Skip to content
Snippets Groups Projects
lc_common_dimm_params.c 16.7 KiB
Newer Older
  • Learn to ignore specific revisions
  •  * Copyright 2008-2014 Freescale Semiconductor, Inc.
    
     * SPDX-License-Identifier:	GPL-2.0
    
    #include <fsl_ddr_sdram.h>
    
    #if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR4)
    
    static unsigned int
    
    compute_cas_latency(const unsigned int ctrl_num,
    		    const dimm_params_t *dimm_params,
    
    		    common_timing_params_t *outpdimm,
    		    unsigned int number_of_dimms)
    
    {
    	unsigned int i;
    	unsigned int common_caslat;
    	unsigned int caslat_actual;
    	unsigned int retry = 16;
    
    	unsigned int tmp = ~0;
    
    	const unsigned int mclk_ps = get_memory_clk_period_ps(ctrl_num);
    
    #ifdef CONFIG_SYS_FSL_DDR3
    	const unsigned int taamax = 20000;
    #else
    	const unsigned int taamax = 18000;
    #endif
    
    
    	/* compute the common CAS latency supported between slots */
    
    	for (i = 0; i < number_of_dimms; i++) {
    
    		if (dimm_params[i].n_ranks)
    
    			tmp &= dimm_params[i].caslat_x;
    
    	common_caslat = tmp;
    
    	/* validate if the memory clk is in the range of dimms */
    
    	if (mclk_ps < outpdimm->tckmin_x_ps) {
    
    		printf("DDR clock (MCLK cycle %u ps) is faster than "
    			"the slowest DIMM(s) (tCKmin %u ps) can support.\n",
    
    			mclk_ps, outpdimm->tckmin_x_ps);
    	}
    #ifdef CONFIG_SYS_FSL_DDR4
    	if (mclk_ps > outpdimm->tckmax_ps) {
    		printf("DDR clock (MCLK cycle %u ps) is slower than DIMM(s) (tCKmax %u ps) can support.\n",
    		       mclk_ps, outpdimm->tckmax_ps);
    
    	/* determine the acutal cas latency */
    
    	caslat_actual = (outpdimm->taamin_ps + mclk_ps - 1) / mclk_ps;
    
    	/* check if the dimms support the CAS latency */
    	while (!(common_caslat & (1 << caslat_actual)) && retry > 0) {
    		caslat_actual++;
    		retry--;
    	}
    	/* once the caculation of caslat_actual is completed
    	 * we must verify that this CAS latency value does not
    
    	 * exceed tAAmax, which is 20 ns for all DDR3 speed grades,
    	 * 18ns for all DDR4 speed grades.
    
    	if (caslat_actual * mclk_ps > taamax) {
    
    		printf("The chosen cas latency %d is too large\n",
    		       caslat_actual);
    
    	outpdimm->lowest_common_spd_caslat = caslat_actual;
    	debug("lowest_common_spd_caslat is 0x%x\n", caslat_actual);
    
    	return 0;
    }
    #else	/* for DDR1 and DDR2 */
    static unsigned int
    
    compute_cas_latency(const unsigned int ctrl_num,
    		    const dimm_params_t *dimm_params,
    
    		    common_timing_params_t *outpdimm,
    		    unsigned int number_of_dimms)
    {
    	int i;
    
    	const unsigned int mclk_ps = get_memory_clk_period_ps(ctrl_num);
    
    	unsigned int lowest_good_caslat;
    	unsigned int not_ok;
    	unsigned int temp1, temp2;
    
    	debug("using mclk_ps = %u\n", mclk_ps);
    	if (mclk_ps > outpdimm->tckmax_ps) {
    		printf("Warning: DDR clock (%u ps) is slower than DIMM(s) (tCKmax %u ps)\n",
    		       mclk_ps, outpdimm->tckmax_ps);
    	}
    
    	/*
    	 * Compute a CAS latency suitable for all DIMMs
    	 *
    	 * Strategy for SPD-defined latencies: compute only
    	 * CAS latency defined by all DIMMs.
    	 */
    
