Skip to content
Snippets Groups Projects
emif-common.c 41.1 KiB
Newer Older
  • Learn to ignore specific revisions
  • Aneesh V's avatar
    Aneesh V committed
    /*
     * EMIF programming
     *
     * (C) Copyright 2010
     * Texas Instruments, <www.ti.com>
     *
     * Aneesh V <aneesh@ti.com>
     *
    
     * SPDX-License-Identifier:	GPL-2.0+
    
    Aneesh V's avatar
    Aneesh V committed
     */
    
    #include <common.h>
    
    #include <asm/arch/clock.h>
    
    Aneesh V's avatar
    Aneesh V committed
    #include <asm/arch/sys_proto.h>
    #include <asm/omap_common.h>
    #include <asm/utils.h>
    
    static int emif1_enabled = -1, emif2_enabled = -1;
    
    
    void set_lpmode_selfrefresh(u32 base)
    {
    	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
    	u32 reg;
    
    	reg = readl(&emif->emif_pwr_mgmt_ctrl);
    	reg &= ~EMIF_REG_LP_MODE_MASK;
    	reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
    	reg &= ~EMIF_REG_SR_TIM_MASK;
    	writel(reg, &emif->emif_pwr_mgmt_ctrl);
    
    	/* dummy read for the new SR_TIM to be loaded */
    	readl(&emif->emif_pwr_mgmt_ctrl);
    }
    
    void force_emif_self_refresh()
    {
    	set_lpmode_selfrefresh(EMIF1_BASE);
    	set_lpmode_selfrefresh(EMIF2_BASE);
    }
    
    
    inline u32 emif_num(u32 base)
    
    Aneesh V's avatar
    Aneesh V committed
    		return 1;
    
    	else if (base == EMIF2_BASE)
    
    Aneesh V's avatar
    Aneesh V committed
    		return 2;
    	else
    		return 0;
    }
    
    static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
    {
    	u32 mr;
    	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
    
    
    	mr_addr |= cs << EMIF_REG_CS_SHIFT;
    
    Aneesh V's avatar
    Aneesh V committed
    	writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
    	if (omap_revision() == OMAP4430_ES2_0)
    		mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
    	else
    		mr = readl(&emif->emif_lpddr2_mode_reg_data);
    	debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
    	      cs, mr_addr, mr);
    
    	if (((mr & 0x0000ff00) >>  8) == (mr & 0xff) &&
    	    ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
    	    ((mr & 0xff000000) >> 24) == (mr & 0xff))
    		return mr & 0xff;
    	else
    		return mr;
    
    Aneesh V's avatar
    Aneesh V committed
    }
    
    static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
    {
    	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
    
    
    	mr_addr |= cs << EMIF_REG_CS_SHIFT;
    
    Aneesh V's avatar
    Aneesh V committed
    	writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
    	writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
    }
    
    void emif_reset_phy(u32 base)
    {
    	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
    	u32 iodft;
    
    	iodft = readl(&emif->emif_iodft_tlgc);
    
    	iodft |= EMIF_REG_RESET_PHY_MASK;
    
    Aneesh V's avatar
    Aneesh V committed
    	writel(iodft, &emif->emif_iodft_tlgc);
    }
    
    static void do_lpddr2_init(u32 base, u32 cs)
    {
    	u32 mr_addr;
    
    	const struct lpddr2_mr_regs *mr_regs;
    
    	get_lpddr2_mr_regs(&mr_regs);
    
    Aneesh V's avatar
    Aneesh V committed
    	/* Wait till device auto initialization is complete */
    	while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
    		;
    
    	set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
    
    Aneesh V's avatar
    Aneesh V committed
    	/*
    	 * tZQINIT = 1 us
    	 * Enough loops assuming a maximum of 2GHz
    	 */
    
    Aneesh V's avatar
    Aneesh V committed
    	sdelay(2000);
    
    	set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
    	set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
    
    Aneesh V's avatar
    Aneesh V committed
    	/*
    	 * Enable refresh along with writing MR2
    	 * Encoding of RL in MR2 is (RL - 2)
    	 */
    
    	mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
    
    	set_mr(base, cs, mr_addr, mr_regs->mr2);
    
    	if (mr_regs->mr3 > 0)
    		set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
    
