Newer
Older
case 0: puts ("TTL 5.0 V\n"); break;
case 1: puts ("LVTTL\n"); break;
case 2: puts ("HSTL 1.5 V\n"); break;
case 3: puts ("SSTL 3.3 V\n"); break;
case 4: puts ("SSTL 2.5 V\n"); break;
case 5: puts ("SSTL 1.8 V\n"); break;
default: puts ("unknown\n"); break;
switch (type) {
case DDR2:
printf ("SDRAM cycle time ");
print_ddr2_tcyc (data[9]);
printf ("SDRAM cycle time %d.%d ns\n",
(data[9] >> 4) & 0x0F, data[9] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf ("SDRAM access time 0.%d%d ns\n",
(data[10] >> 4) & 0x0F, data[10] & 0x0F);
printf ("SDRAM access time %d.%d ns\n",
(data[10] >> 4) & 0x0F, data[10] & 0x0F);
puts ("EDC configuration ");
case 0: puts ("None\n"); break;
case 1: puts ("Parity\n"); break;
case 2: puts ("ECC\n"); break;
default: puts ("unknown\n"); break;
puts ("No self refresh, rate ");
puts ("Self refresh, rate ");
case 0: puts ("15.625 us\n"); break;
case 1: puts ("3.9 us\n"); break;
case 2: puts ("7.8 us\n"); break;
case 3: puts ("31.3 us\n"); break;
case 4: puts ("62.5 us\n"); break;
case 5: puts ("125 us\n"); break;
default: puts ("unknown\n"); break;
switch (type) {
case DDR2:
printf ("SDRAM width (primary) %d\n", data[13]);
printf ("SDRAM width (primary) %d\n", data[13] & 0x7F);
printf (" (second bank) %d\n",
2 * (data[13] & 0x7F));
}
break;
}
switch (type) {
case DDR2:
if (data[14] != 0)
printf ("EDC width %d\n", data[14]);
break;
default:
if (data[14] != 0) {
printf ("EDC width %d\n",
data[14] & 0x7F);
if ((data[14] & 0x80) != 0) {
printf (" (second bank) %d\n",
2 * (data[14] & 0x7F));
if (DDR2 != type) {
printf ("Min clock delay, back-to-back random column addresses "
"%d\n", data[15]);
puts ("Burst length(s) ");
if (data[16] & 0x80) puts (" Page");
if (data[16] & 0x08) puts (" 8");
if (data[16] & 0x04) puts (" 4");
if (data[16] & 0x02) puts (" 2");
if (data[16] & 0x01) puts (" 1");
putc ('\n');
printf ("Number of banks %d\n", data[17]);
switch (type) {
case DDR2:
puts ("CAS latency(s) ");
decode_bits (data[18], decode_CAS_DDR2, 0);
putc ('\n');
break;
default:
puts ("CAS latency(s) ");
decode_bits (data[18], decode_CAS_default, 0);
putc ('\n');
break;
}
if (DDR2 != type) {
puts ("CS latency(s) ");
decode_bits (data[19], decode_CS_WE_default, 0);
putc ('\n');
}
if (DDR2 != type) {
puts ("WE latency(s) ");
decode_bits (data[20], decode_CS_WE_default, 0);
putc ('\n');
}
switch (type) {
case DDR2:
puts ("Module attributes:\n");
if (data[21] & 0x80)
puts (" TBD (bit 7)\n");
if (data[21] & 0x40)
puts (" Analysis probe installed\n");
if (data[21] & 0x20)
puts (" TBD (bit 5)\n");
if (data[21] & 0x10)
puts (" FET switch external enable\n");
printf (" %d PLLs on DIMM\n", (data[21] >> 2) & 0x03);
printf (" %d active registers on DIMM\n",
(data[21] & 0x03) + 1);
}
break;
default:
puts ("Module attributes:\n");
if (!data[21])
puts (" (none)\n");
else
decode_bits (data[21], decode_byte21_default, 0);
break;
}
switch (type) {
case DDR2:
decode_bits (data[22], decode_byte22_DDR2, 0);
break;
default:
puts ("Device attributes:\n");
if (data[22] & 0x80) puts (" TBD (bit 7)\n");
if (data[22] & 0x40) puts (" TBD (bit 6)\n");
if (data[22] & 0x20) puts (" Upper Vcc tolerance 5%\n");
else puts (" Upper Vcc tolerance 10%\n");
if (data[22] & 0x10) puts (" Lower Vcc tolerance 5%\n");
else puts (" Lower Vcc tolerance 10%\n");
if (data[22] & 0x08) puts (" Supports write1/read burst\n");
if (data[22] & 0x04) puts (" Supports precharge all\n");
if (data[22] & 0x02) puts (" Supports auto precharge\n");
if (data[22] & 0x01) puts (" Supports early RAS# precharge\n");
break;
}
switch (type) {
case DDR2:
printf ("SDRAM cycle time (2nd highest CAS latency) ");
print_ddr2_tcyc (data[23]);
printf ("SDRAM cycle time (2nd highest CAS latency) %d."
