Skip to content
Snippets Groups Projects
usb-uclass.c 18.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * (C) Copyright 2015 Google, Inc
     * Written by Simon Glass <sjg@chromium.org>
     *
    
     * usb_match_device() modified from Linux kernel v4.0.
     *
    
     * SPDX-License-Identifier:	GPL-2.0+
     */
    
    #include <common.h>
    #include <dm.h>
    #include <errno.h>
    
    #include <usb.h>
    #include <dm/device-internal.h>
    #include <dm/lists.h>
    #include <dm/root.h>
    #include <dm/uclass-internal.h>
    
    DECLARE_GLOBAL_DATA_PTR;
    
    extern bool usb_started; /* flag for the started/stopped USB status */
    static bool asynch_allowed;
    
    
    struct usb_uclass_priv {
    	int companion_device_count;
    };
    
    
    int usb_disable_asynch(int disable)
    {
    	int old_value = asynch_allowed;
    
    	asynch_allowed = !disable;
    	return old_value;
    }
    
    int submit_int_msg(struct usb_device *udev, unsigned long pipe, void *buffer,
    		   int length, int interval)
    {
    	struct udevice *bus = udev->controller_dev;
    	struct dm_usb_ops *ops = usb_get_ops(bus);
    
    	if (!ops->interrupt)
    		return -ENOSYS;
    
    	return ops->interrupt(bus, udev, pipe, buffer, length, interval);
    }
    
    int submit_control_msg(struct usb_device *udev, unsigned long pipe,
    		       void *buffer, int length, struct devrequest *setup)
    {
    	struct udevice *bus = udev->controller_dev;
    	struct dm_usb_ops *ops = usb_get_ops(bus);
    
    	struct usb_uclass_priv *uc_priv = bus->uclass->priv;
    	int err;
    
    
    	if (!ops->control)
    		return -ENOSYS;
    
    
    	err = ops->control(bus, udev, pipe, buffer, length, setup);
    	if (setup->request == USB_REQ_SET_FEATURE &&
    	    setup->requesttype == USB_RT_PORT &&
    	    setup->value == cpu_to_le16(USB_PORT_FEAT_RESET) &&
    	    err == -ENXIO) {
    		/* Device handed over to companion after port reset */
    		uc_priv->companion_device_count++;
    	}
    
    	return err;
    
    }
    
    int submit_bulk_msg(struct usb_device *udev, unsigned long pipe, void *buffer,
    		    int length)
    {
    	struct udevice *bus = udev->controller_dev;
    	struct dm_usb_ops *ops = usb_get_ops(bus);
    
    	if (!ops->bulk)
    		return -ENOSYS;
    
    	return ops->bulk(bus, udev, pipe, buffer, length);
    }
    
    
    struct int_queue *create_int_queue(struct usb_device *udev,
    		unsigned long pipe, int queuesize, int elementsize,
    		void *buffer, int interval)
    {
    	struct udevice *bus = udev->controller_dev;
    	struct dm_usb_ops *ops = usb_get_ops(bus);
    
    	if (!ops->create_int_queue)
    		return NULL;
    
    	return ops->create_int_queue(bus, udev, pipe, queuesize, elementsize,
    				     buffer, interval);
    }
    
    void *poll_int_queue(struct usb_device *udev, struct int_queue *queue)
    {
    	struct udevice *bus = udev->controller_dev;
    	struct dm_usb_ops *ops = usb_get_ops(bus);
    
    	if (!ops->poll_int_queue)
    		return NULL;
    
    	return ops->poll_int_queue(bus, udev, queue);
    }
    
    int destroy_int_queue(struct usb_device *udev, struct int_queue *queue)
    {
    	struct udevice *bus = udev->controller_dev;
    	struct dm_usb_ops *ops = usb_get_ops(bus);
    
    	if (!ops->destroy_int_queue)
    		return -ENOSYS;
    
    	return ops->destroy_int_queue(bus, udev, queue);
    }
    
    
    int usb_alloc_device(struct usb_device *udev)
    {
    	struct udevice *bus = udev->controller_dev;
    	struct dm_usb_ops *ops = usb_get_ops(bus);
    
