Skip to content
Snippets Groups Projects
zynqpl.c 12 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * (C) Copyright 2012-2013, Xilinx, Michal Simek
     *
     * (C) Copyright 2012
     * Joe Hershberger <joe.hershberger@ni.com>
     *
    
     * SPDX-License-Identifier:	GPL-2.0+
    
     */
    
    #include <common.h>
    #include <asm/io.h>
    
    #include <zynqpl.h>
    
    #include <linux/sizes.h>
    
    #include <asm/arch/hardware.h>
    #include <asm/arch/sys_proto.h>
    
    #define DEVCFG_CTRL_PCFG_PROG_B		0x40000000
    #define DEVCFG_ISR_FATAL_ERROR_MASK	0x00740040
    #define DEVCFG_ISR_ERROR_FLAGS_MASK	0x00340840
    #define DEVCFG_ISR_RX_FIFO_OV		0x00040000
    #define DEVCFG_ISR_DMA_DONE		0x00002000
    #define DEVCFG_ISR_PCFG_DONE		0x00000004
    #define DEVCFG_STATUS_DMA_CMD_Q_F	0x80000000
    #define DEVCFG_STATUS_DMA_CMD_Q_E	0x40000000
    #define DEVCFG_STATUS_DMA_DONE_CNT_MASK	0x30000000
    #define DEVCFG_STATUS_PCFG_INIT		0x00000010
    
    #define DEVCFG_MCTRL_PCAP_LPBK		0x00000010
    
    #define DEVCFG_MCTRL_RFIFO_FLUSH	0x00000002
    #define DEVCFG_MCTRL_WFIFO_FLUSH	0x00000001
    
    #ifndef CONFIG_SYS_FPGA_WAIT
    #define CONFIG_SYS_FPGA_WAIT CONFIG_SYS_HZ/100	/* 10 ms */
    #endif
    
    #ifndef CONFIG_SYS_FPGA_PROG_TIME
    
    #define CONFIG_SYS_FPGA_PROG_TIME	(CONFIG_SYS_HZ * 4) /* 4 s */
    
    static int zynq_info(xilinx_desc *desc)
    
    {
    	return FPGA_SUCCESS;
    }
    
    #define DUMMY_WORD	0xffffffff
    
    /* Xilinx binary format header */
    static const u32 bin_format[] = {
    	DUMMY_WORD, /* Dummy words */
    	DUMMY_WORD,
    	DUMMY_WORD,
    	DUMMY_WORD,
    	DUMMY_WORD,
    	DUMMY_WORD,
    	DUMMY_WORD,
    	DUMMY_WORD,
    	0x000000bb, /* Sync word */
    	0x11220044, /* Sync word */
    	DUMMY_WORD,
    	DUMMY_WORD,
    	0xaa995566, /* Sync word */
    };
    
    #define SWAP_NO		1
    #define SWAP_DONE	2
    
    /*
     * Load the whole word from unaligned buffer
     * Keep in your mind that it is byte loading on little-endian system
     */
    static u32 load_word(const void *buf, u32 swap)
    {
    	u32 word = 0;
    	u8 *bitc = (u8 *)buf;
    	int p;
    
    	if (swap == SWAP_NO) {
    		for (p = 0; p < 4; p++) {
    			word <<= 8;
    			word |= bitc[p];
    		}
    	} else {
    		for (p = 3; p >= 0; p--) {
    			word <<= 8;
    			word |= bitc[p];
    		}
    	}
    
    	return word;
    }
    
    static u32 check_header(const void *buf)
    {
    	u32 i, pattern;
    	int swap = SWAP_NO;
    	u32 *test = (u32 *)buf;
    
    	debug("%s: Let's check bitstream header\n", __func__);
    
    	/* Checking that passing bin is not a bitstream */
    	for (i = 0; i < ARRAY_SIZE(bin_format); i++) {
    		pattern = load_word(&test[i], swap);
    
    		/*
    		 * Bitstreams in binary format are swapped
    		 * compare to regular bistream.
    		 * Do not swap dummy word but if swap is done assume
    		 * that parsing buffer is binary format
    		 */
    		if ((__swab32(pattern) != DUMMY_WORD) &&
    		    (__swab32(pattern) == bin_format[i])) {
    			pattern = __swab32(pattern);
    			swap = SWAP_DONE;
    			debug("%s: data swapped - let's swap\n", __func__);
    		}
    
    		debug("%s: %d/%x: pattern %x/%x bin_format\n", __func__, i,
    		      (u32)&test[i], pattern, bin_format[i]);
    		if (pattern != bin_format[i]) {
    			debug("%s: Bitstream is not recognized\n", __func__);
    			return 0;
    		}
    	}
    	debug("%s: Found bitstream header at %x %s swapinng\n", __func__,
    	      (u32)buf, swap == SWAP_NO ? "without" : "with");
    
    	return swap;
    }
    
    static void *check_data(u8 *buf, size_t bsize, u32 *swap)
    {
    	u32 word, p = 0; /* possition */
    