"%d ns\n", (data[23] >> 4) & 0x0F, data[23] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf ("SDRAM access from clock (2nd highest CAS latency) 0."
"%d%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
printf ("SDRAM access from clock (2nd highest CAS latency) %d."
"%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf ("SDRAM cycle time (3rd highest CAS latency) ");
print_ddr2_tcyc (data[25]);
printf ("SDRAM cycle time (3rd highest CAS latency) %d."
"%d ns\n", (data[25] >> 4) & 0x0F, data[25] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf ("SDRAM access from clock (3rd highest CAS latency) 0."
"%d%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
printf ("SDRAM access from clock (3rd highest CAS latency) %d."
"%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf ("Minimum row precharge %d.%02d ns\n",
(data[27] >> 2) & 0x3F, 25 * (data[27] & 0x03));
printf ("Minimum row precharge %d ns\n", data[27]);
break;
}
switch (type) {
case DDR2:
printf ("Row active to row active min %d.%02d ns\n",
(data[28] >> 2) & 0x3F, 25 * (data[28] & 0x03));
printf ("Row active to row active min %d ns\n", data[28]);
break;
}
switch (type) {
case DDR2:
printf ("RAS to CAS delay min %d.%02d ns\n",
(data[29] >> 2) & 0x3F, 25 * (data[29] & 0x03));
printf ("RAS to CAS delay min %d ns\n", data[29]);
printf ("Minimum RAS pulse width %d ns\n", data[30]);
switch (type) {
case DDR2:
puts ("Density of each row ");
decode_bits (data[31], decode_row_density_DDR2, 1);
putc ('\n');
puts ("Density of each row ");
decode_bits (data[31], decode_row_density_default, 1);
putc ('\n');
break;
}
switch (type) {
case DDR2:
puts ("Command and Address setup ");
printf ("1.%d%d ns\n",
((data[32] >> 4) & 0x0F) - 10, data[32] & 0x0F);
printf ("0.%d%d ns\n",
((data[32] >> 4) & 0x0F), data[32] & 0x0F);
printf ("Command and Address setup %c%d.%d ns\n",
(data[32] & 0x80) ? '-' : '+',
(data[32] >> 4) & 0x07, data[32] & 0x0F);
break;
}
switch (type) {
case DDR2:
puts ("Command and Address hold ");
printf ("1.%d%d ns\n",
((data[33] >> 4) & 0x0F) - 10, data[33] & 0x0F);
printf ("0.%d%d ns\n",
((data[33] >> 4) & 0x0F), data[33] & 0x0F);
printf ("Command and Address hold %c%d.%d ns\n",
(data[33] & 0x80) ? '-' : '+',
(data[33] >> 4) & 0x07, data[33] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf ("Data signal input setup 0.%d%d ns\n",
(data[34] >> 4) & 0x0F, data[34] & 0x0F);
printf ("Data signal input setup %c%d.%d ns\n",
(data[34] & 0x80) ? '-' : '+',
(data[34] >> 4) & 0x07, data[34] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf ("Data signal input hold 0.%d%d ns\n",
(data[35] >> 4) & 0x0F, data[35] & 0x0F);
printf ("Data signal input hold %c%d.%d ns\n",
(data[35] & 0x80) ? '-' : '+',
(data[35] >> 4) & 0x07, data[35] & 0x0F);
puts ("Manufacturer's JEDEC ID ");
printf ("Manufacturing Location %02X\n", data[72]);
puts ("Manufacturer's Part Number ");
printf ("Revision Code %02X %02X\n", data[91], data[92]);
printf ("Manufacturing Date %02X %02X\n", data[93], data[94]);
puts ("Assembly Serial Number ");
printf ("Speed rating PC%d\n",
data[126] == 0x66 ? 66 : data[126]);
#if defined(CONFIG_I2C_MUX)
/**
* do_i2c_add_bus() - Handle the "i2c bus" command-line command
* @cmdtp: Command data struct pointer
* @flag: Command flag
* @argc: Command-line argument count
* @argv: Array of command-line arguments
*
* Returns zero always.
