Skip to content
Snippets Groups Projects
misc.c 11.1 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     *  Copyright (C) 2012 Altera Corporation <www.altera.com>
     *
    
     * SPDX-License-Identifier:	GPL-2.0+
    
     */
    
    #include <common.h>
    #include <asm/io.h>
    
    #include <fdtdec.h>
    #include <libfdt.h>
    
    #include <miiphy.h>
    #include <netdev.h>
    
    #include <watchdog.h>
    
    #include <asm/arch/reset_manager.h>
    
    #include <asm/arch/scan_manager.h>
    
    #include <asm/arch/system_manager.h>
    
    #include <asm/arch/dwmmc.h>
    
    #include <asm/arch/nic301.h>
    
    #include <asm/arch/scu.h>
    
    #include <asm/pl310.h>
    
    #include <dt-bindings/reset/altr,rst-mgr.h>
    
    
    DECLARE_GLOBAL_DATA_PTR;
    
    
    static struct pl310_regs *const pl310 =
    	(struct pl310_regs *)CONFIG_SYS_PL310_BASE;
    
    static struct socfpga_system_manager *sysmgr_regs =
    	(struct socfpga_system_manager *)SOCFPGA_SYSMGR_ADDRESS;
    
    static struct socfpga_reset_manager *reset_manager_base =
    	(struct socfpga_reset_manager *)SOCFPGA_RSTMGR_ADDRESS;
    
    static struct nic301_registers *nic301_regs =
    	(struct nic301_registers *)SOCFPGA_L3REGS_ADDRESS;
    
    static struct scu_registers *scu_regs =
    	(struct scu_registers *)SOCFPGA_MPUSCU_ADDRESS;
    
    int dram_init(void)
    {
    	gd->ram_size = get_ram_size((long *)PHYS_SDRAM_1, PHYS_SDRAM_1_SIZE);
    	return 0;
    }
    
    void enable_caches(void)
    {
    #ifndef CONFIG_SYS_ICACHE_OFF
    	icache_enable();
    #endif
    #ifndef CONFIG_SYS_DCACHE_OFF
    	dcache_enable();
    #endif
    }
    
    
    	/* Disable the L2 cache */
    	clrbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
    
    
    	/* enable BRESP, instruction and data prefetch, full line of zeroes */
    	setbits_le32(&pl310->pl310_aux_ctrl,
    		     L310_AUX_CTRL_DATA_PREFETCH_MASK |
    		     L310_AUX_CTRL_INST_PREFETCH_MASK |
    		     L310_SHARED_ATT_OVERRIDE_ENABLE);
    
    
    	/* Enable the L2 cache */
    	setbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
    }
    
    void v7_outer_cache_disable(void)
    {
    	/* Disable the L2 cache */
    	clrbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
    
    /*
     * DesignWare Ethernet initialization
     */
    
    #ifdef CONFIG_ETH_DESIGNWARE
    
    static void dwmac_deassert_reset(const unsigned int of_reset_id)
    
    	u32 physhift, reset;
    
    	if (of_reset_id == EMAC0_RESET) {
    		physhift = SYSMGR_EMACGRP_CTRL_PHYSEL0_LSB;
    		reset = SOCFPGA_RESET(EMAC0);
    	} else if (of_reset_id == EMAC1_RESET) {
    		physhift = SYSMGR_EMACGRP_CTRL_PHYSEL1_LSB;
    		reset = SOCFPGA_RESET(EMAC1);
    	} else {
    		printf("GMAC: Invalid reset ID (%i)!\n", of_reset_id);
    		return;
    	}
    
    
    	/* Clearing emac0 PHY interface select to 0 */
    	clrbits_le32(&sysmgr_regs->emacgrp_ctrl,
    		     SYSMGR_EMACGRP_CTRL_PHYSEL_MASK << physhift);
    
    	/* configure to PHY interface select choosed */
    	setbits_le32(&sysmgr_regs->emacgrp_ctrl,
    		     SYSMGR_EMACGRP_CTRL_PHYSEL_ENUM_RGMII << physhift);
    
    	/* Release the EMAC controller from reset */
    
    	socfpga_per_reset(reset, 0);
    
    static int socfpga_eth_reset(void)
    
