Newer
Older
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
u32 ret;
/*
* Stop searching when the read test doesn't pass AND when
* we've seen a passing read on every bit.
*/
if (write) { /* WRITE-ONLY */
ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
0, PASS_ONE_BIT,
bit_chk, 0);
} else if (use_read_test) { /* READ-ONLY */
ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
NUM_READ_PB_TESTS,
PASS_ONE_BIT, bit_chk,
0, 0);
} else { /* READ-ONLY */
rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
PASS_ONE_BIT, bit_chk, 0);
*bit_chk = *bit_chk >> (per_dqs *
(read_group - (write_group * ratio)));
ret = (*bit_chk == 0);
}
*sticky_bit_chk = *sticky_bit_chk | *bit_chk;
ret = ret && (*sticky_bit_chk == correct_mask);
debug_cond(DLEVEL == 2,
"%s:%d center(left): dtap=%u => %u == %u && %u",
__func__, __LINE__, d,
*sticky_bit_chk, correct_mask, ret);
return ret;
}
/**
* search_left_edge() - Find left edge of DQ/DQS working phase
* @write: Perform read (Stage 2) or write (Stage 3) calibration
* @rank_bgn: Rank number
* @write_group: Write Group
* @read_group: Read Group
* @test_bgn: Rank number to begin the test
* @sticky_bit_chk: Resulting sticky bit mask after the test
* @left_edge: Left edge of the DQ/DQS phase
* @right_edge: Right edge of the DQ/DQS phase
* @use_read_test: Perform read test
*
* Find left edge of DQ/DQS working phase.
*/
static void search_left_edge(const int write, const int rank_bgn,
const u32 write_group, const u32 read_group, const u32 test_bgn,
u32 *sticky_bit_chk,
int *left_edge, int *right_edge, const u32 use_read_test)
{
const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
RW_MGR_MEM_DQ_PER_READ_DQS;
u32 stop, bit_chk;
int i, d;
for (d = 0; d <= dqs_max; d++) {
if (write)
scc_mgr_apply_group_dq_out1_delay(d);
else
scc_mgr_apply_group_dq_in_delay(test_bgn, d);
writel(0, &sdr_scc_mgr->update);
stop = search_stop_check(write, d, rank_bgn, write_group,
read_group, &bit_chk, sticky_bit_chk,
use_read_test);
if (stop == 1)
break;
/* stop != 1 */
for (i = 0; i < per_dqs; i++) {
if (bit_chk & 1) {
/*
* Remember a passing test as
* the left_edge.
*/
left_edge[i] = d;
} else {
/*
* If a left edge has not been seen
* yet, then a future passing test
* will mark this edge as the right
* edge.
*/
if (left_edge[i] == delay_max + 1)
right_edge[i] = -(d + 1);
}
bit_chk >>= 1;
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
}
}
/* Reset DQ delay chains to 0 */
if (write)
scc_mgr_apply_group_dq_out1_delay(0);
else
scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
*sticky_bit_chk = 0;
for (i = per_dqs - 1; i >= 0; i--) {
debug_cond(DLEVEL == 2,
"%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
__func__, __LINE__, i, left_edge[i],
i, right_edge[i]);
/*
* Check for cases where we haven't found the left edge,
* which makes our assignment of the the right edge invalid.
* Reset it to the illegal value.
*/
if ((left_edge[i] == delay_max + 1) &&
(right_edge[i] != delay_max + 1)) {
right_edge[i] = delay_max + 1;
debug_cond(DLEVEL == 2,
"%s:%d vfifo_center: reset right_edge[%u]: %d\n",
__func__, __LINE__, i, right_edge[i]);
}
/*
* Reset sticky bit
* READ: except for bits where we have seen both
* the left and right edge.
* WRITE: except for bits where we have seen the
* left edge.
*/
*sticky_bit_chk <<= 1;
if (write) {
if (left_edge[i] != delay_max + 1)
*sticky_bit_chk |= 1;
} else {
if ((left_edge[i] != delay_max + 1) &&
(right_edge[i] != delay_max + 1))
*sticky_bit_chk |= 1;
}
}
}
/**
* search_right_edge() - Find right edge of DQ/DQS working phase
* @write: Perform read (Stage 2) or write (Stage 3) calibration
* @rank_bgn: Rank number
* @write_group: Write Group
* @read_group: Read Group
* @start_dqs: DQS start phase
* @start_dqs_en: DQS enable start phase
* @sticky_bit_chk: Resulting sticky bit mask after the test
* @left_edge: Left edge of the DQ/DQS phase
* @right_edge: Right edge of the DQ/DQS phase
* @use_read_test: Perform read test
*
* Find right edge of DQ/DQS working phase.