    	/* This is only requird by some controllers - current XHCI */
    	if (!ops->alloc_device)
    		return 0;
    
    	return ops->alloc_device(bus, udev);
    }
    
    
    int usb_reset_root_port(struct usb_device *udev)
    {
    	struct udevice *bus = udev->controller_dev;
    	struct dm_usb_ops *ops = usb_get_ops(bus);
    
    	if (!ops->reset_root_port)
    		return -ENOSYS;
    
    	return ops->reset_root_port(bus, udev);
    }
    
    
    int usb_stop(void)
    {
    	struct udevice *bus;
    	struct uclass *uc;
    
    	struct usb_uclass_priv *uc_priv;
    
    	int err = 0, ret;
    
    	/* De-activate any devices that have been activated */
    	ret = uclass_get(UCLASS_USB, &uc);
    	if (ret)
    		return ret;
    
    	uclass_foreach_dev(bus, uc) {
    		ret = device_remove(bus);
    		if (ret && !err)
    			err = ret;
    	}
    
    
    #ifdef CONFIG_SANDBOX
    	struct udevice *dev;
    
    	/* Reset all enulation devices */
    	ret = uclass_get(UCLASS_USB_EMUL, &uc);
    	if (ret)
    		return ret;
    
    	uclass_foreach_dev(dev, uc)
    		usb_emul_reset(dev);
    #endif
    
    #ifdef CONFIG_USB_STORAGE
    
    	usb_stor_reset();
    
    	usb_hub_reset();
    
    	uc_priv->companion_device_count = 0;
    
    	usb_started = 0;
    
    	return err;
    }
    
    
    static void usb_scan_bus(struct udevice *bus, bool recurse)
    
    {
    	struct usb_bus_priv *priv;
    	struct udevice *dev;
    	int ret;
    
    	priv = dev_get_uclass_priv(bus);
    
    	assert(recurse);	/* TODO: Support non-recusive */
    
    
    	printf("scanning bus %d for devices... ", bus->seq);
    	debug("\n");
    
    	ret = usb_scan_device(bus, 0, USB_SPEED_FULL, &dev);
    	if (ret)
    
    		printf("failed, error %d\n", ret);
    	else if (priv->next_addr == 0)
    		printf("No USB Device found\n");
    	else
    		printf("%d USB Device(s) found\n", priv->next_addr);
    
    }
    
    int usb_init(void)
    {
    	int controllers_initialized = 0;
    
    	struct usb_uclass_priv *uc_priv;
    
    	struct usb_bus_priv *priv;
    
    	struct udevice *bus;
    	struct uclass *uc;
    	int count = 0;
    	int ret;
    
    	asynch_allowed = 1;
    	usb_hub_reset();
    
    	ret = uclass_get(UCLASS_USB, &uc);
    	if (ret)
    		return ret;
    
    
    	uclass_foreach_dev(bus, uc) {
    		/* init low_level USB */
    
    		printf("USB%d:   ", count);
    
    		count++;
    		ret = device_probe(bus);
    		if (ret == -ENODEV) {	/* No such device. */
    			puts("Port not available.\n");
    			controllers_initialized++;
    			continue;
    		}
    
    		if (ret) {		/* Other error. */
    			printf("probe failed, error %d\n", ret);
    			continue;
    		}
    		controllers_initialized++;
    		usb_started = true;
    	}
    
    
    	/*
    	 * lowlevel init done, now scan the bus for devices i.e. search HUBs
    	 * and configure them, first scan primary controllers.
    	 */
    	uclass_foreach_dev(bus, uc) {
    		if (!device_active(bus))
    			continue;
    
    		priv = dev_get_uclass_priv(bus);
    		if (!priv->companion)
    			usb_scan_bus(bus, true);
    	}
    
    	/*
    	 * Now that the primary controllers have been scanned and have handed
    	 * over any devices they do not understand to their companions, scan
    
    	if (uc_priv->companion_device_count) {
    		uclass_foreach_dev(bus, uc) {
    			if (!device_active(bus))
    				continue;
    
    			priv = dev_get_uclass_priv(bus);
    			if (priv->companion)
    				usb_scan_bus(bus, true);
    		}
    
    	debug("scan end\n");
    	/* if we were not able to find at least one working bus, bail out */
    	if (!count)
    		printf("No controllers found\n");
    	else if (controllers_initialized == 0)
    		printf("USB error: all controllers failed lowlevel init\n");
    
    	return usb_started ? 0 : -1;
    }
    
    static struct usb_device *find_child_devnum(struct udevice *parent, int devnum)
    {
    	struct usb_device *udev;
    	struct udevice *dev;
    