    	/* Because buf doesn't need to be aligned let's read it by chars */
    	for (p = 0; p < bsize; p++) {
    		word = load_word(&buf[p], SWAP_NO);
    		debug("%s: word %x %x/%x\n", __func__, word, p, (u32)&buf[p]);
    
    		/* Find the first bitstream dummy word */
    		if (word == DUMMY_WORD) {
    			debug("%s: Found dummy word at position %x/%x\n",
    			      __func__, p, (u32)&buf[p]);
    			*swap = check_header(&buf[p]);
    			if (*swap) {
    				/* FIXME add full bitstream checking here */
    				return &buf[p];
    			}
    		}
    		/* Loop can be huge - support CTRL + C */
    		if (ctrlc())
    
    			return NULL;
    
    	return NULL;
    
    static int zynq_dma_transfer(u32 srcbuf, u32 srclen, u32 dstbuf, u32 dstlen)
    
    	unsigned long ts;
    	u32 isr_status;
    
    	/* Set up the transfer */
    	writel((u32)srcbuf, &devcfg_base->dma_src_addr);
    	writel(dstbuf, &devcfg_base->dma_dst_addr);
    	writel(srclen, &devcfg_base->dma_src_len);
    	writel(dstlen, &devcfg_base->dma_dst_len);
    
    	isr_status = readl(&devcfg_base->int_sts);
    
    	/* Polling the PCAP_INIT status for Set */
    	ts = get_timer(0);
    	while (!(isr_status & DEVCFG_ISR_DMA_DONE)) {
    		if (isr_status & DEVCFG_ISR_ERROR_FLAGS_MASK) {
    			debug("%s: Error: isr = 0x%08X\n", __func__,
    			      isr_status);
    			debug("%s: Write count = 0x%08X\n", __func__,
    			      readl(&devcfg_base->write_count));
    			debug("%s: Read count = 0x%08X\n", __func__,
    			      readl(&devcfg_base->read_count));
    
    		if (get_timer(ts) > CONFIG_SYS_FPGA_PROG_TIME) {
    			printf("%s: Timeout wait for DMA to complete\n",
    			       __func__);
    			return FPGA_FAIL;
    		}
    		isr_status = readl(&devcfg_base->int_sts);
    	}
    
    	debug("%s: DMA transfer is done\n", __func__);
    
    	/* Clear out the DMA status */
    	writel(DEVCFG_ISR_DMA_DONE, &devcfg_base->int_sts);
    
    static int zynq_dma_xfer_init(bitstream_type bstype)
    
    {
    	u32 status, control, isr_status;
    	unsigned long ts;
    
    	/* Clear loopback bit */
    	clrbits_le32(&devcfg_base->mctrl, DEVCFG_MCTRL_PCAP_LPBK);
    
    
    	if (bstype != BIT_PARTIAL) {
    
    		zynq_slcr_devcfg_disable();
    
    		/* Setting PCFG_PROG_B signal to high */
    		control = readl(&devcfg_base->ctrl);
    		writel(control | DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl);
    		/* Setting PCFG_PROG_B signal to low */
    		writel(control & ~DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl);
    
    		/* Polling the PCAP_INIT status for Reset */
    		ts = get_timer(0);
    		while (readl(&devcfg_base->status) & DEVCFG_STATUS_PCFG_INIT) {
    			if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) {
    				printf("%s: Timeout wait for INIT to clear\n",
    				       __func__);
    				return FPGA_FAIL;
    			}
    		}
    
    		/* Setting PCFG_PROG_B signal to high */
    		writel(control | DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl);
    
    		/* Polling the PCAP_INIT status for Set */
    		ts = get_timer(0);
    		while (!(readl(&devcfg_base->status) &
    			DEVCFG_STATUS_PCFG_INIT)) {
    			if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) {
    				printf("%s: Timeout wait for INIT to set\n",
    				       __func__);
    				return FPGA_FAIL;
    			}
    		}
    	}
    
    	isr_status = readl(&devcfg_base->int_sts);
    