*/
static int search_right_edge(const int write, const int rank_bgn,
const u32 write_group, const u32 read_group,
const int start_dqs, const int start_dqs_en,
u32 *sticky_bit_chk,
int *left_edge, int *right_edge, const u32 use_read_test)
{
const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
RW_MGR_MEM_DQ_PER_READ_DQS;
u32 stop, bit_chk;
int i, d;
for (d = 0; d <= dqs_max - start_dqs; d++) {
if (write) { /* WRITE-ONLY */
scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
d + start_dqs);
} else { /* READ-ONLY */
scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
uint32_t delay = d + start_dqs_en;
if (delay > IO_DQS_EN_DELAY_MAX)
delay = IO_DQS_EN_DELAY_MAX;
scc_mgr_set_dqs_en_delay(read_group, delay);
}
scc_mgr_load_dqs(read_group);
}
writel(0, &sdr_scc_mgr->update);
stop = search_stop_check(write, d, rank_bgn, write_group,
read_group, &bit_chk, sticky_bit_chk,
use_read_test);
if (stop == 1) {
if (write && (d == 0)) { /* WRITE-ONLY */
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
/*
* d = 0 failed, but it passed when
* testing the left edge, so it must be
* marginal, set it to -1
*/
if (right_edge[i] == delay_max + 1 &&
left_edge[i] != delay_max + 1)
right_edge[i] = -1;
}
}
break;
}
/* stop != 1 */
for (i = 0; i < per_dqs; i++) {
if (bit_chk & 1) {
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
/*
* Remember a passing test as
* the right_edge.
*/
right_edge[i] = d;
} else {
if (d != 0) {
/*
* If a right edge has not
* been seen yet, then a future
* passing test will mark this
* edge as the left edge.
*/
if (right_edge[i] == delay_max + 1)
left_edge[i] = -(d + 1);
} else {
/*
* d = 0 failed, but it passed
* when testing the left edge,
* so it must be marginal, set
* it to -1
*/
if (right_edge[i] == delay_max + 1 &&
left_edge[i] != delay_max + 1)
right_edge[i] = -1;
/*
* If a right edge has not been
* seen yet, then a future
* passing test will mark this
* edge as the left edge.
*/
else if (right_edge[i] == delay_max + 1)
left_edge[i] = -(d + 1);
}
}
debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ",
__func__, __LINE__, d);
debug_cond(DLEVEL == 2,
"bit_chk_test=%i left_edge[%u]: %d ",
bit_chk & 1, i, left_edge[i]);
debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
right_edge[i]);
bit_chk >>= 1;
}
}
/* Check that all bits have a window */
for (i = 0; i < per_dqs; i++) {
debug_cond(DLEVEL == 2,
"%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
__func__, __LINE__, i, left_edge[i],
i, right_edge[i]);
if ((left_edge[i] == dqs_max + 1) ||
(right_edge[i] == dqs_max + 1))
return i + 1; /* FIXME: If we fail, retval > 0 */
}
return 0;
}
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
/**
* get_window_mid_index() - Find the best middle setting of DQ/DQS phase
* @write: Perform read (Stage 2) or write (Stage 3) calibration
* @left_edge: Left edge of the DQ/DQS phase
* @right_edge: Right edge of the DQ/DQS phase
* @mid_min: Best DQ/DQS phase middle setting
*
* Find index and value of the middle of the DQ/DQS working phase.
*/
static int get_window_mid_index(const int write, int *left_edge,
int *right_edge, int *mid_min)
{
const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
RW_MGR_MEM_DQ_PER_READ_DQS;
int i, mid, min_index;
/* Find middle of window for each DQ bit */
*mid_min = left_edge[0] - right_edge[0];
min_index = 0;
for (i = 1; i < per_dqs; i++) {
mid = left_edge[i] - right_edge[i];
if (mid < *mid_min) {
*mid_min = mid;
min_index = i;
}
}
/*
* -mid_min/2 represents the amount that we need to move DQS.