    {
    	const void *fdt = gd->fdt_blob;
    	struct fdtdec_phandle_args args;
    	int nodes[2];	/* Max. two GMACs */
    	int ret, count;
    	int i, node;
    
    	/* Put both GMACs into RESET state. */
    	socfpga_per_reset(SOCFPGA_RESET(EMAC0), 1);
    	socfpga_per_reset(SOCFPGA_RESET(EMAC1), 1);
    
    	count = fdtdec_find_aliases_for_id(fdt, "ethernet",
    					   COMPAT_ALTERA_SOCFPGA_DWMAC,
    					   nodes, ARRAY_SIZE(nodes));
    	for (i = 0; i < count; i++) {
    		node = nodes[i];
    		if (node <= 0)
    			continue;
    
    		ret = fdtdec_parse_phandle_with_args(fdt, node, "resets",
    						     "#reset-cells", 1, 0,
    						     &args);
    		if (ret || (args.args_count != 1)) {
    			debug("GMAC%i: Failed to parse DT 'resets'!\n", i);
    			continue;
    		}
    
    		dwmac_deassert_reset(args.args[0]);
    	}
    
    #else
    static int socfpga_eth_reset(void)
    {
    	return 0
    };
    
    struct {
    	const char	*mode;
    	const char	*name;
    } bsel_str[] = {
    	{ "rsvd", "Reserved", },
    	{ "fpga", "FPGA (HPS2FPGA Bridge)", },
    	{ "nand", "NAND Flash (1.8V)", },
    	{ "nand", "NAND Flash (3.0V)", },
    	{ "sd", "SD/MMC External Transceiver (1.8V)", },
    	{ "sd", "SD/MMC Internal Transceiver (3.0V)", },
    	{ "qspi", "QSPI Flash (1.8V)", },
    	{ "qspi", "QSPI Flash (3.0V)", },
    
    static const struct {
    	const u16	pn;
    	const char	*name;
    	const char	*var;
    } const socfpga_fpga_model[] = {
    	/* Cyclone V E */
    	{ 0x2b15, "Cyclone V, E/A2", "cv_e_a2" },
    	{ 0x2b05, "Cyclone V, E/A4", "cv_e_a4" },
    	{ 0x2b22, "Cyclone V, E/A5", "cv_e_a5" },
    	{ 0x2b13, "Cyclone V, E/A7", "cv_e_a7" },
    	{ 0x2b14, "Cyclone V, E/A9", "cv_e_a9" },
    	/* Cyclone V GX/GT */
    	{ 0x2b01, "Cyclone V, GX/C3", "cv_gx_c3" },
    	{ 0x2b12, "Cyclone V, GX/C4", "cv_gx_c4" },
    	{ 0x2b02, "Cyclone V, GX/C5 or GT/D5", "cv_gx_c5" },
    	{ 0x2b03, "Cyclone V, GX/C7 or GT/D7", "cv_gx_c7" },
    	{ 0x2b04, "Cyclone V, GX/C9 or GT/D9", "cv_gx_c9" },
    	/* Cyclone V SE/SX/ST */
    	{ 0x2d11, "Cyclone V, SE/A2 or SX/C2", "cv_se_a2" },
    	{ 0x2d01, "Cyclone V, SE/A4 or SX/C4", "cv_se_a4" },
    	{ 0x2d12, "Cyclone V, SE/A5 or SX/C5 or ST/D5", "cv_se_a5" },
    	{ 0x2d02, "Cyclone V, SE/A6 or SX/C6 or ST/D6", "cv_se_a6" },
    	/* Arria V */
    	{ 0x2d03, "Arria V, D5", "av_d5" },
    };
    
    static int socfpga_fpga_id(const bool print_id)
    {
    	const u32 altera_mi = 0x6e;
    	const u32 id = scan_mgr_get_fpga_id();
    
    	const u32 lsb = id & 0x00000001;
    	const u32 mi = (id >> 1) & 0x000007ff;
    	const u32 pn = (id >> 12) & 0x0000ffff;
    	const u32 version = (id >> 28) & 0x0000000f;
    	int i;
    
    	if ((mi != altera_mi) || (lsb != 1)) {
    		printf("FPGA:  Not Altera chip ID\n");
    		return -EINVAL;
    	}
    
    	for (i = 0; i < ARRAY_SIZE(socfpga_fpga_model); i++)
    		if (pn == socfpga_fpga_model[i].pn)
    			break;
    
    	if (i == ARRAY_SIZE(socfpga_fpga_model)) {
    		printf("FPGA:  Unknown Altera chip, ID 0x%08x\n", id);
    		return -EINVAL;
    	}
    
    	if (print_id)
    		printf("FPGA:  Altera %s, version 0x%01x\n",
    		       socfpga_fpga_model[i].name, version);
    	return i;
    }
    
