, 1, PASS_ONE_BIT, bit_chk, 0);
    		if (!test_status) {
    			fail_cnt++;
    
    			if (fail_cnt == 2)
    				break;
    		}
    
    		/* fiddle with FIFO */
    		rw_mgr_incr_vfifo(grp, &v);
    	}
    
    	if (v >= VFIFO_SIZE) {
    		/* no failing read found!! Something must have gone wrong */
    		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
    			   __func__, __LINE__);
    		return 0;
    	} else {
    		return v;
    	}
    }
    
    static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
    			      uint32_t dtaps_per_ptap, uint32_t *work_bgn,
    			      uint32_t *v, uint32_t *d, uint32_t *p,
    			      uint32_t *i, uint32_t *max_working_cnt)
    {
    	uint32_t found_begin = 0;
    	uint32_t tmp_delay = 0;
    	uint32_t test_status;
    
    	for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
    		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
    		*work_bgn = tmp_delay;
    		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
    
    		for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
    			for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
    				IO_DELAY_PER_OPA_TAP) {
    				scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
    
    				test_status =
    				rw_mgr_mem_calibrate_read_test_all_ranks
    				(*grp, 1, PASS_ONE_BIT, bit_chk, 0);
    
    				if (test_status) {
    					*max_working_cnt = 1;
    					found_begin = 1;
    					break;
    				}
    			}
    
    			if (found_begin)
    				break;
    
    			if (*p > IO_DQS_EN_PHASE_MAX)
    				/* fiddle with FIFO */
    				rw_mgr_incr_vfifo(*grp, v);
    		}
    
    		if (found_begin)
    			break;
    	}
    
    	if (*i >= VFIFO_SIZE) {
    		/* cannot find working solution */
    		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
    			   ptap/dtap\n", __func__, __LINE__);
    		return 0;
    	} else {
    		return 1;
    	}
    }
    
    static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
    			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
    			     uint32_t *p, uint32_t *max_working_cnt)
    {
    	uint32_t found_begin = 0;
    	uint32_t tmp_delay;
    
    	/* Special case code for backing up a phase */
    	if (*p == 0) {
    		*p = IO_DQS_EN_PHASE_MAX;
    		rw_mgr_decr_vfifo(*grp, v);
    	} else {
    		(*p)--;
    	}
    	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
    	scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
    
    	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
    		(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
    		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
    
    		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
    							     PASS_ONE_BIT,
    							     bit_chk, 0)) {
    			found_begin = 1;
    			*work_bgn = tmp_delay;
    			break;
    		}
    	}
    
    	/* We have found a working dtap before the ptap found above */
    	if (found_begin == 1)
    		(*max_working_cnt)++;
    
    	/*
    	 * Restore VFIFO to old state before we decremented it
    	 * (if needed).
    	 */
    	(*p)++;
    	if (*p > IO_DQS_EN_PHASE_MAX) {
    		*p = 0;
    		rw_mgr_incr_vfifo(*grp, v);
    	}
    
    	scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
    }
    
    static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
    			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
    			     uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
    			     uint32_t *work_end)
    {
    	uint32_t found_end = 0;
    
    	(*p)++;
    	*work_end += IO_DELAY_PER_OPA_TAP;
    	if (*p > IO_DQS_EN_PHASE_MAX) {
    		/* fiddle with FIFO */
    		*p = 0;
    		rw_mgr_incr_vfifo(*grp, v);
    	}
    
    	for (; *i < VFIFO_SIZE + 1; (*i)++) {
    		for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
    			+= IO_DELAY_PER_OPA_TAP) {
    			scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
    
    			if (!rw_mgr_mem_calibrate_read_test_all_ranks
    				(*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
    				found_end = 1;
    				break;
    			} else {
    				(*max_working_cnt)++;
    			}
    		}
    
    		if (found_end)
    			break;
    
    		if (*p > IO_DQS_EN_PHASE_MAX) {
    			/* fiddle with FIFO */
    			rw_mgr_incr_vfifo(*grp, v);
    			*p = 0;
    		}
    	}
    
    	if (*i >= VFIFO_SIZE + 1) {
    		/* cannot see edge of failing read */
    		debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
    			   failed\n", __func__, __LINE__);
    		return 0;
    	} else {
    		return 1;
    	}
    }
    
    static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
    				  uint32_t *work_bgn, uint32_t *v, uint32_t *d,
    				  uint32_t *p, uint32_t *work_mid,
    				  uint32_t *work_end)
    {
    	int i;
    	int tmp_delay = 0;
    
    	*work_mid = (*work_bgn + *work_end) / 2;
    