* If mid_min is odd and positive we'll need to add one to make
* sure the rounding in further calculations is correct (always
* bias to the right), so just add 1 for all positive values.
*/
if (*mid_min > 0)
(*mid_min)++;
*mid_min = *mid_min / 2;
debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
__func__, __LINE__, *mid_min, min_index);
return min_index;
}
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
/**
* center_dq_windows() - Center the DQ/DQS windows
* @write: Perform read (Stage 2) or write (Stage 3) calibration
* @left_edge: Left edge of the DQ/DQS phase
* @right_edge: Right edge of the DQ/DQS phase
* @mid_min: Adjusted DQ/DQS phase middle setting
* @orig_mid_min: Original DQ/DQS phase middle setting
* @min_index: DQ/DQS phase middle setting index
* @test_bgn: Rank number to begin the test
* @dq_margin: Amount of shift for the DQ
* @dqs_margin: Amount of shift for the DQS
*
* Align the DQ/DQS windows in each group.
*/
static void center_dq_windows(const int write, int *left_edge, int *right_edge,
const int mid_min, const int orig_mid_min,
const int min_index, const int test_bgn,
int *dq_margin, int *dqs_margin)
{
const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
RW_MGR_MEM_DQ_PER_READ_DQS;
const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
SCC_MGR_IO_IN_DELAY_OFFSET;
const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
u32 temp_dq_io_delay1, temp_dq_io_delay2;
int shift_dq, i, p;
/* Initialize data for export structures */
*dqs_margin = delay_max + 1;
*dq_margin = delay_max + 1;
/* add delay to bring centre of all DQ windows to the same "level" */
for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
/* Use values before divide by 2 to reduce round off error */
shift_dq = (left_edge[i] - right_edge[i] -
(left_edge[min_index] - right_edge[min_index]))/2 +
(orig_mid_min - mid_min);
debug_cond(DLEVEL == 2,
"vfifo_center: before: shift_dq[%u]=%d\n",
i, shift_dq);
temp_dq_io_delay1 = readl(addr + (p << 2));
temp_dq_io_delay2 = readl(addr + (i << 2));
if (shift_dq + temp_dq_io_delay1 > delay_max)
shift_dq = delay_max - temp_dq_io_delay2;
else if (shift_dq + temp_dq_io_delay1 < 0)
shift_dq = -temp_dq_io_delay1;
debug_cond(DLEVEL == 2,
"vfifo_center: after: shift_dq[%u]=%d\n",
i, shift_dq);
if (write)
scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq);
else
scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq);
scc_mgr_load_dq(p);
debug_cond(DLEVEL == 2,
"vfifo_center: margin[%u]=[%d,%d]\n", i,
left_edge[i] - shift_dq + (-mid_min),
right_edge[i] + shift_dq - (-mid_min));
/* To determine values for export structures */
if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
*dq_margin = left_edge[i] - shift_dq + (-mid_min);
if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
*dqs_margin = right_edge[i] + shift_dq - (-mid_min);
}
}
/**
* rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
* @rank_bgn: Rank number
* @rw_group: Read/Write Group
* @test_bgn: Rank at which the test begins
* @use_read_test: Perform a read test
* @update_fom: Update FOM
*
* Per-bit deskew DQ and centering.
*/
static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
const u32 rw_group, const u32 test_bgn,
const int use_read_test, const int update_fom)
const u32 addr =
SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
(rw_group << 2);
/*
* Store these as signed since there are comparisons with
* signed numbers.
*/
uint32_t sticky_bit_chk;
int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
int32_t orig_mid_min, mid_min;
int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en;
int32_t dq_margin, dqs_margin;
int i, min_index;
int ret;
debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
start_dqs = readl(addr);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET);
/* set the left and right edge of each bit to an illegal value */
/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
sticky_bit_chk = 0;
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
left_edge[i] = IO_IO_IN_DELAY_MAX + 1;
right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
}
/* Search for the left edge of the window for each bit */
search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
&sticky_bit_chk,
left_edge, right_edge, use_read_test);
/* Search for the right edge of the window for each bit */
ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
start_dqs, start_dqs_en,
&sticky_bit_chk,
left_edge, right_edge, use_read_test);
if (ret) {
* Restore delay chain settings before letting the loop
* in rw_mgr_mem_calibrate_vfifo to retry different
* dqs/ck relationships.
scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
scc_mgr_load_dqs(rw_group);
writel(0, &sdr_scc_mgr->update);
debug_cond(DLEVEL == 1,
"%s:%d vfifo_center: failed to find edge [%u]: %d %d",
__func__, __LINE__, i, left_edge[i], right_edge[i]);
if (use_read_test) {
set_failing_group_stage(rw_group *
RW_MGR_MEM_DQ_PER_READ_DQS + i,
CAL_STAGE_VFIFO,
CAL_SUBSTAGE_VFIFO_CENTER);
set_failing_group_stage(rw_group *
RW_MGR_MEM_DQ_PER_READ_DQS + i,
CAL_STAGE_VFIFO_AFTER_WRITES,
CAL_SUBSTAGE_VFIFO_CENTER);
return -EIO;
min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
/* Determine the amount we can change DQS (which is -mid_min) */
orig_mid_min = mid_min;
new_dqs = start_dqs - mid_min;
if (new_dqs > IO_DQS_IN_DELAY_MAX)
new_dqs = IO_DQS_IN_DELAY_MAX;
else if (new_dqs < 0)
new_dqs = 0;
mid_min = start_dqs - new_dqs;
debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
mid_min, new_dqs);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
else if (start_dqs_en - mid_min < 0)
mid_min += start_dqs_en - mid_min;
}
new_dqs = start_dqs - mid_min;
debug_cond(DLEVEL == 1,
"vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
start_dqs,
IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
new_dqs, mid_min);
/* Add delay to bring centre of all DQ windows to the same "level". */
center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
min_index, test_bgn, &dq_margin, &dqs_margin);
/* Move DQS-en */
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
final_dqs_en = start_dqs_en - mid_min;
scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
scc_mgr_load_dqs(rw_group);
}
/* Move DQS */
scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
scc_mgr_load_dqs(rw_group);
debug_cond(DLEVEL == 2,
"%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
__func__, __LINE__, dq_margin, dqs_margin);
/*
* Do not remove this line as it makes sure all of our decisions
* have been applied. Apply the update bit.
*/
writel(0, &sdr_scc_mgr->update);
if ((dq_margin < 0) || (dqs_margin < 0))
return -EINVAL;
return 0;
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
/**
* rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
* @rw_group: Read/Write Group
* @phase: DQ/DQS phase
*
* Because initially no communication ca be reliably performed with the memory
* device, the sequencer uses a guaranteed write mechanism to write data into
* the memory device.
*/
static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
const u32 phase)
{
int ret;
/* Set a particular DQ/DQS phase. */
scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
__func__, __LINE__, rw_group, phase);
/*
* Altera EMI_RM 2015.05.04 :: Figure 1-25
* Load up the patterns used by read calibration using the
* current DQDQS phase.
*/
rw_mgr_mem_calibrate_read_load_patterns(0, 1);
if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
return 0;
/*
* Altera EMI_RM 2015.05.04 :: Figure 1-26
* Back-to-Back reads of the patterns used for calibration.
*/
ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
if (ret)
debug_cond(DLEVEL == 1,
"%s:%d Guaranteed read test failed: g=%u p=%u\n",
__func__, __LINE__, rw_group, phase);
return ret;
}
/**
* rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
* @rw_group: Read/Write Group
* @test_bgn: Rank at which the test begins
*
* DQS enable calibration ensures reliable capture of the DQ signal without
* glitches on the DQS line.
*/
static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
const u32 test_bgn)
{
/*
* Altera EMI_RM 2015.05.04 :: Figure 1-27
* DQS and DQS Eanble Signal Relationships.
*/
Marek Vasut
committed
/* We start at zero, so have one less dq to devide among */
const u32 delay_step = IO_IO_IN_DELAY_MAX /
(RW_MGR_MEM_DQ_PER_READ_DQS - 1);
int ret;
Marek Vasut
committed
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
u32 i, p, d, r;
debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
/* Try different dq_in_delays since the DQ path is shorter than DQS. */
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
for (i = 0, p = test_bgn, d = 0;
i < RW_MGR_MEM_DQ_PER_READ_DQS;
i++, p++, d += delay_step) {
debug_cond(DLEVEL == 1,
"%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
__func__, __LINE__, rw_group, r, i, p, d);
scc_mgr_set_dq_in_delay(p, d);
scc_mgr_load_dq(p);
}
writel(0, &sdr_scc_mgr->update);
}
/*
* Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
* dq_in_delay values
*/
ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
Marek Vasut
committed
debug_cond(DLEVEL == 1,
"%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
__func__, __LINE__, rw_group, !ret);
Marek Vasut
committed
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
writel(0, &sdr_scc_mgr->update);
}
return ret;
}
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
/**
* rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
* @rw_group: Read/Write Group
* @test_bgn: Rank at which the test begins
* @use_read_test: Perform a read test
* @update_fom: Update FOM
*
* The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
* within a group.