    Aneesh V's avatar
    Aneesh V committed
    }
    
    static void lpddr2_init(u32 base, const struct emif_regs *regs)
    {
    	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
    
    	/* Not NVM */
    
    	clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
    
    Aneesh V's avatar
    Aneesh V committed
    
    	/*
    	 * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
    	 * when EMIF_SDRAM_CONFIG register is written
    	 */
    
    	setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
    
    Aneesh V's avatar
    Aneesh V committed
    
    	/*
    	 * Set the SDRAM_CONFIG and PHY_CTRL for the
    	 * un-locked frequency & default RL
    	 */
    	writel(regs->sdram_config_init, &emif->emif_sdram_config);
    
    	writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
    
    	do_ext_phy_settings(base, regs);
    
    Aneesh V's avatar
    Aneesh V committed
    
    	do_lpddr2_init(base, CS0);
    
    	if (regs->sdram_config & EMIF_REG_EBANK_MASK)
    
    Aneesh V's avatar
    Aneesh V committed
    		do_lpddr2_init(base, CS1);
    
    	writel(regs->sdram_config, &emif->emif_sdram_config);
    	writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
    
    	/* Enable refresh now */
    
    	clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
    
    	}
    
    __weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
    {
    
    void emif_update_timings(u32 base, const struct emif_regs *regs)
    
    Aneesh V's avatar
    Aneesh V committed
    {
    	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
    
    
    	if (!is_dra7xx())
    		writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
    	else
    		writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl_shdw);
    
    
    Aneesh V's avatar
    Aneesh V committed
    	writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
    	writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
    	writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
    	if (omap_revision() == OMAP4430_ES1_0) {
    		/* ES1 bug EMIF should be in force idle during freq_update */
    		writel(0, &emif->emif_pwr_mgmt_ctrl);
    	} else {
    		writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
    		writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
    	}
    	writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
    	writel(regs->zq_config, &emif->emif_zq_config);
    	writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
    	writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
    
    	if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
    
    		writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
    			&emif->emif_l3_config);
    	} else if (omap_revision() >= OMAP4460_ES1_0) {
    
    		writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
    			&emif->emif_l3_config);
    	} else {
    		writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
    			&emif->emif_l3_config);
    
    static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
    
    {
    	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
    
    	/* keep sdram in self-refresh */
    	writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
    		& EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
    	__udelay(130);
    
    	/*
    	 * Set invert_clkout (if activated)--DDR_PHYCTRL_1
    
    	 * Invert clock adds an additional half cycle delay on the
    	 * command interface.  The additional half cycle, is usually
    	 * meant to enable leveling in the situation that DQS is later
    	 * than CK on the board.It also helps provide some additional
    	 * margin for leveling.
    
    	writel(regs->emif_ddr_phy_ctlr_1,
    	       &emif->emif_ddr_phy_ctrl_1);
    
    	writel(regs->emif_ddr_phy_ctlr_1,
    	       &emif->emif_ddr_phy_ctrl_1_shdw);
    
    	__udelay(130);
    
    	writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
    
    	       & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
    
    
    	/* Launch Full leveling */
    	writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
    
    	/* Wait till full leveling is complete */
    	readl(&emif->emif_rd_wr_lvl_ctl);
    
    
    	/* Read data eye leveling no of samples */
    	config_data_eye_leveling_samples(base);
    
    
    	/*
    	 * Launch 8 incremental WR_LVL- to compensate for
    	 * PHY limitation.
    	 */
    	writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
    	       &emif->emif_rd_wr_lvl_ctl);
    
    
    	__udelay(130);
    
    	/* Launch Incremental leveling */
    	writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
    
    static void update_hwleveling_output(u32 base, const struct emif_regs *regs)
    
    	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
    	u32 *emif_ext_phy_ctrl_reg, *emif_phy_status;
    
    
    	emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[7];
    
    	phy = readl(&emif->emif_ddr_phy_ctrl_1);
    
    
    	/* Update PHY_REG_RDDQS_RATIO */
    	emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_7;
    
    	if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVL_MASK_MASK))
    		for (i = 0; i < PHY_RDDQS_RATIO_REGS; i++) {
    			reg = readl(emif_phy_status++);
    			writel(reg, emif_ext_phy_ctrl_reg++);
    			writel(reg, emif_ext_phy_ctrl_reg++);
    		}
    