*/
static int do_i2c_add_bus(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
{
int ret=0;
if (argc == 1) {
/* show all busses */
I2C_MUX *mux;
I2C_MUX_DEVICE *device = i2c_mux_devices;
printf ("Busses reached over muxes:\n");
while (device != NULL) {
printf ("Bus ID: %x\n", device->busid);
printf (" reached over Mux(es):\n");
mux = device->mux;
while (mux != NULL) {
printf (" %s@%x ch: %x\n", mux->name, mux->chip, mux->channel);
mux = mux->next;
}
device = device->next;
}
} else {
(void)i2c_mux_ident_muxstring ((uchar *)argv[1]);
ret = 0;
}
return ret;
}
#endif /* CONFIG_I2C_MUX */
/**
* do_i2c_bus_num() - Handle the "i2c dev" command-line command
* @cmdtp: Command data struct pointer
* @flag: Command flag
* @argc: Command-line argument count
* @argv: Array of command-line arguments
*
* Returns zero on success, CMD_RET_USAGE in case of misuse and negative
* on error.
*/
static int do_i2c_bus_num(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
if (argc == 1)
/* querying current setting */
printf("Current bus is %d\n", i2c_get_bus_num());
bus_idx = simple_strtoul(argv[1], NULL, 10);
printf("Setting bus to %d\n", bus_idx);
ret = i2c_set_bus_num(bus_idx);
printf("Failure changing bus number (%d)\n", ret);
}
return ret;
}
#endif /* CONFIG_I2C_MULTI_BUS */
/**
* do_i2c_bus_speed() - Handle the "i2c speed" command-line command
* @cmdtp: Command data struct pointer
* @flag: Command flag
* @argc: Command-line argument count
* @argv: Array of command-line arguments
*
* Returns zero on success, CMD_RET_USAGE in case of misuse and negative
* on error.
*/
static int do_i2c_bus_speed(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
if (argc == 1)
/* querying current speed */
printf("Current bus speed=%d\n", i2c_get_bus_speed());
speed = simple_strtoul(argv[1], NULL, 10);
printf("Setting bus speed to %d Hz\n", speed);
ret = i2c_set_bus_speed(speed);
printf("Failure changing bus speed (%d)\n", ret);
}
return ret;
}
/**
* do_i2c_mm() - Handle the "i2c mm" command-line command
* @cmdtp: Command data struct pointer
* @flag: Command flag
* @argc: Command-line argument count
* @argv: Array of command-line arguments
*
* Returns zero on success, CMD_RET_USAGE in case of misuse and negative
* on error.
*/
static int do_i2c_mm(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
return mod_i2c_mem (cmdtp, 1, flag, argc, argv);
}
/**
* do_i2c_nm() - Handle the "i2c nm" command-line command
* @cmdtp: Command data struct pointer
* @flag: Command flag
* @argc: Command-line argument count
* @argv: Array of command-line arguments
*
* Returns zero on success, CMD_RET_USAGE in case of misuse and negative
* on error.
*/
static int do_i2c_nm(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
{
return mod_i2c_mem (cmdtp, 0, flag, argc, argv);
}
/**
* do_i2c_reset() - Handle the "i2c reset" command-line command
* @cmdtp: Command data struct pointer
* @flag: Command flag
* @argc: Command-line argument count
* @argv: Array of command-line arguments
*
* Returns zero always.
*/
static int do_i2c_reset(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
{
i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
return 0;
}
static cmd_tbl_t cmd_i2c_sub[] = {
#if defined(CONFIG_I2C_MUX)
U_BOOT_CMD_MKENT(bus, 1, 1, do_i2c_add_bus, "", ""),
#endif /* CONFIG_I2C_MUX */
U_BOOT_CMD_MKENT(crc32, 3, 1, do_i2c_crc, "", ""),
U_BOOT_CMD_MKENT(dev, 1, 1, do_i2c_bus_num, "", ""),
U_BOOT_CMD_MKENT(loop, 3, 1, do_i2c_loop, "", ""),
U_BOOT_CMD_MKENT(md, 3, 1, do_i2c_md, "", ""),
U_BOOT_CMD_MKENT(mm, 2, 1, do_i2c_mm, "", ""),
U_BOOT_CMD_MKENT(mw, 3, 1, do_i2c_mw, "", ""),
U_BOOT_CMD_MKENT(nm, 2, 1, do_i2c_nm, "", ""),
U_BOOT_CMD_MKENT(probe, 0, 1, do_i2c_probe, "", ""),
U_BOOT_CMD_MKENT(read, 5, 1, do_i2c_read, "", ""),
U_BOOT_CMD_MKENT(write, 5, 0, do_i2c_write, "", ""),
U_BOOT_CMD_MKENT(reset, 0, 1, do_i2c_reset, "", ""),
#if defined(CONFIG_CMD_SDRAM)
U_BOOT_CMD_MKENT(sdram, 1, 1, do_sdram, "", ""),
U_BOOT_CMD_MKENT(speed, 1, 1, do_i2c_bus_speed, "", ""),
};
#ifdef CONFIG_NEEDS_MANUAL_RELOC
void i2c_reloc(void) {
fixup_cmdtable(cmd_i2c_sub, ARRAY_SIZE(cmd_i2c_sub));
}
#endif
/**
* do_i2c() - Handle the "i2c" command-line command
* @cmdtp: Command data struct pointer
* @flag: Command flag
* @argc: Command-line argument count
* @argv: Array of command-line arguments
*
* Returns zero on success, CMD_RET_USAGE in case of misuse and negative
* on error.