*/
static int
rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
const int use_read_test,
const int update_fom)
{
int ret, grp_calibrated;
u32 rank_bgn, sr;
/*
* Altera EMI_RM 2015.05.04 :: Figure 1-28
* Read per-bit deskew can be done on a per shadow register basis.
*/
grp_calibrated = 1;
for (rank_bgn = 0, sr = 0;
rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
/* Check if this set of ranks should be skipped entirely. */
if (param->skip_shadow_regs[sr])
continue;
ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
test_bgn,
use_read_test,
update_fom);
if (!ret)
continue;
grp_calibrated = 0;
}
if (!grp_calibrated)
return -EIO;
return 0;
}
/**
* rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
* @rw_group: Read/Write Group
* @test_bgn: Rank at which the test begins
*
* Stage 1: Calibrate the read valid prediction FIFO.
*
* This function implements UniPHY calibration Stage 1, as explained in
* detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
* - read valid prediction will consist of finding:
* - DQS enable phase and DQS enable delay (DQS Enable Calibration)
* - DQS input phase and DQS input delay (DQ/DQS Centering)
* - we also do a per-bit deskew on the DQ lines.
*/
static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
uint32_t p, d;
uint32_t dtaps_per_ptap;
uint32_t failed_substage;
int ret;
debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
/* Update info for sims */
reg_file_set_group(rw_group);
reg_file_set_stage(CAL_STAGE_VFIFO);
reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
/* USER Determine number of delay taps for each phase tap. */
dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
for (d = 0; d <= dtaps_per_ptap; d += 2) {
/*
* In RLDRAMX we may be messing the delay of pins in
* the same write rw_group but outside of the current read
* the rw_group, but that's ok because we haven't calibrated
* output side yet.
*/
if (d > 0) {
scc_mgr_apply_group_all_out_delay_add_all_ranks(
rw_group, d);
for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
/* 1) Guaranteed Write */
ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
if (ret)
break;
/* 2) DQS Enable Calibration */
ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
test_bgn);
if (ret) {
failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
continue;
}
/* 3) Centering DQ/DQS */
* If doing read after write calibration, do not update
* FOM now. Do it then.
ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
test_bgn, 1, 0);
if (ret) {
failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
continue;
/* All done. */
goto cal_done_ok;
/* Calibration Stage 1 failed. */
set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
return 0;
/* Calibration Stage 1 completed OK. */
cal_done_ok:
/*
* Reset the delay chains back to zero if they have moved > 1
* (check for > 1 because loop will increase d even when pass in
* first case).
*/
if (d > 2)
scc_mgr_zero_group(rw_group, 1);
return 1;
}
/**
* rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
* @rw_group: Read/Write Group
* @test_bgn: Rank at which the test begins
*
* Stage 3: DQ/DQS Centering.
*
* This function implements UniPHY calibration Stage 3, as explained in
* detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
*/
static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,
const u32 test_bgn)
debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
/* Update info for sims. */
reg_file_set_group(rw_group);
reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1);
if (ret)
set_failing_group_stage(rw_group,
CAL_STAGE_VFIFO_AFTER_WRITES,
CAL_SUBSTAGE_VFIFO_CENTER);
/**
* rw_mgr_mem_calibrate_lfifo() - Minimize latency
*
* Stage 4: Minimize latency.
*
* This function implements UniPHY calibration Stage 4, as explained in
* detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
* Calibrate LFIFO to find smallest read latency.
*/
static uint32_t rw_mgr_mem_calibrate_lfifo(void)
{
debug("%s:%d\n", __func__, __LINE__);
/* Update info for sims. */
reg_file_set_stage(CAL_STAGE_LFIFO);
reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
/* Load up the patterns used by read calibration for all ranks */
rw_mgr_mem_calibrate_read_load_patterns(0, 1);
do {
writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
__func__, __LINE__, gbl->curr_read_lat);
if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS,
PASS_ALL_BITS, 1))
break;
found_one = 1;
/*
* Reduce read latency and see if things are
* working correctly.
