Newer
Older
* (C) Copyright 2008-2011
* Graeme Russ, <graeme.russ@gmail.com>
*
* Daniel Engström, Omicron Ceti AB, <daniel@omicron.se>
* (C) Copyright 2002
* Sysgo Real-Time Solutions, GmbH <www.elinos.com>
* Marius Groeger <mgroeger@sysgo.de>
*
* (C) Copyright 2002
* Sysgo Real-Time Solutions, GmbH <www.elinos.com>
* Alex Zuepke <azu@sysgo.de>
*
* Part of this file is adapted from coreboot
* src/arch/x86/lib/cpu.c
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <command.h>
#include <errno.h>
#include <malloc.h>
#include <asm/lapic.h>
#include <asm/mp.h>
#include <asm/msr.h>
#include <asm/mtrr.h>
#include <asm/processor.h>
#include <asm/processor-flags.h>
/*
* Constructor for a conventional segment GDT (or LDT) entry
* This is a macro so it can be used in initialisers
*/
#define GDT_ENTRY(flags, base, limit) \
((((base) & 0xff000000ULL) << (56-24)) | \
(((flags) & 0x0000f0ffULL) << 40) | \
(((limit) & 0x000f0000ULL) << (48-16)) | \
(((base) & 0x00ffffffULL) << 16) | \
(((limit) & 0x0000ffffULL)))
struct gdt_ptr {
u16 len;
u32 ptr;
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
struct cpu_device_id {
unsigned vendor;
unsigned device;
};
struct cpuinfo_x86 {
uint8_t x86; /* CPU family */
uint8_t x86_vendor; /* CPU vendor */
uint8_t x86_model;
uint8_t x86_mask;
};
/*
* List of cpu vendor strings along with their normalized
* id values.
*/
static struct {
int vendor;
const char *name;
} x86_vendors[] = {
{ X86_VENDOR_INTEL, "GenuineIntel", },
{ X86_VENDOR_CYRIX, "CyrixInstead", },
{ X86_VENDOR_AMD, "AuthenticAMD", },
{ X86_VENDOR_UMC, "UMC UMC UMC ", },
{ X86_VENDOR_NEXGEN, "NexGenDriven", },
{ X86_VENDOR_CENTAUR, "CentaurHauls", },
{ X86_VENDOR_RISE, "RiseRiseRise", },
{ X86_VENDOR_TRANSMETA, "GenuineTMx86", },
{ X86_VENDOR_TRANSMETA, "TransmetaCPU", },
{ X86_VENDOR_NSC, "Geode by NSC", },
{ X86_VENDOR_SIS, "SiS SiS SiS ", },
};
static const char *const x86_vendor_name[] = {
[X86_VENDOR_INTEL] = "Intel",
[X86_VENDOR_CYRIX] = "Cyrix",
[X86_VENDOR_AMD] = "AMD",
[X86_VENDOR_UMC] = "UMC",
[X86_VENDOR_NEXGEN] = "NexGen",
[X86_VENDOR_CENTAUR] = "Centaur",
[X86_VENDOR_RISE] = "Rise",
[X86_VENDOR_TRANSMETA] = "Transmeta",
[X86_VENDOR_NSC] = "NSC",
[X86_VENDOR_SIS] = "SiS",
};
static void load_ds(u32 segment)
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
asm volatile("movl %0, %%ds" : : "r" (segment * X86_GDT_ENTRY_SIZE));
}
static void load_es(u32 segment)
{
asm volatile("movl %0, %%es" : : "r" (segment * X86_GDT_ENTRY_SIZE));
}
static void load_fs(u32 segment)
{
asm volatile("movl %0, %%fs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