*/
static int do_i2c(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
return CMD_RET_USAGE;
/* Strip off leading 'i2c' command argument */
argc--;
argv++;
c = find_cmd_tbl(argv[0], &cmd_i2c_sub[0], ARRAY_SIZE(cmd_i2c_sub));
return c->cmd(cmdtp, flag, argc, argv);
return CMD_RET_USAGE;
/***************************************************/
#ifdef CONFIG_SYS_LONGHELP
static char i2c_help_text[] =
#if defined(CONFIG_I2C_MUX)
"bus [muxtype:muxaddr:muxchannel] - add a new bus reached over muxes\ni2c "
#endif /* CONFIG_I2C_MUX */
"crc32 chip address[.0, .1, .2] count - compute CRC32 checksum\n"
#if defined(CONFIG_I2C_MULTI_BUS)
"i2c dev [dev] - show or set current I2C bus\n"
#endif /* CONFIG_I2C_MULTI_BUS */
"i2c loop chip address[.0, .1, .2] [# of objects] - looping read of device\n"
"i2c md chip address[.0, .1, .2] [# of objects] - read from I2C device\n"
"i2c mm chip address[.0, .1, .2] - write to I2C device (auto-incrementing)\n"
"i2c mw chip address[.0, .1, .2] value [count] - write to I2C device (fill)\n"
"i2c nm chip address[.0, .1, .2] - write to I2C device (constant address)\n"
"i2c probe [address] - test for and show device(s) on the I2C bus\n"
"i2c read chip address[.0, .1, .2] length memaddress - read to memory \n"
"i2c write memaddress chip address[.0, .1, .2] length - write memory to i2c\n"
"i2c reset - re-init the I2C Controller\n"
#if defined(CONFIG_CMD_SDRAM)
"i2c sdram chip - print SDRAM configuration information\n"
"i2c speed [speed] - show or set I2C bus speed";
#endif
U_BOOT_CMD(
i2c, 6, 1, do_i2c,
"I2C sub-system",
i2c_help_text
);
#if defined(CONFIG_I2C_MUX)
static int i2c_mux_add_device(I2C_MUX_DEVICE *dev)
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
{
I2C_MUX_DEVICE *devtmp = i2c_mux_devices;
if (i2c_mux_devices == NULL) {
i2c_mux_devices = dev;
return 0;
}
while (devtmp->next != NULL)
devtmp = devtmp->next;
devtmp->next = dev;
return 0;
}
I2C_MUX_DEVICE *i2c_mux_search_device(int id)
{
I2C_MUX_DEVICE *device = i2c_mux_devices;
while (device != NULL) {
if (device->busid == id)
return device;
device = device->next;
}
return NULL;
}
/* searches in the buf from *pos the next ':'.
* returns:
* 0 if found (with *pos = where)
* < 0 if an error occured
* > 0 if the end of buf is reached
*/
static int i2c_mux_search_next (int *pos, uchar *buf, int len)
{
while ((buf[*pos] != ':') && (*pos < len)) {
*pos += 1;
}
if (*pos >= len)
return 1;
if (buf[*pos] != ':')
return -1;
return 0;
}
static int i2c_mux_get_busid (void)
{
int tmp = i2c_mux_busid;
i2c_mux_busid ++;
return tmp;
}
/* Analyses a Muxstring and immediately sends the
commands to the muxes. Runs from flash.