    	/*
    	 * Step 1: find CAS latency common to all DIMMs using bitwise
    	 * operation.
    	 */
    	temp1 = 0xFF;
    	for (i = 0; i < number_of_dimms; i++) {
    		if (dimm_params[i].n_ranks) {
    			temp2 = 0;
    			temp2 |= 1 << dimm_params[i].caslat_x;
    			temp2 |= 1 << dimm_params[i].caslat_x_minus_1;
    			temp2 |= 1 << dimm_params[i].caslat_x_minus_2;
    			/*
    			 * If there was no entry for X-2 (X-1) in
    			 * the SPD, then caslat_x_minus_2
    			 * (caslat_x_minus_1) contains either 255 or
    			 * 0xFFFFFFFF because that's what the glorious
    			 * __ilog2 function returns for an input of 0.
    			 * On 32-bit PowerPC, left shift counts with bit
    			 * 26 set (that the value of 255 or 0xFFFFFFFF
    			 * will have), cause the destination register to
    			 * be 0.  That is why this works.
    			 */
    			temp1 &= temp2;
    		}
    	}
    
    	/*
    	 * Step 2: check each common CAS latency against tCK of each
    	 * DIMM's SPD.
    	 */
    	lowest_good_caslat = 0;
    	temp2 = 0;
    	while (temp1) {
    		not_ok = 0;
    		temp2 =  __ilog2(temp1);
    		debug("checking common caslat = %u\n", temp2);
    
    		/* Check if this CAS latency will work on all DIMMs at tCK. */
    		for (i = 0; i < number_of_dimms; i++) {
    			if (!dimm_params[i].n_ranks)
    				continue;
    
    			if (dimm_params[i].caslat_x == temp2) {
    				if (mclk_ps >= dimm_params[i].tckmin_x_ps) {
    					debug("CL = %u ok on DIMM %u at tCK=%u ps with tCKmin_X_ps of %u\n",
    					      temp2, i, mclk_ps,
    					      dimm_params[i].tckmin_x_ps);
    					continue;
    				} else {
    					not_ok++;
    				}
    			}
    
    			if (dimm_params[i].caslat_x_minus_1 == temp2) {
    				unsigned int tckmin_x_minus_1_ps
    					= dimm_params[i].tckmin_x_minus_1_ps;
    				if (mclk_ps >= tckmin_x_minus_1_ps) {
    					debug("CL = %u ok on DIMM %u at tCK=%u ps with tckmin_x_minus_1_ps of %u\n",
    					      temp2, i, mclk_ps,
    					      tckmin_x_minus_1_ps);
    					continue;
    				} else {
    					not_ok++;
    				}
    			}
    
    			if (dimm_params[i].caslat_x_minus_2 == temp2) {
    				unsigned int tckmin_x_minus_2_ps
    					= dimm_params[i].tckmin_x_minus_2_ps;
    				if (mclk_ps >= tckmin_x_minus_2_ps) {
    					debug("CL = %u ok on DIMM %u at tCK=%u ps with tckmin_x_minus_2_ps of %u\n",
    					      temp2, i, mclk_ps,
    					      tckmin_x_minus_2_ps);
    					continue;
    				} else {
    					not_ok++;
    				}
    			}
    		}
    
    		if (!not_ok)
    			lowest_good_caslat = temp2;
    
    		temp1 &= ~(1 << temp2);
    	}
    
    	debug("lowest common SPD-defined CAS latency = %u\n",
    	      lowest_good_caslat);
    	outpdimm->lowest_common_spd_caslat = lowest_good_caslat;
    
    
    	/*
    	 * Compute a common 'de-rated' CAS latency.
    	 *
    	 * The strategy here is to find the *highest* dereated cas latency
    	 * with the assumption that all of the DIMMs will support a dereated
    	 * CAS latency higher than or equal to their lowest dereated value.
    	 */
    	temp1 = 0;
    	for (i = 0; i < number_of_dimms; i++)
    		temp1 = max(temp1, dimm_params[i].caslat_lowest_derated);
    
    	outpdimm->highest_common_derated_caslat = temp1;
    	debug("highest common dereated CAS latency = %u\n", temp1);
    