    	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
    		   *work_bgn, *work_end, *work_mid);
    	/* Get the middle delay to be less than a VFIFO delay */
    	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
    		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
    		;
    	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
    	while (*work_mid > tmp_delay)
    		*work_mid -= tmp_delay;
    	debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
    
    	tmp_delay = 0;
    	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
    		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
    		;
    	tmp_delay -= IO_DELAY_PER_OPA_TAP;
    	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
    	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
    		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
    		;
    	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
    
    	scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
    	scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
    
    	/*
    	 * push vfifo until we can successfully calibrate. We can do this
    	 * because the largest possible margin in 1 VFIFO cycle.
    	 */
    	for (i = 0; i < VFIFO_SIZE; i++) {
    		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
    			   *v);
    		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
    							     PASS_ONE_BIT,
    							     bit_chk, 0)) {
    			break;
    		}
    
    		/* fiddle with FIFO */
    		rw_mgr_incr_vfifo(*grp, v);
    	}
    
    	if (i >= VFIFO_SIZE) {
    		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
    			   failed\n", __func__, __LINE__);
    		return 0;
    	} else {
    		return 1;
    	}
    }
    
    /* find a good dqs enable to use */
    static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
    {
    	uint32_t v, d, p, i;
    	uint32_t max_working_cnt;
    	uint32_t bit_chk;
    	uint32_t dtaps_per_ptap;
    	uint32_t work_bgn, work_mid, work_end;
    	uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
    	uint32_t addr;
    
    	debug("%s:%d %u\n", __func__, __LINE__, grp);
    
    	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
    
    	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
    	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
    
    	/* ************************************************************** */
    	/* * Step 0 : Determine number of delay taps for each phase tap * */
    	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
    
    	/* ********************************************************* */
    	/* * Step 1 : First push vfifo until we get a failing read * */
    	v = find_vfifo_read(grp, &bit_chk);
    
    	max_working_cnt = 0;
    
    	/* ******************************************************** */
    	/* * step 2: find first working phase, increment in ptaps * */
    	work_bgn = 0;
    	if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
    				&p, &i, &max_working_cnt) == 0)
    		return 0;
    
    	work_end = work_bgn;
    
    	/*
    	 * If d is 0 then the working window covers a phase tap and
    	 * we can follow the old procedure otherwise, we've found the beginning,
    	 * and we need to increment the dtaps until we find the end.
    	 */
    	if (d == 0) {
    		/* ********************************************************* */
    		/* * step 3a: if we have room, back off by one and
    		increment in dtaps * */
    
    		sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
    				 &max_working_cnt);
    
    		/* ********************************************************* */
    		/* * step 4a: go forward from working phase to non working
    		phase, increment in ptaps * */
    		if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
    					 &i, &max_working_cnt, &work_end) == 0)
    			return 0;
    
    		/* ********************************************************* */
    		/* * step 5a:  back off one from last, increment in dtaps  * */
    
    		/* Special case code for backing up a phase */
    		if (p == 0) {
    			p = IO_DQS_EN_PHASE_MAX;
    			rw_mgr_decr_vfifo(grp, &v);
    		} else {
    			p = p - 1;
    		}
    
    		work_end -= IO_DELAY_PER_OPA_TAP;
    		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
    
    		/* * The actual increment of dtaps is done outside of
    		the if/else loop to share code */
    		d = 0;
    
    		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
    			   vfifo=%u ptap=%u\n", __func__, __LINE__,
    			   v, p);
    	} else {
    		/* ******************************************************* */
    		/* * step 3-5b:  Find the right edge of the window using
    		delay taps   * */
    		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
    			   ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
    			   v, p, d, work_bgn);
    
    		work_end = work_bgn;
    
    		/* * The actual increment of dtaps is done outside of the
    		if/else loop to share code */
    
    		/* Only here to counterbalance a subtract later on which is
    		not needed if this branch of the algorithm is taken */
    		max_working_cnt++;
    	}
    
    	/* The dtap increment to find the failing edge is done here */
    	for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
    		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
    			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
    				   end-2: dtap=%u\n", __func__, __LINE__, d);
    			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
    
    			if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
    								      PASS_ONE_BIT,
    								      &bit_chk, 0)) {
    				break;
    			}
    	}
    
    	/* Go back to working dtap */
    	if (d != 0)
    		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
    
    	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
    		   ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
    		   v, p, d-1, work_end);
    
    	if (work_end < work_bgn) {
    		/* nil range */
    		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
    			   failed\n", __func__, __LINE__);
    		return 0;
    	}
    
    	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
    		   __func__, __LINE__, work_bgn, work_end);
    