    
    #if defined(CONFIG_DISPLAY_CPUINFO)
    
    	const u32 bsel = readl(&sysmgr_regs->bootinfo) & 0x7;
    
    	puts("CPU:   Altera SoCFPGA Platform\n");
    
    	printf("BOOT:  %s\n", bsel_str[bsel].name);
    	return 0;
    }
    #endif
    
    #ifdef CONFIG_ARCH_MISC_INIT
    int arch_misc_init(void)
    {
    	const u32 bsel = readl(&sysmgr_regs->bootinfo) & 0x7;
    
    	const int fpga_id = socfpga_fpga_id(0);
    
    	setenv("bootmode", bsel_str[bsel].mode);
    
    	if (fpga_id >= 0)
    		setenv("fpgatype", socfpga_fpga_model[fpga_id].var);
    
    	return socfpga_eth_reset();
    
    }
    #endif
    
    #if defined(CONFIG_SYS_CONSOLE_IS_IN_ENV) && \
    defined(CONFIG_SYS_CONSOLE_OVERWRITE_ROUTINE)
    int overwrite_console(void)
    {
    	return 0;
    }
    #endif
    
    
    #ifdef CONFIG_FPGA
    /*
     * FPGA programming support for SoC FPGA Cyclone V
     */
    static Altera_desc altera_fpga[] = {
    	{
    		/* Family */
    		Altera_SoCFPGA,
    		/* Interface type */
    		fast_passive_parallel,
    		/* No limitation as additional data will be ignored */
    		-1,
    		/* No device function table */
    		NULL,
    		/* Base interface address specified in driver */
    		NULL,
    		/* No cookie implementation */
    		0
    	},
    };
    
    /* add device descriptor to FPGA device table */
    static void socfpga_fpga_add(void)
    {
    	int i;
    	fpga_init();
    	for (i = 0; i < ARRAY_SIZE(altera_fpga); i++)
    		fpga_add(fpga_altera, &altera_fpga[i]);
    }
    #else
    static inline void socfpga_fpga_add(void) {}
    #endif
    
    
    int arch_cpu_init(void)
    {
    
    #ifdef CONFIG_HW_WATCHDOG
    	/*
    	 * In case the watchdog is enabled, make sure to (re-)configure it
    	 * so that the defined timeout is valid. Otherwise the SPL (Perloader)
    	 * timeout value is still active which might too short for Linux
    	 * booting.
    	 */
    	hw_watchdog_init();
    #else
    
    	/*
    	 * If the HW watchdog is NOT enabled, make sure it is not running,
    	 * for example because it was enabled in the preloader. This might
    	 * trigger a watchdog-triggered reboot of Linux kernel later.
    
    	 * Toggle watchdog reset, so watchdog in not running state.
    
    	socfpga_per_reset(SOCFPGA_RESET(L4WD0), 1);
    	socfpga_per_reset(SOCFPGA_RESET(L4WD0), 0);
    
    /*
     * Convert all NIC-301 AMBA slaves from secure to non-secure
     */
    static void socfpga_nic301_slave_ns(void)
    {
    	writel(0x1, &nic301_regs->lwhps2fpgaregs);
    	writel(0x1, &nic301_regs->hps2fpgaregs);
    	writel(0x1, &nic301_regs->acp);
    	writel(0x1, &nic301_regs->rom);
    	writel(0x1, &nic301_regs->ocram);
    	writel(0x1, &nic301_regs->sdrdata);
    }
    
    
    static uint32_t iswgrp_handoff[8];
    
    
    
    	/*
    	 * Write magic value into magic register to unlock support for
    	 * issuing warm reset. The ancient kernel code expects this
    	 * value to be written into the register by the bootloader, so
    	 * to support that old code, we write it here instead of in the
    	 * reset_cpu() function just before reseting the CPU.
    	 */
    	writel(0xae9efebc, &sysmgr_regs->romcodegrp_warmramgrp_enable);
    
    
    	for (i = 0; i < 8; i++)	/* Cache initial SW setting regs */
    		iswgrp_handoff[i] = readl(&sysmgr_regs->iswgrp_handoff[i]);
    
    
    	socfpga_bridges_reset(1);
    	socfpga_nic301_slave_ns();
    