    	/* Clear it all, so if Boot ROM comes back, it can proceed */
    	writel(0xFFFFFFFF, &devcfg_base->int_sts);
    
    	if (isr_status & DEVCFG_ISR_FATAL_ERROR_MASK) {
    		debug("%s: Fatal errors in PCAP 0x%X\n", __func__, isr_status);
    
    		/* If RX FIFO overflow, need to flush RX FIFO first */
    		if (isr_status & DEVCFG_ISR_RX_FIFO_OV) {
    			writel(DEVCFG_MCTRL_RFIFO_FLUSH, &devcfg_base->mctrl);
    			writel(0xFFFFFFFF, &devcfg_base->int_sts);
    		}
    		return FPGA_FAIL;
    	}
    
    	status = readl(&devcfg_base->status);
    
    	debug("%s: Status = 0x%08X\n", __func__, status);
    
    	if (status & DEVCFG_STATUS_DMA_CMD_Q_F) {
    		debug("%s: Error: device busy\n", __func__);
    		return FPGA_FAIL;
    	}
    
    	debug("%s: Device ready\n", __func__);
    
    	if (!(status & DEVCFG_STATUS_DMA_CMD_Q_E)) {
    		if (!(readl(&devcfg_base->int_sts) & DEVCFG_ISR_DMA_DONE)) {
    			/* Error state, transfer cannot occur */
    			debug("%s: ISR indicates error\n", __func__);
    			return FPGA_FAIL;
    		} else {
    			/* Clear out the status */
    			writel(DEVCFG_ISR_DMA_DONE, &devcfg_base->int_sts);
    		}
    	}
    
    	if (status & DEVCFG_STATUS_DMA_DONE_CNT_MASK) {
    		/* Clear the count of completed DMA transfers */
    		writel(DEVCFG_STATUS_DMA_DONE_CNT_MASK, &devcfg_base->status);
    	}
    
    
    	return FPGA_SUCCESS;
    }
    
    static u32 *zynq_align_dma_buffer(u32 *buf, u32 len, u32 swap)
    {
    	u32 *new_buf;
    	u32 i;
    
    	if ((u32)buf != ALIGN((u32)buf, ARCH_DMA_MINALIGN)) {
    		new_buf = (u32 *)ALIGN((u32)buf, ARCH_DMA_MINALIGN);
    
    		/*
    		 * This might be dangerous but permits to flash if
    		 * ARCH_DMA_MINALIGN is greater than header size
    		 */
    		if (new_buf > buf) {
    			debug("%s: Aligned buffer is after buffer start\n",
    			      __func__);
    			new_buf -= ARCH_DMA_MINALIGN;
    		}
    		printf("%s: Align buffer at %x to %x(swap %d)\n", __func__,
    		       (u32)buf, (u32)new_buf, swap);
    
    		for (i = 0; i < (len/4); i++)
    			new_buf[i] = load_word(&buf[i], swap);
    
    		buf = new_buf;
    	} else if (swap != SWAP_DONE) {
    		/* For bitstream which are aligned */
    		u32 *new_buf = (u32 *)buf;
    
    		printf("%s: Bitstream is not swapped(%d) - swap it\n", __func__,
    		       swap);
    
    		for (i = 0; i < (len/4); i++)
    			new_buf[i] = load_word(&buf[i], swap);
    	}
    
    	return buf;
    }
    
    
    static int zynq_validate_bitstream(xilinx_desc *desc, const void *buf,
    				   size_t bsize, u32 blocksize, u32 *swap,
    
    				   bitstream_type *bstype)
    
    	buf_start = check_data((u8 *)buf, blocksize, swap);
    
    
    	if (!buf_start)
    		return FPGA_FAIL;
    
    	/* Check if data is postpone from start */
    	diff = (u32)buf_start - (u32)buf;
    	if (diff) {
    		printf("%s: Bitstream is not validated yet (diff %x)\n",
    		       __func__, diff);
    		return FPGA_FAIL;
    	}
    
    	if ((u32)buf < SZ_1M) {
    		printf("%s: Bitstream has to be placed up to 1MB (%x)\n",
    		       __func__, (u32)buf);
    		return FPGA_FAIL;
    	}
    
    
    	if (zynq_dma_xfer_init(*bstype))
    
    static int zynq_load(xilinx_desc *desc, const void *buf, size_t bsize,
    		     bitstream_type bstype)
    
    {
    	unsigned long ts; /* Timestamp */
    	u32 isr_status, swap;
    