    
    	/* Update PHY_REG_FIFO_WE_SLAVE_RATIO */
    	emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_2;
    
    	emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[12];
    	if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVLGATE_MASK_MASK))
    		for (i = 0; i < PHY_FIFO_WE_SLAVE_RATIO_REGS; i++) {
    			reg = readl(emif_phy_status++);
    			writel(reg, emif_ext_phy_ctrl_reg++);
    			writel(reg, emif_ext_phy_ctrl_reg++);
    		}
    
    
    	/* Update PHY_REG_WR_DQ/DQS_SLAVE_RATIO */
    	emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_12;
    
    	emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[17];
    	if (!(phy & EMIF_DDR_PHY_CTRL_1_WRLVL_MASK_MASK))
    		for (i = 0; i < PHY_REG_WR_DQ_SLAVE_RATIO_REGS; i++) {
    			reg = readl(emif_phy_status++);
    			writel(reg, emif_ext_phy_ctrl_reg++);
    			writel(reg, emif_ext_phy_ctrl_reg++);
    		}
    
    
    	/* Disable Leveling */
    	writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
    	writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
    	writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
    
    static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
    {
    	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
    
    	/* Clear Error Status */
    	clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36,
    			EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
    			EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
    
    	clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36_shdw,
    			EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
    			EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
    
    	/* Disable refreshed before leveling */
    
    	clrsetbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK,
    			EMIF_REG_INITREF_DIS_MASK);
    
    
    	/* Start Full leveling */
    	writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
    
    	__udelay(300);
    
    	/* Check for leveling timeout */
    	if (readl(&emif->emif_status) & EMIF_REG_LEVELING_TO_MASK) {
    		printf("Leveling timeout on EMIF%d\n", emif_num(base));
    		return;
    	}
    
    	/* Enable refreshes after leveling */
    
    	clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
    
    
    	debug("HW leveling success\n");
    	/*
    	 * Update slave ratios in EXT_PHY_CTRLx registers
    	 * as per HW leveling output
    	 */
    	update_hwleveling_output(base, regs);
    }
    
    static void dra7_ddr3_init(u32 base, const struct emif_regs *regs)
    {
    	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
    
    
    		emif_reset_phy(base);
    
    		writel(0x0, &emif->emif_pwr_mgmt_ctrl);
    	}
    
    	do_ext_phy_settings(base, regs);
    
    	writel(regs->ref_ctrl | EMIF_REG_INITREF_DIS_MASK,
    	       &emif->emif_sdram_ref_ctrl);
    	/* Update timing registers */
    	writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
    	writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
    	writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
    
    	writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, &emif->emif_l3_config);
    	writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
    	writel(regs->zq_config, &emif->emif_zq_config);
    	writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
    	writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
    	writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);
    
    	writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
    	writel(regs->emif_rd_wr_exec_thresh, &emif->emif_rd_wr_exec_thresh);
    
    	writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
    
    	writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
    	writel(regs->sdram_config_init, &emif->emif_sdram_config);
    
    	__udelay(1000);
    
    	writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl);
    
    	if (regs->emif_rd_wr_lvl_rmp_ctl & EMIF_REG_RDWRLVL_EN_MASK)
    		dra7_ddr3_leveling(base, regs);
    }
    
    static void omap5_ddr3_init(u32 base, const struct emif_regs *regs)
    
    {
    	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
    
    
    	writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
    	writel(regs->sdram_config_init, &emif->emif_sdram_config);
    
    	/*
    	 * Set SDRAM_CONFIG and PHY control registers to locked frequency
    	 * and RL =7. As the default values of the Mode Registers are not
    	 * defined, contents of mode Registers must be fully initialized.
    	 * H/W takes care of this initialization
    	 */
    	writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
    
    	/* Update timing registers */
    	writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
    	writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
    	writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
    
    	writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
    
    
    	writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
    	writel(regs->sdram_config_init, &emif->emif_sdram_config);
    	do_ext_phy_settings(base, regs);
    
    
    	writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
    
    	omap5_ddr3_leveling(base, regs);
    }
    
    static void ddr3_init(u32 base, const struct emif_regs *regs)
    {
    	if (is_omap54xx())
    		omap5_ddr3_init(base, regs);
    	else
    		dra7_ddr3_init(base, regs);
    