}
static void load_gs(u32 segment)
{
asm volatile("movl %0, %%gs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
}
static void load_ss(u32 segment)
{
asm volatile("movl %0, %%ss" : : "r" (segment * X86_GDT_ENTRY_SIZE));
}
static void load_gdt(const u64 *boot_gdt, u16 num_entries)
{
struct gdt_ptr gdt;
gdt.len = (num_entries * X86_GDT_ENTRY_SIZE) - 1;
gdt.ptr = (u32)boot_gdt;
asm volatile("lgdtl %0\n" : : "m" (gdt));
/* CS: code, read/execute, 4 GB, base 0 */
gdt_addr[X86_GDT_ENTRY_32BIT_CS] = GDT_ENTRY(0xc09b, 0, 0xfffff);
/* DS: data, read/write, 4 GB, base 0 */
gdt_addr[X86_GDT_ENTRY_32BIT_DS] = GDT_ENTRY(0xc093, 0, 0xfffff);
/* FS: data, read/write, 4 GB, base (Global Data Pointer) */
gdt_addr[X86_GDT_ENTRY_32BIT_FS] = GDT_ENTRY(0xc093,
(ulong)&id->arch.gd_addr, 0xfffff);
/* 16-bit CS: code, read/execute, 64 kB, base 0 */
gdt_addr[X86_GDT_ENTRY_16BIT_CS] = GDT_ENTRY(0x009b, 0, 0x0ffff);
/* 16-bit DS: data, read/write, 64 kB, base 0 */
gdt_addr[X86_GDT_ENTRY_16BIT_DS] = GDT_ENTRY(0x0093, 0, 0x0ffff);
gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_CS] = GDT_ENTRY(0x809b, 0, 0xfffff);
gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_DS] = GDT_ENTRY(0x8093, 0, 0xfffff);
load_gdt(gdt_addr, X86_GDT_NUM_ENTRIES);
load_ds(X86_GDT_ENTRY_32BIT_DS);
load_es(X86_GDT_ENTRY_32BIT_DS);
load_gs(X86_GDT_ENTRY_32BIT_DS);
load_ss(X86_GDT_ENTRY_32BIT_DS);
load_fs(X86_GDT_ENTRY_32BIT_FS);
}
#ifdef CONFIG_HAVE_FSP
/*
* Setup FSP execution environment GDT
*
* Per Intel FSP external architecture specification, before calling any FSP
* APIs, we need make sure the system is in flat 32-bit mode and both the code
* and data selectors should have full 4GB access range. Here we reuse the one
* we used in arch/x86/cpu/start16.S, and reload the segement registers.
*/
void setup_fsp_gdt(void)
{
load_gdt((const u64 *)(gdt_rom + CONFIG_RESET_SEG_START), 4);
load_ds(X86_GDT_ENTRY_32BIT_DS);
load_ss(X86_GDT_ENTRY_32BIT_DS);
load_es(X86_GDT_ENTRY_32BIT_DS);
load_fs(X86_GDT_ENTRY_32BIT_DS);
load_gs(X86_GDT_ENTRY_32BIT_DS);
}
#endif
int __weak x86_cleanup_before_linux(void)
{
#ifdef CONFIG_BOOTSTAGE_STASH
bootstage_stash((void *)CONFIG_BOOTSTAGE_STASH_ADDR,
CONFIG_BOOTSTAGE_STASH_SIZE);
#endif
return 0;
}
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
/*
* Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected
* by the fact that they preserve the flags across the division of 5/2.
* PII and PPro exhibit this behavior too, but they have cpuid available.
*/
/*
* Perform the Cyrix 5/2 test. A Cyrix won't change
* the flags, while other 486 chips will.