    	/* *************************************************************** */
    	/*
    	 * * We need to calculate the number of dtaps that equal a ptap
    	 * * To do that we'll back up a ptap and re-find the edge of the
    	 * * window using dtaps
    	 */
    
    	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
    		   for tracking\n", __func__, __LINE__);
    
    	/* Special case code for backing up a phase */
    	if (p == 0) {
    		p = IO_DQS_EN_PHASE_MAX;
    		rw_mgr_decr_vfifo(grp, &v);
    		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
    			   cycle/phase: v=%u p=%u\n", __func__, __LINE__,
    			   v, p);
    	} else {
    		p = p - 1;
    		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
    			   phase only: v=%u p=%u", __func__, __LINE__,
    			   v, p);
    	}
    
    	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
    
    	/*
    	 * Increase dtap until we first see a passing read (in case the
    	 * window is smaller than a ptap),
    	 * and then a failing read to mark the edge of the window again
    	 */
    
    	/* Find a passing read */
    	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
    		   __func__, __LINE__);
    	found_passing_read = 0;
    	found_failing_read = 0;
    	initial_failing_dtap = d;
    	for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
    		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
    			   read d=%u\n", __func__, __LINE__, d);
    		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
    
    		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
    							     PASS_ONE_BIT,
    							     &bit_chk, 0)) {
    			found_passing_read = 1;
    			break;
    		}
    	}
    
    	if (found_passing_read) {
    		/* Find a failing read */
    		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
    			   read\n", __func__, __LINE__);
    		for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
    			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
    				   testing read d=%u\n", __func__, __LINE__, d);
    			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
    
    			if (!rw_mgr_mem_calibrate_read_test_all_ranks
    				(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
    				found_failing_read = 1;
    				break;
    			}
    		}
    	} else {
    		debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
    			   calculate dtaps", __func__, __LINE__);
    		debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
    	}
    
    	/*
    	 * The dynamically calculated dtaps_per_ptap is only valid if we
    	 * found a passing/failing read. If we didn't, it means d hit the max
    	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
    	 * statically calculated value.
    	 */
    	if (found_passing_read && found_failing_read)
    		dtaps_per_ptap = d - initial_failing_dtap;
    
    
    	addr = (u32)&sdr_reg_file->dtaps_per_ptap;
    
    	writel(dtaps_per_ptap, SOCFPGA_SDR_ADDRESS + addr);
    	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
    		   - %u = %u",  __func__, __LINE__, d,
    		   initial_failing_dtap, dtaps_per_ptap);
    
    	/* ******************************************** */
    	/* * step 6:  Find the centre of the window   * */
    	if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
    				   &work_mid, &work_end) == 0)
    		return 0;
    
    	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
    		   vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
    		   v, p-1, d);
    	return 1;
    }
    
    /*
     * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
     * dq_in_delay values
     */
    static uint32_t
    rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
    (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
    {
    	uint32_t found;
    	uint32_t i;
    	uint32_t p;
    	uint32_t d;
    	uint32_t r;
    	uint32_t addr;
    
    	const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
    		(RW_MGR_MEM_DQ_PER_READ_DQS-1);
    		/* we start at zero, so have one less dq to devide among */
    
    	debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
    	      test_bgn);
    
    	/* try different dq_in_delays since the dq path is shorter than dqs */
    
    	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
    	     r += NUM_RANKS_PER_SHADOW_REG) {
    		for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS;
    			i++, p++, d += delay_step) {
    			debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
    				   vfifo_find_dqs_", __func__, __LINE__);
    			debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
    			       write_group, read_group);
    			debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
    			scc_mgr_set_dq_in_delay(write_group, p, d);
    			scc_mgr_load_dq(p);
    		}
    
    		addr = (u32)&sdr_scc_mgr->update;
    
    		writel(0, SOCFPGA_SDR_ADDRESS + addr);
    	}
    
    	found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
    
    	debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
    		   en_phase_sweep_dq", __func__, __LINE__);
    	debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
    		   chain to zero\n", write_group, read_group, found);
    
    	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
    	     r += NUM_RANKS_PER_SHADOW_REG) {
    		for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
    			i++, p++) {
    			scc_mgr_set_dq_in_delay(write_group, p, 0);
    			scc_mgr_load_dq(p);
    		}
    
    		addr = (u32)&sdr_scc_mgr->update;
    
    		writel(0, SOCFPGA_SDR_ADDRESS + addr);
    	}
    
    	return found;
    }
    
    /* per-bit deskew DQ and center */
    static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
    	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
    	uint32_t use_read_test, uint32_t update_fom)
    {
    	uint32_t i, p, d, min_index;