    #ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
    #define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
    
    /*
     * Organization and refresh requirements for LPDDR2 devices of different
     * types and densities. Derived from JESD209-2 section 2.4
     */
    const struct lpddr2_addressing addressing_table[] = {
    	/* Banks tREFIx10     rowx32,rowx16      colx32,colx16	density */
    	{BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
    	{BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
    	{BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
    	{BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
    	{BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
    	{BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
    	{BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
    	{BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
    	{BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
    	{BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
    };
    
    static const u32 lpddr2_density_2_size_in_mbytes[] = {
    	8,			/* 64Mb */
    	16,			/* 128Mb */
    	32,			/* 256Mb */
    	64,			/* 512Mb */
    	128,			/* 1Gb   */
    	256,			/* 2Gb   */
    	512,			/* 4Gb   */
    	1024,			/* 8Gb   */
    	2048,			/* 16Gb  */
    	4096			/* 32Gb  */
    };
    
    /*
     * Calculate the period of DDR clock from frequency value and set the
     * denominator and numerator in global variables for easy access later
     */
    static void set_ddr_clk_period(u32 freq)
    {
    	/*
    	 * period = 1/freq
    	 * period_in_ns = 10^9/freq
    	 */
    	*T_num = 1000000000;
    	*T_den = freq;
    	cancel_out(T_num, T_den, 200);
    
    }
    
    /*
     * Convert time in nano seconds to number of cycles of DDR clock
     */
    static inline u32 ns_2_cycles(u32 ns)
    {
    	return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
    }
    
    /*
     * ns_2_cycles with the difference that the time passed is 2 times the actual
     * value(to avoid fractions). The cycles returned is for the original value of
     * the timing parameter
     */
    static inline u32 ns_x2_2_cycles(u32 ns)
    {
    	return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
    }
    
    /*
     * Find addressing table index based on the device's type(S2 or S4) and
     * density
     */
    s8 addressing_table_index(u8 type, u8 density, u8 width)
    {
    	u8 index;
    	if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
    		return -1;
    
    	/*
    	 * Look at the way ADDR_TABLE_INDEX* values have been defined
    	 * in emif.h compared to LPDDR2_DENSITY_* values
    	 * The table is layed out in the increasing order of density
    	 * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
    	 * at the end
    	 */
    	if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
    		index = ADDR_TABLE_INDEX1GS2;
    	else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
    		index = ADDR_TABLE_INDEX2GS2;
    	else
    		index = density;
    
    	debug("emif: addressing table index %d\n", index);
    
    	return index;
    }
    
    /*
     * Find the the right timing table from the array of timing
     * tables of the device using DDR clock frequency
     */
    static const struct lpddr2_ac_timings *get_timings_table(const struct
    			lpddr2_ac_timings const *const *device_timings,
    			u32 freq)
    {
    	u32 i, temp, freq_nearest;
    	const struct lpddr2_ac_timings *timings = 0;
    
    	emif_assert(freq <= MAX_LPDDR2_FREQ);
    	emif_assert(device_timings);
    
    	/*
    	 * Start with the maximum allowed frequency - that is always safe
    	 */
    	freq_nearest = MAX_LPDDR2_FREQ;
    	/*
    	 * Find the timings table that has the max frequency value:
    	 *   i.  Above or equal to the DDR frequency - safe
    	 *   ii. The lowest that satisfies condition (i) - optimal
    	 */
    	for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
    		temp = device_timings[i]->max_freq;
    		if ((temp >= freq) && (temp <= freq_nearest)) {
    			freq_nearest = temp;
    			timings = device_timings[i];
    		}
    	}
    	debug("emif: timings table: %d\n", freq_nearest);
    	return timings;
    }
    