*/
static inline int test_cyrix_52div(void)
{
unsigned int test;
__asm__ __volatile__(
"sahf\n\t" /* clear flags (%eax = 0x0005) */
"div %b2\n\t" /* divide 5 by 2 */
"lahf" /* store flags into %ah */
: "=a" (test)
: "0" (5), "q" (2)
: "cc");
/* AH is 0x02 on Cyrix after the divide.. */
return (unsigned char) (test >> 8) == 0x02;
}
/*
* Detect a NexGen CPU running without BIOS hypercode new enough
* to have CPUID. (Thanks to Herbert Oppmann)
*/
static int deep_magic_nexgen_probe(void)
{
int ret;
__asm__ __volatile__ (
" movw $0x5555, %%ax\n"
" xorw %%dx,%%dx\n"
" movw $2, %%cx\n"
" divw %%cx\n"
" movl $0, %%eax\n"
" jnz 1f\n"
" movl $1, %%eax\n"
"1:\n"
: "=a" (ret) : : "cx", "dx");
return ret;
}
static bool has_cpuid(void)
{
return flag_is_changeable_p(X86_EFLAGS_ID);
}
static bool has_mtrr(void)
{
return cpuid_edx(0x00000001) & (1 << 12) ? true : false;
}
static int build_vendor_name(char *vendor_name)
{
struct cpuid_result result;
result = cpuid(0x00000000);
unsigned int *name_as_ints = (unsigned int *)vendor_name;
name_as_ints[0] = result.ebx;
name_as_ints[1] = result.edx;
name_as_ints[2] = result.ecx;
return result.eax;
}
static void identify_cpu(struct cpu_device_id *cpu)
{
char vendor_name[16];
int i;
vendor_name[0] = '\0'; /* Unset */
cpu->device = 0; /* fix gcc 4.4.4 warning */
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
/* Find the id and vendor_name */
if (!has_cpuid()) {
/* Its a 486 if we can modify the AC flag */
if (flag_is_changeable_p(X86_EFLAGS_AC))
cpu->device = 0x00000400; /* 486 */
else
cpu->device = 0x00000300; /* 386 */
if ((cpu->device == 0x00000400) && test_cyrix_52div()) {
memcpy(vendor_name, "CyrixInstead", 13);
/* If we ever care we can enable cpuid here */
}
/* Detect NexGen with old hypercode */
else if (deep_magic_nexgen_probe())
memcpy(vendor_name, "NexGenDriven", 13);
}
if (has_cpuid()) {
int cpuid_level;
cpuid_level = build_vendor_name(vendor_name);
vendor_name[12] = '\0';
/* Intel-defined flags: level 0x00000001 */
if (cpuid_level >= 0x00000001) {
cpu->device = cpuid_eax(0x00000001);
} else {
/* Have CPUID level 0 only unheard of */
cpu->device = 0x00000400;
}
}
cpu->vendor = X86_VENDOR_UNKNOWN;
for (i = 0; i < ARRAY_SIZE(x86_vendors); i++) {
if (memcmp(vendor_name, x86_vendors[i].name, 12) == 0) {
cpu->vendor = x86_vendors[i].vendor;
break;
}
}
}
static inline void get_fms(struct cpuinfo_x86 *c, uint32_t tfms)
{
c->x86 = (tfms >> 8) & 0xf;
c->x86_model = (tfms >> 4) & 0xf;
c->x86_mask = tfms & 0xf;
if (c->x86 == 0xf)
c->x86 += (tfms >> 20) & 0xff;
if (c->x86 >= 0x6)
c->x86_model += ((tfms >> 16) & 0xF) << 4;
}
const u32 em_rst = ~X86_CR0_EM;
const u32 mp_ne_set = X86_CR0_MP | X86_CR0_NE;
/* initialize FPU, reset EM, set MP and NE */
asm ("fninit\n" \
"movl %%cr0, %%eax\n" \
"andl %0, %%eax\n" \
"orl %1, %%eax\n" \
"movl %%eax, %%cr0\n" \
: : "i" (em_rst), "i" (mp_ne_set) : "eax");
/* identify CPU via cpuid and store the decoded info into gd->arch */
if (has_cpuid()) {
struct cpu_device_id cpu;
struct cpuinfo_x86 c;
identify_cpu(&cpu);
get_fms(&c, cpu.device);
gd->arch.x86 = c.x86;
gd->arch.x86_vendor = cpu.vendor;