    	/*
    	 * Private components security:
    	 * U-Boot : configure private timer, global timer and cpu component
    	 * access as non secure for kernel stage (as required by Linux)
    	 */
    	setbits_le32(&scu_regs->sacr, 0xfff);
    
    
    	/* Configure the L2 controller to make SDRAM start at 0 */
    #ifdef CONFIG_SOCFPGA_VIRTUAL_TARGET
    	writel(0x2, &nic301_regs->remap);
    #else
    	writel(0x1, &nic301_regs->remap);	/* remap.mpuzero */
    	writel(0x1, &pl310->pl310_addr_filter_start);
    #endif
    
    
    	/* Add device descriptor to FPGA device table */
    	socfpga_fpga_add();
    
    
    #ifdef CONFIG_DESIGNWARE_SPI
    	/* Get Designware SPI controller out of reset */
    
    	socfpga_per_reset(SOCFPGA_RESET(SPIM0), 0);
    	socfpga_per_reset(SOCFPGA_RESET(SPIM1), 0);
    
    #ifdef CONFIG_NAND_DENALI
    	socfpga_per_reset(SOCFPGA_RESET(NAND), 0);
    #endif
    
    
    
    static void socfpga_sdram_apply_static_cfg(void)
    {
    	const uint32_t staticcfg = SOCFPGA_SDR_ADDRESS + 0x505c;
    	const uint32_t applymask = 0x8;
    	uint32_t val = readl(staticcfg) | applymask;
    
    	/*
    	 * SDRAM staticcfg register specific:
    	 * When applying the register setting, the CPU must not access
    	 * SDRAM. Luckily for us, we can abuse i-cache here to help us
    	 * circumvent the SDRAM access issue. The idea is to make sure
    	 * that the code is in one full i-cache line by branching past
    	 * it and back. Once it is in the i-cache, we execute the core
    	 * of the code and apply the register settings.
    	 *
    	 * The code below uses 7 instructions, while the Cortex-A9 has
    	 * 32-byte cachelines, thus the limit is 8 instructions total.
    	 */
    	asm volatile(
    		".align	5			\n"
    		"	b	2f		\n"
    		"1:	str	%0,	[%1]	\n"
    		"	dsb			\n"
    		"	isb			\n"
    		"	b	3f		\n"
    		"2:	b	1b		\n"
    		"3:	nop			\n"
    	: : "r"(val), "r"(staticcfg) : "memory", "cc");
    }
    
    int do_bridge(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
    {
    	if (argc != 2)
    		return CMD_RET_USAGE;
    
    	argv++;
    
    	switch (*argv[0]) {
    	case 'e':	/* Enable */
    		writel(iswgrp_handoff[2], &sysmgr_regs->fpgaintfgrp_module);
    		socfpga_sdram_apply_static_cfg();
    		writel(iswgrp_handoff[3], SOCFPGA_SDR_ADDRESS + 0x5080);
    		writel(iswgrp_handoff[0], &reset_manager_base->brg_mod_reset);
    		writel(iswgrp_handoff[1], &nic301_regs->remap);
    		break;
    	case 'd':	/* Disable */
    		writel(0, &sysmgr_regs->fpgaintfgrp_module);
    		writel(0, SOCFPGA_SDR_ADDRESS + 0x5080);
    		socfpga_sdram_apply_static_cfg();
    		writel(0, &reset_manager_base->brg_mod_reset);
    		writel(1, &nic301_regs->remap);
    		break;
    	default:
    		return CMD_RET_USAGE;
    	}
    
    	return 0;
    }
    
    U_BOOT_CMD(
    	bridge, 2, 1, do_bridge,
    	"SoCFPGA HPS FPGA bridge control",
    	"enable  - Enable HPS-to-FPGA, FPGA-to-HPS, LWHPS-to-FPGA bridges\n"
    	"bridge disable - Enable HPS-to-FPGA, FPGA-to-HPS, LWHPS-to-FPGA bridges\n"
    	""
    );