    /*
     * Finds the value of emif_sdram_config_reg
     * All parameters are programmed based on the device on CS0.
     * If there is a device on CS1, it will be same as that on CS0 or
     * it will be NVM. We don't support NVM yet.
     * If cs1_device pointer is NULL it is assumed that there is no device
     * on CS1
     */
    static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
    				const struct lpddr2_device_details *cs1_device,
    				const struct lpddr2_addressing *addressing,
    				u8 RL)
    {
    	u32 config_reg = 0;
    
    
    	config_reg |=  (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
    
    	config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
    
    	config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
    
    	config_reg |= RL << EMIF_REG_CL_SHIFT;
    
    
    	config_reg |= addressing->row_sz[cs0_device->io_width] <<
    
    	config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
    
    
    	config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
    
    
    	config_reg |= addressing->col_sz[cs0_device->io_width] <<
    
    
    	return config_reg;
    }
    
    static u32 get_sdram_ref_ctrl(u32 freq,
    			      const struct lpddr2_addressing *addressing)
    {
    	u32 ref_ctrl = 0, val = 0, freq_khz;
    	freq_khz = freq / 1000;
    	/*
    	 * refresh rate to be set is 'tREFI * freq in MHz
    	 * division by 10000 to account for khz and x10 in t_REFI_us_x10
    	 */
    	val = addressing->t_REFI_us_x10 * freq_khz / 10000;
    
    	ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
    
    
    	return ref_ctrl;
    }
    
    static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
    			       const struct lpddr2_min_tck *min_tck,
    			       const struct lpddr2_addressing *addressing)
    {
    	u32 tim1 = 0, val = 0;
    	val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
    
    	tim1 |= val << EMIF_REG_T_WTR_SHIFT;
    
    
    	if (addressing->num_banks == BANKS8)
    		val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
    							(4 * (*T_num)) - 1;
    	else
    		val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
    
    
    	tim1 |= val << EMIF_REG_T_RRD_SHIFT;
    
    
    	val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
    
    	tim1 |= val << EMIF_REG_T_RC_SHIFT;
    
    
    	val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
    
    	tim1 |= val << EMIF_REG_T_RAS_SHIFT;
    
    
    	val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
    
    	tim1 |= val << EMIF_REG_T_WR_SHIFT;
    
    
    	val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
    
    	tim1 |= val << EMIF_REG_T_RCD_SHIFT;
    
    
    	val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
    
    	tim1 |= val << EMIF_REG_T_RP_SHIFT;
    
    
    	return tim1;
    }
    
    static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
    			       const struct lpddr2_min_tck *min_tck)
    {
    	u32 tim2 = 0, val = 0;
    	val = max(min_tck->tCKE, timings->tCKE) - 1;
    
    	tim2 |= val << EMIF_REG_T_CKE_SHIFT;
    
    
    	val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
    
    	tim2 |= val << EMIF_REG_T_RTP_SHIFT;
    
    
    	/*
    	 * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
    	 * same value
    	 */
    	val = ns_2_cycles(timings->tXSR) - 1;
    
    	tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
    	tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
    
    
    	val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
    
    	tim2 |= val << EMIF_REG_T_XP_SHIFT;
    
    
    	return tim2;
    }
    
    static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
    			       const struct lpddr2_min_tck *min_tck,
    			       const struct lpddr2_addressing *addressing)
    {
    	u32 tim3 = 0, val = 0;
    	val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
    
    	tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
    
    
    	val = ns_2_cycles(timings->tRFCab) - 1;
    
    	tim3 |= val << EMIF_REG_T_RFC_SHIFT;
    
    
    	val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
    
    	tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
    
    
    	val = ns_2_cycles(timings->tZQCS) - 1;
    
    	tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
    
    
    	val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
    
    	tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
    
    
    	return tim3;
    }
    
    static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
    			     const struct lpddr2_addressing *addressing,
    			     u8 volt_ramp)
    {
    	u32 zq = 0, val = 0;
    	if (volt_ramp)
    		val =
    		    EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
    		    addressing->t_REFI_us_x10;
    	else
    		val =
    		    EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
    		    addressing->t_REFI_us_x10;
    
    	zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
    
    	zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
    
    	zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
    
    	zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
    
    
    	/*
    	 * Assuming that two chipselects have a single calibration resistor
    	 * If there are indeed two calibration resistors, then this flag should
    	 * be enabled to take advantage of dual calibration feature.
    	 * This data should ideally come from board files. But considering
    	 * that none of the boards today have calibration resistors per CS,
    	 * it would be an unnecessary overhead.
    	 */
    