    /*
     * compute_lowest_common_dimm_parameters()
     *
     * Determine the worst-case DIMM timing parameters from the set of DIMMs
     * whose parameters have been computed into the array pointed to
     * by dimm_params.
     */
    unsigned int
    
    compute_lowest_common_dimm_parameters(const unsigned int ctrl_num,
    				      const dimm_params_t *dimm_params,
    
    				      common_timing_params_t *outpdimm,
    
    	unsigned int i, j;
    
    	unsigned int tckmin_x_ps = 0;
    	unsigned int tckmax_ps = 0xFFFFFFFF;
    	unsigned int trcd_ps = 0;
    	unsigned int trp_ps = 0;
    	unsigned int tras_ps = 0;
    
    #if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR4)
    	unsigned int taamin_ps = 0;
    #endif
    #ifdef CONFIG_SYS_FSL_DDR4
    	unsigned int twr_ps = 15000;
    	unsigned int trfc1_ps = 0;
    	unsigned int trfc2_ps = 0;
    	unsigned int trfc4_ps = 0;
    	unsigned int trrds_ps = 0;
    	unsigned int trrdl_ps = 0;
    	unsigned int tccdl_ps = 0;
    #else
    
    	unsigned int twr_ps = 0;
    	unsigned int twtr_ps = 0;
    	unsigned int trfc_ps = 0;
    	unsigned int trrd_ps = 0;
    
    	unsigned int trtp_ps = 0;
    #endif
    
    	unsigned int trc_ps = 0;
    
    	unsigned int refresh_rate_ps = 0;
    
    	unsigned int extended_op_srt = 1;
    
    #if defined(CONFIG_SYS_FSL_DDR1) || defined(CONFIG_SYS_FSL_DDR2)
    
    	unsigned int tis_ps = 0;
    	unsigned int tih_ps = 0;
    	unsigned int tds_ps = 0;
    	unsigned int tdh_ps = 0;
    	unsigned int tdqsq_max_ps = 0;
    	unsigned int tqhs_ps = 0;
    
    	unsigned int temp1, temp2;
    
    	unsigned int additive_latency = 0;
    
    	temp1 = 0;
    	for (i = 0; i < number_of_dimms; i++) {
    		/*
    		 * If there are no ranks on this DIMM,
    		 * it probably doesn't exist, so skip it.
    		 */
    		if (dimm_params[i].n_ranks == 0) {
    			temp1++;
    			continue;
    		}
    
    		if (dimm_params[i].n_ranks == 4 && i != 0) {
    			printf("Found Quad-rank DIMM in wrong bank, ignored."
    				" Software may not run as expected.\n");
    			temp1++;
    			continue;
    		}
    
    
    		/*
    		 * check if quad-rank DIMM is plugged if
    		 * CONFIG_CHIP_SELECT_QUAD_CAPABLE is not defined
    		 * Only the board with proper design is capable
    		 */
    #ifndef CONFIG_FSL_DDR_FIRST_SLOT_QUAD_CAPABLE
    
    		if (dimm_params[i].n_ranks == 4 && \
    		  CONFIG_CHIP_SELECTS_PER_CTRL/CONFIG_DIMM_SLOTS_PER_CTLR < 4) {
    			printf("Found Quad-rank DIMM, not able to support.");
    			temp1++;
    			continue;
    		}
    
    		 * Find minimum tckmax_ps to find fastest slow speed,
    
    		 * i.e., this is the slowest the whole system can go.
    		 */
    
    		tckmax_ps = min(tckmax_ps,
    				(unsigned int)dimm_params[i].tckmax_ps);
    
    #if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR4)
    
    		taamin_ps = max(taamin_ps,
    				(unsigned int)dimm_params[i].taa_ps);
    
    		tckmin_x_ps = max(tckmin_x_ps,
    				  (unsigned int)dimm_params[i].tckmin_x_ps);
    		trcd_ps = max(trcd_ps, (unsigned int)dimm_params[i].trcd_ps);
    		trp_ps = max(trp_ps, (unsigned int)dimm_params[i].trp_ps);
    		tras_ps = max(tras_ps, (unsigned int)dimm_params[i].tras_ps);
    