gd->arch.x86_model = c.x86_model;
gd->arch.x86_mask = c.x86_mask;
gd->arch.x86_device = cpu.device;
gd->arch.has_mtrr = has_mtrr();
/* Don't allow PCI region 3 to use memory in the 2-4GB memory hole */
gd->pci_ram_top = 0x80000000U;
/* Configure fixed range MTRRs for some legacy regions */
if (gd->arch.has_mtrr) {
u64 mtrr_cap;
mtrr_cap = native_read_msr(MTRR_CAP_MSR);
if (mtrr_cap & MTRR_CAP_FIX) {
/* Mark the VGA RAM area as uncacheable */
native_write_msr(MTRR_FIX_16K_A0000_MSR, 0, 0);
/* Mark the PCI ROM area as uncacheable */
native_write_msr(MTRR_FIX_4K_C0000_MSR, 0, 0);
native_write_msr(MTRR_FIX_4K_C8000_MSR, 0, 0);
native_write_msr(MTRR_FIX_4K_D0000_MSR, 0, 0);
native_write_msr(MTRR_FIX_4K_D8000_MSR, 0, 0);
/* Enable the fixed range MTRRs */
msr_setbits_64(MTRR_DEF_TYPE_MSR, MTRR_DEF_TYPE_FIX_EN);
}
}
void x86_enable_caches(void)
cr0 = read_cr0();
cr0 &= ~(X86_CR0_NW | X86_CR0_CD);
write_cr0(cr0);
wbinvd();
}
void enable_caches(void) __attribute__((weak, alias("x86_enable_caches")));
void x86_disable_caches(void)
{
unsigned long cr0;
cr0 = read_cr0();
cr0 |= X86_CR0_NW | X86_CR0_CD;
wbinvd();
write_cr0(cr0);
wbinvd();
}
void disable_caches(void) __attribute__((weak, alias("x86_disable_caches")));
int x86_init_cache(void)
{
enable_caches();
int init_cache(void) __attribute__((weak, alias("x86_init_cache")));
int do_reset(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
printf("resetting ...\n");
disable_interrupts();
reset_cpu(0);
/*NOTREACHED*/
return 0;
}
void flush_cache(unsigned long dummy1, unsigned long dummy2)
/* Do a hard reset through the chipset's reset control register */
outb(SYS_RST | RST_CPU, PORT_RESET);
for (;;)
cpu_hlt();
}
void x86_full_reset(void)
{
outb(FULL_RST | SYS_RST | RST_CPU, PORT_RESET);
int dcache_status(void)
{
return !(read_cr0() & 0x40000000);
}
/* Define these functions to allow ehch-hcd to function */
void flush_dcache_range(unsigned long start, unsigned long stop)
{
}
void invalidate_dcache_range(unsigned long start, unsigned long stop)
{
}
void dcache_enable(void)
{
enable_caches();
}
void dcache_disable(void)
{
disable_caches();
}
void icache_enable(void)
{
}
void icache_disable(void)
{
}
int icache_status(void)
{
return 1;
}
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
void cpu_enable_paging_pae(ulong cr3)
{
__asm__ __volatile__(
/* Load the page table address */
"movl %0, %%cr3\n"
/* Enable pae */
"movl %%cr4, %%eax\n"
"orl $0x00000020, %%eax\n"
"movl %%eax, %%cr4\n"
/* Enable paging */
"movl %%cr0, %%eax\n"
"orl $0x80000000, %%eax\n"
"movl %%eax, %%cr0\n"
:
: "r" (cr3)
: "eax");
}
void cpu_disable_paging_pae(void)
{
/* Turn off paging */
__asm__ __volatile__ (
/* Disable paging */
"movl %%cr0, %%eax\n"
"andl $0x7fffffff, %%eax\n"
"movl %%eax, %%cr0\n"
/* Disable pae */
"movl %%cr4, %%eax\n"
"andl $0xffffffdf, %%eax\n"
"movl %%eax, %%cr4\n"
:
:
: "eax");
}
static bool can_detect_long_mode(void)
return cpuid_eax(0x80000000) > 0x80000000UL;
}
static bool has_long_mode(void)
{
return cpuid_edx(0x80000001) & (1 << 29) ? true : false;
return has_cpuid() && can_detect_long_mode() &&
has_long_mode();
}
const char *cpu_vendor_name(int vendor)