    	zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
    
    	zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
    
    	zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
    
    
    	return zq;
    }
    
    static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
    				 const struct lpddr2_addressing *addressing,
    				 u8 is_derated)
    {
    	u32 alert = 0, interval;
    	interval =
    	    TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
    	if (is_derated)
    		interval *= 4;
    
    	alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
    
    	alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
    
    	alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
    
    	alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
    
    	alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
    
    	alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
    
    
    	return alert;
    }
    
    static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
    {
    	u32 idle = 0, val = 0;
    	if (volt_ramp)
    
    		val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
    
    	else
    		/*Maximum value in normal conditions - suggested by hw team */
    		val = 0x1FF;
    
    	idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
    
    	idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
    
    
    	return idle;
    }
    
    static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
    {
    	u32 phy = 0, val = 0;
    
    
    	phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
    
    
    	if (freq <= 100000000)
    		val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
    	else if (freq <= 200000000)
    		val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
    	else
    		val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
    
    	phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
    
    
    	/* Other fields are constant magic values. Hardcode them together */
    	phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
    
    		EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
    
    static u32 get_emif_mem_size(u32 base)
    
    {
    	u32 size_mbytes = 0, temp;
    
    	struct emif_device_details dev_details;
    	struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
    	u32 emif_nr = emif_num(base);
    
    	emif_reset_phy(base);
    	dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
    						&cs0_dev_details);
    	dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
    						&cs1_dev_details);
    	emif_reset_phy(base);
    
    	if (dev_details.cs0_device_details) {
    		temp = dev_details.cs0_device_details->density;
    
    		size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
    	}
    
    
    	if (dev_details.cs1_device_details) {
    		temp = dev_details.cs1_device_details->density;
    
    		size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
    	}
    	/* convert to bytes */
    	return size_mbytes << 20;
    }
    
    /* Gets the encoding corresponding to a given DMM section size */
    u32 get_dmm_section_size_map(u32 section_size)
    {
    	/*
    	 * Section size mapping:
    	 * 0x0: 16-MiB section
    	 * 0x1: 32-MiB section
    	 * 0x2: 64-MiB section
    	 * 0x3: 128-MiB section
    	 * 0x4: 256-MiB section
    	 * 0x5: 512-MiB section
    	 * 0x6: 1-GiB section
    	 * 0x7: 2-GiB section
    	 */
    	section_size >>= 24; /* divide by 16 MB */
    	return log_2_n_round_down(section_size);
    }
    
    static void emif_calculate_regs(
    		const struct emif_device_details *emif_dev_details,
    		u32 freq, struct emif_regs *regs)
    {
    	u32 temp, sys_freq;
    	const struct lpddr2_addressing *addressing;
    	const struct lpddr2_ac_timings *timings;
    	const struct lpddr2_min_tck *min_tck;
    	const struct lpddr2_device_details *cs0_dev_details =
    					emif_dev_details->cs0_device_details;
    	const struct lpddr2_device_details *cs1_dev_details =
    					emif_dev_details->cs1_device_details;
    	const struct lpddr2_device_timings *cs0_dev_timings =
    					emif_dev_details->cs0_device_timings;
    
    	emif_assert(emif_dev_details);
    	emif_assert(regs);
    	/*
    	 * You can not have a device on CS1 without one on CS0
    	 * So configuring EMIF without a device on CS0 doesn't
    	 * make sense
    	 */
    	emif_assert(cs0_dev_details);
    	emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
    	/*
    	 * If there is a device on CS1 it should be same type as CS0
    	 * (or NVM. But NVM is not supported in this driver yet)
    	 */
    	emif_assert((cs1_dev_details == NULL) ||
    		    (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
    		    (cs0_dev_details->type == cs1_dev_details->type));
    	emif_assert(freq <= MAX_LPDDR2_FREQ);
    
    	set_ddr_clk_period(freq);
    