    #ifdef CONFIG_SYS_FSL_DDR4
    
    		trfc1_ps = max(trfc1_ps,
    			       (unsigned int)dimm_params[i].trfc1_ps);
    		trfc2_ps = max(trfc2_ps,
    			       (unsigned int)dimm_params[i].trfc2_ps);
    		trfc4_ps = max(trfc4_ps,
    			       (unsigned int)dimm_params[i].trfc4_ps);
    		trrds_ps = max(trrds_ps,
    			       (unsigned int)dimm_params[i].trrds_ps);
    		trrdl_ps = max(trrdl_ps,
    			       (unsigned int)dimm_params[i].trrdl_ps);
    		tccdl_ps = max(tccdl_ps,
    			       (unsigned int)dimm_params[i].tccdl_ps);
    
    		twr_ps = max(twr_ps, (unsigned int)dimm_params[i].twr_ps);
    		twtr_ps = max(twtr_ps, (unsigned int)dimm_params[i].twtr_ps);
    		trfc_ps = max(trfc_ps, (unsigned int)dimm_params[i].trfc_ps);
    		trrd_ps = max(trrd_ps, (unsigned int)dimm_params[i].trrd_ps);
    		trtp_ps = max(trtp_ps, (unsigned int)dimm_params[i].trtp_ps);
    
    		trc_ps = max(trc_ps, (unsigned int)dimm_params[i].trc_ps);
    
    #if defined(CONFIG_SYS_FSL_DDR1) || defined(CONFIG_SYS_FSL_DDR2)
    
    		tis_ps = max(tis_ps, (unsigned int)dimm_params[i].tis_ps);
    		tih_ps = max(tih_ps, (unsigned int)dimm_params[i].tih_ps);
    		tds_ps = max(tds_ps, (unsigned int)dimm_params[i].tds_ps);
    		tdh_ps = max(tdh_ps, (unsigned int)dimm_params[i].tdh_ps);
    		tqhs_ps = max(tqhs_ps, (unsigned int)dimm_params[i].tqhs_ps);
    
    		 * Find maximum tdqsq_max_ps to find slowest.
    
    		 *
    		 * FIXME: is finding the slowest value the correct
    		 * strategy for this parameter?
    		 */
    
    		tdqsq_max_ps = max(tdqsq_max_ps,
    				   (unsigned int)dimm_params[i].tdqsq_max_ps);
    
    #endif
    		refresh_rate_ps = max(refresh_rate_ps,
    
    				      (unsigned int)dimm_params[i].refresh_rate_ps);
    
    		/* extended_op_srt is either 0 or 1, 0 having priority */
    		extended_op_srt = min(extended_op_srt,
    
    				      (unsigned int)dimm_params[i].extended_op_srt);
    
    	}
    
    	outpdimm->ndimms_present = number_of_dimms - temp1;
    
    	if (temp1 == number_of_dimms) {
    		debug("no dimms this memory controller\n");
    		return 0;
    	}
    
    
    	outpdimm->tckmin_x_ps = tckmin_x_ps;
    	outpdimm->tckmax_ps = tckmax_ps;
    
    #if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR4)
    	outpdimm->taamin_ps = taamin_ps;
    #endif
    
    	outpdimm->trcd_ps = trcd_ps;
    	outpdimm->trp_ps = trp_ps;
    	outpdimm->tras_ps = tras_ps;
    
    #ifdef CONFIG_SYS_FSL_DDR4
    	outpdimm->trfc1_ps = trfc1_ps;
    	outpdimm->trfc2_ps = trfc2_ps;
    	outpdimm->trfc4_ps = trfc4_ps;
    	outpdimm->trrds_ps = trrds_ps;
    	outpdimm->trrdl_ps = trrdl_ps;
    	outpdimm->tccdl_ps = tccdl_ps;
    #else
    
    	outpdimm->twtr_ps = twtr_ps;
    	outpdimm->trfc_ps = trfc_ps;
    	outpdimm->trrd_ps = trrd_ps;
    
    	outpdimm->trtp_ps = trtp_ps;
    #endif
    	outpdimm->twr_ps = twr_ps;
    
    	outpdimm->trc_ps = trc_ps;
    
    	outpdimm->refresh_rate_ps = refresh_rate_ps;
    
    	outpdimm->extended_op_srt = extended_op_srt;
    