{
const char *name;
name = "<invalid cpu vendor>";
if ((vendor < (ARRAY_SIZE(x86_vendor_name))) &&
(x86_vendor_name[vendor] != 0))
name = x86_vendor_name[vendor];
char *cpu_get_name(char *name)
unsigned int *name_as_ints = (unsigned int *)name;
/* This bit adds up to 48 bytes */
for (i = 0; i < 3; i++) {
regs = cpuid(0x80000002 + i);
name_as_ints[i * 4 + 0] = regs.eax;
name_as_ints[i * 4 + 1] = regs.ebx;
name_as_ints[i * 4 + 2] = regs.ecx;
name_as_ints[i * 4 + 3] = regs.edx;
}
name[CPU_MAX_NAME_LEN - 1] = '\0';
ptr = name;
while (*ptr == ' ')
ptr++;
int default_print_cpuinfo(void)
printf("CPU: %s, vendor %s, device %xh\n",
cpu_has_64bit() ? "x86_64" : "x86",
cpu_vendor_name(gd->arch.x86_vendor), gd->arch.x86_device);
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
#define PAGETABLE_SIZE (6 * 4096)
/**
* build_pagetable() - build a flat 4GiB page table structure for 64-bti mode
*
* @pgtable: Pointer to a 24iKB block of memory
*/
static void build_pagetable(uint32_t *pgtable)
{
uint i;
memset(pgtable, '\0', PAGETABLE_SIZE);
/* Level 4 needs a single entry */
pgtable[0] = (uint32_t)&pgtable[1024] + 7;
/* Level 3 has one 64-bit entry for each GiB of memory */
for (i = 0; i < 4; i++) {
pgtable[1024 + i * 2] = (uint32_t)&pgtable[2048] +
0x1000 * i + 7;
}
/* Level 2 has 2048 64-bit entries, each repesenting 2MiB */
for (i = 0; i < 2048; i++)
pgtable[2048 + i * 2] = 0x183 + (i << 21UL);
}
int cpu_jump_to_64bit(ulong setup_base, ulong target)
{
uint32_t *pgtable;
pgtable = memalign(4096, PAGETABLE_SIZE);
if (!pgtable)
return -ENOMEM;
build_pagetable(pgtable);
cpu_call64((ulong)pgtable, setup_base, target);
free(pgtable);
return -EFAULT;
}
void show_boot_progress(int val)
{
#if MIN_PORT80_KCLOCKS_DELAY
/*
* Scale the time counter reading to avoid using 64 bit arithmetics.
* Can't use get_timer() here becuase it could be not yet
* initialized or even implemented.
*/
if (!gd->arch.tsc_prev) {
gd->arch.tsc_base_kclocks = rdtsc() / 1000;
gd->arch.tsc_prev = 0;
} else {
uint32_t now;
do {
now = rdtsc() / 1000 - gd->arch.tsc_base_kclocks;
} while (now < (gd->arch.tsc_prev + MIN_PORT80_KCLOCKS_DELAY));
gd->arch.tsc_prev = now;
}
#endif
outb(val, POST_PORT);
}
#ifndef CONFIG_SYS_COREBOOT
int last_stage_init(void)
{
write_tables();
return 0;
}
#endif
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
#ifdef CONFIG_SMP
static int enable_smis(struct udevice *cpu, void *unused)
{
return 0;
}
static struct mp_flight_record mp_steps[] = {
MP_FR_BLOCK_APS(mp_init_cpu, NULL, mp_init_cpu, NULL),
/* Wait for APs to finish initialization before proceeding */
MP_FR_BLOCK_APS(NULL, NULL, enable_smis, NULL),
};
static int x86_mp_init(void)
{
struct mp_params mp_params;
mp_params.parallel_microcode_load = 0,
mp_params.flight_plan = &mp_steps[0];
mp_params.num_records = ARRAY_SIZE(mp_steps);
mp_params.microcode_pointer = 0;
if (mp_init(&mp_params)) {
printf("Warning: MP init failure\n");
return -EIO;
}
return 0;
}
#endif
__weak int x86_init_cpus(void)
{
#ifdef CONFIG_SMP
debug("Init additional CPUs\n");
x86_mp_init();
#endif
return 0;
}
int cpu_init_r(void)
{
return x86_init_cpus();
}