    	/*
    	 * The device on CS0 is used for all timing calculations
    	 * There is only one set of registers for timings per EMIF. So, if the
    	 * second CS(CS1) has a device, it should have the same timings as the
    	 * device on CS0
    	 */
    	timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
    	emif_assert(timings);
    	min_tck = cs0_dev_timings->min_tck;
    
    	temp = addressing_table_index(cs0_dev_details->type,
    				      cs0_dev_details->density,
    				      cs0_dev_details->io_width);
    
    	emif_assert((temp >= 0));
    	addressing = &(addressing_table[temp]);
    	emif_assert(addressing);
    
    	sys_freq = get_sys_clk_freq();
    
    	regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
    							cs1_dev_details,
    							addressing, RL_BOOT);
    
    	regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
    						cs1_dev_details,
    						addressing, RL_FINAL);
    
    	regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
    
    	regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
    
    	regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
    
    	regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
    
    	regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
    
    	regs->temp_alert_config =
    	    get_temp_alert_config(cs1_dev_details, addressing, 0);
    
    	regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
    					    LPDDR2_VOLTAGE_STABLE);
    
    	regs->emif_ddr_phy_ctlr_1_init =
    			get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
    
    	regs->emif_ddr_phy_ctlr_1 =
    			get_ddr_phy_ctrl_1(freq, RL_FINAL);
    
    	regs->freq = freq;
    
    	print_timing_reg(regs->sdram_config_init);
    	print_timing_reg(regs->sdram_config);
    	print_timing_reg(regs->ref_ctrl);
    	print_timing_reg(regs->sdram_tim1);
    	print_timing_reg(regs->sdram_tim2);
    	print_timing_reg(regs->sdram_tim3);
    	print_timing_reg(regs->read_idle_ctrl);
    	print_timing_reg(regs->temp_alert_config);
    	print_timing_reg(regs->zq_config);
    	print_timing_reg(regs->emif_ddr_phy_ctlr_1);
    	print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
    }
    #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
    
    
    #ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
    const char *get_lpddr2_type(u8 type_id)
    {
    	switch (type_id) {
    	case LPDDR2_TYPE_S4:
    		return "LPDDR2-S4";
    	case LPDDR2_TYPE_S2:
    		return "LPDDR2-S2";
    	default:
    		return NULL;
    	}
    }
    
    const char *get_lpddr2_io_width(u8 width_id)
    {
    	switch (width_id) {
    	case LPDDR2_IO_WIDTH_8:
    		return "x8";
    	case LPDDR2_IO_WIDTH_16:
    		return "x16";
    	case LPDDR2_IO_WIDTH_32:
    		return "x32";
    	default:
    		return NULL;
    	}
    }
    
    const char *get_lpddr2_manufacturer(u32 manufacturer)
    {
    	switch (manufacturer) {
    	case LPDDR2_MANUFACTURER_SAMSUNG:
    		return "Samsung";
    	case LPDDR2_MANUFACTURER_QIMONDA:
    		return "Qimonda";
    	case LPDDR2_MANUFACTURER_ELPIDA:
    		return "Elpida";
    	case LPDDR2_MANUFACTURER_ETRON:
    		return "Etron";
    	case LPDDR2_MANUFACTURER_NANYA:
    		return "Nanya";
    	case LPDDR2_MANUFACTURER_HYNIX:
    		return "Hynix";
    	case LPDDR2_MANUFACTURER_MOSEL:
    		return "Mosel";
    	case LPDDR2_MANUFACTURER_WINBOND:
    		return "Winbond";
    	case LPDDR2_MANUFACTURER_ESMT:
    		return "ESMT";
    	case LPDDR2_MANUFACTURER_SPANSION:
    		return "Spansion";
    	case LPDDR2_MANUFACTURER_SST:
    		return "SST";
    	case LPDDR2_MANUFACTURER_ZMOS:
    		return "ZMOS";
    	case LPDDR2_MANUFACTURER_INTEL:
    		return "Intel";
    	case LPDDR2_MANUFACTURER_NUMONYX:
    		return "Numonyx";
    	case LPDDR2_MANUFACTURER_MICRON:
    		return "Micron";
    	default:
    		return NULL;
    	}
    }
    
    static void display_sdram_details(u32 emif_nr, u32 cs,
    				  struct lpddr2_device_details *device)
    {
    	const char *mfg_str;
    	const char *type_str;
    	char density_str[10];
    	u32 density;
    
    	debug("EMIF%d CS%d\t", emif_nr, cs);
    
    	if (!device) {
    		debug("None\n");
    		return;
    	}
    
    	mfg_str = get_lpddr2_manufacturer(device->manufacturer);
    	type_str = get_lpddr2_type(device->type);
    
    	density = lpddr2_density_2_size_in_mbytes[device->density];