    #if defined(CONFIG_SYS_FSL_DDR1) || defined(CONFIG_SYS_FSL_DDR2)
    
    	outpdimm->tis_ps = tis_ps;
    	outpdimm->tih_ps = tih_ps;
    	outpdimm->tds_ps = tds_ps;
    	outpdimm->tdh_ps = tdh_ps;
    	outpdimm->tdqsq_max_ps = tdqsq_max_ps;
    	outpdimm->tqhs_ps = tqhs_ps;
    
    
    	/* Determine common burst length for all DIMMs. */
    	temp1 = 0xff;
    	for (i = 0; i < number_of_dimms; i++) {
    		if (dimm_params[i].n_ranks) {
    			temp1 &= dimm_params[i].burst_lengths_bitmask;
    		}
    	}
    
    	outpdimm->all_dimms_burst_lengths_bitmask = temp1;
    
    
    	/* Determine if all DIMMs registered buffered. */
    	temp1 = temp2 = 0;
    	for (i = 0; i < number_of_dimms; i++) {
    		if (dimm_params[i].n_ranks) {
    
    			if (dimm_params[i].registered_dimm) {
    
    #ifndef CONFIG_SPL_BUILD
    
    				printf("Detected RDIMM %s\n",
    					dimm_params[i].mpart);
    
    			} else {
    
    #ifndef CONFIG_SPL_BUILD
    
    				printf("Detected UDIMM %s\n",
    					dimm_params[i].mpart);
    
    	outpdimm->all_dimms_registered = 0;
    	outpdimm->all_dimms_unbuffered = 0;
    
    		outpdimm->all_dimms_registered = 1;
    
    	} else if (!temp1 && temp2) {
    
    		outpdimm->all_dimms_unbuffered = 1;
    
    	} else {
    
    		printf("ERROR:  Mix of registered buffered and unbuffered "
    				"DIMMs detected!\n");
    	}
    
    
    	temp1 = 0;
    
    	if (outpdimm->all_dimms_registered)
    
    		for (j = 0; j < 16; j++) {
    			outpdimm->rcw[j] = dimm_params[0].rcw[j];
    
    			for (i = 1; i < number_of_dimms; i++) {
    				if (!dimm_params[i].n_ranks)
    					continue;
    
    				if (dimm_params[i].rcw[j] != dimm_params[0].rcw[j]) {
    
    					temp1 = 1;
    
    		}
    
    	if (temp1 != 0)
    		printf("ERROR: Mix different RDIMM detected!\n");
    
    
    	/* calculate cas latency for all DDR types */
    
    	if (compute_cas_latency(ctrl_num, dimm_params,
    				outpdimm, number_of_dimms))
    
    
    	/* Determine if all DIMMs ECC capable. */
    	temp1 = 1;
    	for (i = 0; i < number_of_dimms; i++) {
    
    		if (dimm_params[i].n_ranks &&
    			!(dimm_params[i].edc_config & EDC_ECC)) {
    
    			temp1 = 0;
    			break;
    		}
    	}
    	if (temp1) {
    		debug("all DIMMs ECC capable\n");
    	} else {
    		debug("Warning: not all DIMMs ECC capable, cant enable ECC\n");
    	}
    
    	outpdimm->all_dimms_ecc_capable = temp1;
    
    
    	/*
    	 * Compute additive latency.
    	 *
    	 * For DDR1, additive latency should be 0.
    	 *
    	 * For DDR2, with ODT enabled, use "a value" less than ACTTORW,
    	 *	which comes from Trcd, and also note that:
    	 *	    add_lat + caslat must be >= 4
    	 *
    