    	/*
    	 * send bsize inplace of blocksize as it was not a bitstream
    	 * in chunks
    	 */
    	if (zynq_validate_bitstream(desc, buf, bsize, bsize, &swap,
    
    		return FPGA_FAIL;
    
    	buf = zynq_align_dma_buffer((u32 *)buf, bsize, swap);
    
    
    	debug("%s: Source = 0x%08X\n", __func__, (u32)buf);
    	debug("%s: Size = %zu\n", __func__, bsize);
    
    
    	/* flush(clean & invalidate) d-cache range buf */
    	flush_dcache_range((u32)buf, (u32)buf +
    			   roundup(bsize, ARCH_DMA_MINALIGN));
    
    
    	if (zynq_dma_transfer((u32)buf | 1, bsize >> 2, 0xffffffff, 0))
    		return FPGA_FAIL;
    
    
    	isr_status = readl(&devcfg_base->int_sts);
    	/* Check FPGA configuration completion */
    	ts = get_timer(0);
    	while (!(isr_status & DEVCFG_ISR_PCFG_DONE)) {
    		if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) {
    			printf("%s: Timeout wait for FPGA to config\n",
    			       __func__);
    			return FPGA_FAIL;
    		}
    		isr_status = readl(&devcfg_base->int_sts);
    	}
    
    	debug("%s: FPGA config done\n", __func__);
    
    
    	if (bstype != BIT_PARTIAL)
    
    		zynq_slcr_devcfg_enable();
    
    	return FPGA_SUCCESS;
    }
    
    
    #if defined(CONFIG_CMD_FPGA_LOADFS)
    static int zynq_loadfs(xilinx_desc *desc, const void *buf, size_t bsize,
    		       fpga_fs_info *fsinfo)
    {
    	unsigned long ts; /* Timestamp */
    	u32 isr_status, swap;
    	u32 partialbit = 0;
    
    	loff_t blocksize, actread;
    	loff_t pos = 0;
    
    	int fstype;
    	char *interface, *dev_part, *filename;
    
    	blocksize = fsinfo->blocksize;
    	interface = fsinfo->interface;
    	dev_part = fsinfo->dev_part;
    	filename = fsinfo->filename;
    	fstype = fsinfo->fstype;
    
    	if (fs_set_blk_dev(interface, dev_part, fstype))
    		return FPGA_FAIL;
    
    
    	if (fs_read(filename, (u32) buf, pos, blocksize, &actread) < 0)
    
    		return FPGA_FAIL;
    
    	if (zynq_validate_bitstream(desc, buf, bsize, blocksize, &swap,
    				    &partialbit))
    		return FPGA_FAIL;
    
    	dcache_disable();
    
    	do {
    		buf = zynq_align_dma_buffer((u32 *)buf, blocksize, swap);
    
    		if (zynq_dma_transfer((u32)buf | 1, blocksize >> 2,
    				      0xffffffff, 0))
    			return FPGA_FAIL;
    
    		bsize -= blocksize;
    		pos   += blocksize;
    
    		if (fs_set_blk_dev(interface, dev_part, fstype))
    			return FPGA_FAIL;
    
    		if (bsize > blocksize) {
    
    			if (fs_read(filename, (u32) buf, pos, blocksize, &actread) < 0)
    
    			if (fs_read(filename, (u32) buf, pos, bsize, &actread) < 0)
    
    				return FPGA_FAIL;
    		}
    	} while (bsize > blocksize);
    
    	buf = zynq_align_dma_buffer((u32 *)buf, blocksize, swap);
    
    	if (zynq_dma_transfer((u32)buf | 1, bsize >> 2, 0xffffffff, 0))
    		return FPGA_FAIL;
    
    	dcache_enable();
    
    	isr_status = readl(&devcfg_base->int_sts);
    
    	/* Check FPGA configuration completion */
    	ts = get_timer(0);
    	while (!(isr_status & DEVCFG_ISR_PCFG_DONE)) {
    		if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) {
    			printf("%s: Timeout wait for FPGA to config\n",
    			       __func__);
    			return FPGA_FAIL;
    		}
    		isr_status = readl(&devcfg_base->int_sts);
    	}
    
    	debug("%s: FPGA config done\n", __func__);
    
    	if (!partialbit)
    		zynq_slcr_devcfg_enable();
    
    	return FPGA_SUCCESS;
    }
    #endif
    
    
    static int zynq_dump(xilinx_desc *desc, const void *buf, size_t bsize)
    
    
    struct xilinx_fpga_op zynq_op = {
    	.load = zynq_load,
    
    #if defined(CONFIG_CMD_FPGA_LOADFS)
    	.loadfs = zynq_loadfs,
    #endif
    
    	.dump = zynq_dump,
    	.info = zynq_info,
    };