*/
gbl->curr_read_lat--;
} while (gbl->curr_read_lat > 0);
/* Reset the fifos to get pointers to known state. */
writel(0, &phy_mgr_cmd->fifo_reset);
if (found_one) {
/* Add a fudge factor to the read latency that was determined */
gbl->curr_read_lat += 2;
writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
debug_cond(DLEVEL == 2,
"%s:%d lfifo: success: using read_lat=%u\n",
__func__, __LINE__, gbl->curr_read_lat);
} else {
set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
CAL_SUBSTAGE_READ_LATENCY);
debug_cond(DLEVEL == 2,
"%s:%d lfifo: failed at initial read_lat=%u\n",
__func__, __LINE__, gbl->curr_read_lat);
return found_one;
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
/**
* search_window() - Search for the/part of the window with DM/DQS shift
* @search_dm: If 1, search for the DM shift, if 0, search for DQS shift
* @rank_bgn: Rank number
* @write_group: Write Group
* @bgn_curr: Current window begin
* @end_curr: Current window end
* @bgn_best: Current best window begin
* @end_best: Current best window end
* @win_best: Size of the best window
* @new_dqs: New DQS value (only applicable if search_dm = 0).
*
* Search for the/part of the window with DM/DQS shift.
*/
static void search_window(const int search_dm,
const u32 rank_bgn, const u32 write_group,
int *bgn_curr, int *end_curr, int *bgn_best,
int *end_best, int *win_best, int new_dqs)
{
u32 bit_chk;
const int max = IO_IO_OUT1_DELAY_MAX - new_dqs;
int d, di;
/* Search for the/part of the window with DM/DQS shift. */
for (di = max; di >= 0; di -= DELTA_D) {
if (search_dm) {
d = di;
scc_mgr_apply_group_dm_out1_delay(d);
} else {
/* For DQS, we go from 0...max */
d = max - di;
/*
* Note: This only shifts DQS, so are we limiting ourselve to
* width of DQ unnecessarily.
*/
scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
d + new_dqs);
}
writel(0, &sdr_scc_mgr->update);
if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
PASS_ALL_BITS, &bit_chk,
0)) {
/* Set current end of the window. */
*end_curr = search_dm ? -d : d;
/*
* If a starting edge of our window has not been seen
* this is our current start of the DM window.
*/
if (*bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
*bgn_curr = search_dm ? -d : d;
/*
* If current window is bigger than best seen.
* Set best seen to be current window.
*/
if ((*end_curr - *bgn_curr + 1) > *win_best) {
*win_best = *end_curr - *bgn_curr + 1;
*bgn_best = *bgn_curr;
*end_best = *end_curr;
}
} else {
/* We just saw a failing test. Reset temp edge. */
*bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
*end_curr = IO_IO_OUT1_DELAY_MAX + 1;
/* Early exit is only applicable to DQS. */
if (search_dm)
continue;
/*
* Early exit optimization: if the remaining delay
* chain space is less than already seen largest
* window we can exit.
*/
if (*win_best - 1 > IO_IO_OUT1_DELAY_MAX - new_dqs - d)
break;
}
}
}
* rw_mgr_mem_calibrate_writes_center() - Center all windows
* @rank_bgn: Rank number
* @write_group: Write group
* @test_bgn: Rank at which the test begins
*
* Center all windows. Do per-bit-deskew to possibly increase size of
* certain windows.
*/
static int
rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
const u32 test_bgn)
u32 sticky_bit_chk;
u32 min_index;
int left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
int right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
int mid;
int mid_min, orig_mid_min;
int new_dqs, start_dqs;
int dq_margin, dqs_margin, dm_margin;
int bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
int end_curr = IO_IO_OUT1_DELAY_MAX + 1;
int bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
int end_best = IO_IO_OUT1_DELAY_MAX + 1;
int win_best = 0;
int ret;
debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
dm_margin = 0;
start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
SCC_MGR_IO_OUT1_DELAY_OFFSET) +
(RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
/* Per-bit deskew. */
* Set the left and right edge of each bit to an illegal value.
* Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
*/
sticky_bit_chk = 0;
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
}
/* Search for the left edge of the window for each bit. */