    	 * For DDR3, we use the AL=0
    
    	 *
    	 * When to use additive latency for DDR2:
    	 *
    	 * I. Because you are using CL=3 and need to do ODT on writes and
    	 *    want functionality.
    	 *    1. Are you going to use ODT? (Does your board not have
    	 *      additional termination circuitry for DQ, DQS, DQS_,
    	 *      DM, RDQS, RDQS_ for x4/x8 configs?)
    	 *    2. If so, is your lowest supported CL going to be 3?
    	 *    3. If so, then you must set AL=1 because
    	 *
    	 *       WL >= 3 for ODT on writes
    	 *       RL = AL + CL
    	 *       WL = RL - 1
    	 *       ->
    	 *       WL = AL + CL - 1
    	 *       AL + CL - 1 >= 3
    	 *       AL + CL >= 4
    	 *  QED
    	 *
    	 *  RL >= 3 for ODT on reads
    	 *  RL = AL + CL
    	 *
    	 *  Since CL aren't usually less than 2, AL=0 is a minimum,
    	 *  so the WL-derived AL should be the  -- FIXME?
    	 *
    	 * II. Because you are using auto-precharge globally and want to
    	 *     use additive latency (posted CAS) to get more bandwidth.
    	 *     1. Are you going to use auto-precharge mode globally?
    	 *
    	 *        Use addtivie latency and compute AL to be 1 cycle less than
    	 *        tRCD, i.e. the READ or WRITE command is in the cycle
    	 *        immediately following the ACTIVATE command..
    	 *
    	 * III. Because you feel like it or want to do some sort of
    	 *      degraded-performance experiment.
    	 *     1.  Do you just want to use additive latency because you feel
    	 *         like it?
    	 *
    	 * Validation:  AL is less than tRCD, and within the other
    	 * read-to-precharge constraints.
    	 */
    
    	additive_latency = 0;
    
    
    #if defined(CONFIG_SYS_FSL_DDR2)
    
    	if ((outpdimm->lowest_common_spd_caslat < 4) &&
    
    	    (picos_to_mclk(ctrl_num, trcd_ps) >
    	     outpdimm->lowest_common_spd_caslat)) {
    		additive_latency = picos_to_mclk(ctrl_num, trcd_ps) -
    
    				   outpdimm->lowest_common_spd_caslat;
    
    		if (mclk_to_picos(ctrl_num, additive_latency) > trcd_ps) {
    			additive_latency = picos_to_mclk(ctrl_num, trcd_ps);
    
    			debug("setting additive_latency to %u because it was "
    				" greater than tRCD_ps\n", additive_latency);
    		}
    	}
    #endif
    
    	/*
    	 * Validate additive latency
    	 *
    	 * AL <= tRCD(min)
    	 */
    
    	if (mclk_to_picos(ctrl_num, additive_latency) > trcd_ps) {
    
    		printf("Error: invalid additive latency exceeds tRCD(min).\n");
    		return 1;
    	}
    
    	/*
    	 * RL = CL + AL;  RL >= 3 for ODT_RD_CFG to be enabled
    	 * WL = RL - 1;  WL >= 3 for ODT_WL_CFG to be enabled
    	 * ADD_LAT (the register) must be set to a value less
    	 * than ACTTORW if WL = 1, then AL must be set to 1
    	 * RD_TO_PRE (the register) must be set to a minimum
    	 * tRTP + AL if AL is nonzero
    	 */
    
    	/*
    	 * Additive latency will be applied only if the memctl option to
    	 * use it.
    	 */
    	outpdimm->additive_latency = additive_latency;
    
    
    	debug("tCKmin_ps = %u\n", outpdimm->tckmin_x_ps);
    	debug("trcd_ps   = %u\n", outpdimm->trcd_ps);
    	debug("trp_ps    = %u\n", outpdimm->trp_ps);
    	debug("tras_ps   = %u\n", outpdimm->tras_ps);
    
    #ifdef CONFIG_SYS_FSL_DDR4
    	debug("trfc1_ps = %u\n", trfc1_ps);
    	debug("trfc2_ps = %u\n", trfc2_ps);
    	debug("trfc4_ps = %u\n", trfc4_ps);
    	debug("trrds_ps = %u\n", trrds_ps);
    	debug("trrdl_ps = %u\n", trrdl_ps);
    	debug("tccdl_ps = %u\n", tccdl_ps);
    #else
    
    	debug("twtr_ps   = %u\n", outpdimm->twtr_ps);
    	debug("trfc_ps   = %u\n", outpdimm->trfc_ps);
    	debug("trrd_ps   = %u\n", outpdimm->trrd_ps);
    
    #endif
    	debug("twr_ps    = %u\n", outpdimm->twr_ps);
    
    	debug("trc_ps    = %u\n", outpdimm->trc_ps);