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
*/
int i2c_mux_ident_muxstring_f (uchar *buf)
{
int pos = 0;
int oldpos;
int ret = 0;
int len = strlen((char *)buf);
int chip;
uchar channel;
int was = 0;
while (ret == 0) {
oldpos = pos;
/* search name */
ret = i2c_mux_search_next(&pos, buf, len);
if (ret != 0)
printf ("ERROR\n");
/* search address */
pos ++;
oldpos = pos;
ret = i2c_mux_search_next(&pos, buf, len);
if (ret != 0)
printf ("ERROR\n");
buf[pos] = 0;
chip = simple_strtoul((char *)&buf[oldpos], NULL, 16);
buf[pos] = ':';
/* search channel */
pos ++;
oldpos = pos;
ret = i2c_mux_search_next(&pos, buf, len);
if (ret < 0)
printf ("ERROR\n");
was = 0;
if (buf[pos] != 0) {
buf[pos] = 0;
was = 1;
}
channel = simple_strtoul((char *)&buf[oldpos], NULL, 16);
if (was)
buf[pos] = ':';
if (i2c_write(chip, 0, 0, &channel, 1) != 0) {
printf ("Error setting Mux: chip:%x channel: \
%x\n", chip, channel);
return -1;
}
pos ++;
oldpos = pos;
}
i2c_init_board();
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
return 0;
}
/* Analyses a Muxstring and if this String is correct
* adds a new I2C Bus.
*/
I2C_MUX_DEVICE *i2c_mux_ident_muxstring (uchar *buf)
{
I2C_MUX_DEVICE *device;
I2C_MUX *mux;
int pos = 0;
int oldpos;
int ret = 0;
int len = strlen((char *)buf);
int was = 0;
device = (I2C_MUX_DEVICE *)malloc (sizeof(I2C_MUX_DEVICE));
device->mux = NULL;
device->busid = i2c_mux_get_busid ();
device->next = NULL;
while (ret == 0) {
mux = (I2C_MUX *)malloc (sizeof(I2C_MUX));
mux->next = NULL;
/* search name of mux */
oldpos = pos;
ret = i2c_mux_search_next(&pos, buf, len);
if (ret != 0)
printf ("%s no name.\n", __FUNCTION__);
mux->name = (char *)malloc (pos - oldpos + 1);
memcpy (mux->name, &buf[oldpos], pos - oldpos);
mux->name[pos - oldpos] = 0;
/* search address */
pos ++;
oldpos = pos;
ret = i2c_mux_search_next(&pos, buf, len);
if (ret != 0)
printf ("%s no mux address.\n", __FUNCTION__);
buf[pos] = 0;
mux->chip = simple_strtoul((char *)&buf[oldpos], NULL, 16);
buf[pos] = ':';
/* search channel */
pos ++;
oldpos = pos;
ret = i2c_mux_search_next(&pos, buf, len);
if (ret < 0)
printf ("%s no mux channel.\n", __FUNCTION__);
was = 0;
if (buf[pos] != 0) {
buf[pos] = 0;
was = 1;
}
mux->channel = simple_strtoul((char *)&buf[oldpos], NULL, 16);
if (was)
buf[pos] = ':';
if (device->mux == NULL)
device->mux = mux;
else {
I2C_MUX *muxtmp = device->mux;
while (muxtmp->next != NULL) {
muxtmp = muxtmp->next;
}
muxtmp->next = mux;
}
pos ++;
oldpos = pos;
}
if (ret > 0) {
/* Add Device */
i2c_mux_add_device (device);
return device;
}
return NULL;
}
int i2x_mux_select_mux(int bus)
{
I2C_MUX_DEVICE *dev;
I2C_MUX *mux;
if ((gd->flags & GD_FLG_RELOC) != GD_FLG_RELOC) {
/* select Default Mux Bus */
#if defined(CONFIG_SYS_I2C_IVM_BUS)
i2c_mux_ident_muxstring_f ((uchar *)CONFIG_SYS_I2C_IVM_BUS);
#else
{
unsigned char *buf;
buf = (unsigned char *) getenv("EEprom_ivm");
if (buf != NULL)
i2c_mux_ident_muxstring_f (buf);
}
#endif
return 0;
}
dev = i2c_mux_search_device(bus);
if (dev == NULL)
return -1;
mux = dev->mux;
while (mux != NULL) {
/* do deblocking on each level of mux, before mux config */
i2c_init_board();
if (i2c_write(mux->chip, 0, 0, &mux->channel, 1) != 0) {
printf ("Error setting Mux: chip:%x channel: \
%x\n", mux->chip, mux->channel);
return -1;
}
mux = mux->next;
}
/* do deblocking on each level of mux and after mux config */
i2c_init_board();
return 0;
}
#endif /* CONFIG_I2C_MUX */