    	if (!device_active(parent))
    		return NULL;
    
    	udev = dev_get_parent_priv(parent);
    
    	if (udev->devnum == devnum)
    		return udev;
    
    	for (device_find_first_child(parent, &dev);
    	     dev;
    	     device_find_next_child(&dev)) {
    		udev = find_child_devnum(dev, devnum);
    		if (udev)
    			return udev;
    	}
    
    	return NULL;
    }
    
    struct usb_device *usb_get_dev_index(struct udevice *bus, int index)
    {
    
    	int devnum = index + 1; /* Addresses are allocated from 1 on USB */
    
    
    	device_find_first_child(bus, &dev);
    	if (!dev)
    		return NULL;
    
    	return find_child_devnum(dev, devnum);
    
    }
    
    int usb_post_bind(struct udevice *dev)
    {
    	/* Scan the bus for devices */
    	return dm_scan_fdt_node(dev, gd->fdt_blob, dev->of_offset, false);
    }
    
    
    int usb_setup_ehci_gadget(struct ehci_ctrl **ctlrp)
    {
    	struct usb_platdata *plat;
    	struct udevice *dev;
    	int ret;
    
    	/* Find the old device and remove it */
    	ret = uclass_find_device_by_seq(UCLASS_USB, 0, true, &dev);
    	if (ret)
    		return ret;
    	ret = device_remove(dev);
    	if (ret)
    		return ret;
    
    	plat = dev_get_platdata(dev);
    	plat->init_type = USB_INIT_DEVICE;
    	ret = device_probe(dev);
    	if (ret)
    		return ret;
    	*ctlrp = dev_get_priv(dev);
    
    	return 0;
    }
    
    
    /* returns 0 if no match, 1 if match */
    int usb_match_device(const struct usb_device_descriptor *desc,
    		     const struct usb_device_id *id)
    {
    	if ((id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) &&
    	    id->idVendor != le16_to_cpu(desc->idVendor))
    		return 0;
    
    	if ((id->match_flags & USB_DEVICE_ID_MATCH_PRODUCT) &&
    	    id->idProduct != le16_to_cpu(desc->idProduct))
    		return 0;
    
    	/* No need to test id->bcdDevice_lo != 0, since 0 is never
    	   greater than any unsigned number. */
    	if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_LO) &&
    	    (id->bcdDevice_lo > le16_to_cpu(desc->bcdDevice)))
    		return 0;
    
    	if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_HI) &&
    	    (id->bcdDevice_hi < le16_to_cpu(desc->bcdDevice)))
    		return 0;
    
    	if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_CLASS) &&
    	    (id->bDeviceClass != desc->bDeviceClass))
    		return 0;
    
    	if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_SUBCLASS) &&
    	    (id->bDeviceSubClass != desc->bDeviceSubClass))
    		return 0;
    
    	if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_PROTOCOL) &&
    	    (id->bDeviceProtocol != desc->bDeviceProtocol))
    		return 0;
    
    	return 1;
    }
    
    /* returns 0 if no match, 1 if match */
    int usb_match_one_id_intf(const struct usb_device_descriptor *desc,
    			  const struct usb_interface_descriptor *int_desc,
    			  const struct usb_device_id *id)
    {
    	/* The interface class, subclass, protocol and number should never be
    	 * checked for a match if the device class is Vendor Specific,
    	 * unless the match record specifies the Vendor ID. */
    	if (desc->bDeviceClass == USB_CLASS_VENDOR_SPEC &&
    	    !(id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) &&
    	    (id->match_flags & (USB_DEVICE_ID_MATCH_INT_CLASS |
    				USB_DEVICE_ID_MATCH_INT_SUBCLASS |
    				USB_DEVICE_ID_MATCH_INT_PROTOCOL |
    				USB_DEVICE_ID_MATCH_INT_NUMBER)))
    		return 0;
    
    	if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_CLASS) &&
    	    (id->bInterfaceClass != int_desc->bInterfaceClass))
    		return 0;
    
    	if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_SUBCLASS) &&
    	    (id->bInterfaceSubClass != int_desc->bInterfaceSubClass))
    		return 0;
    
    	if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_PROTOCOL) &&
    	    (id->bInterfaceProtocol != int_desc->bInterfaceProtocol))
    		return 0;
    
    	if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_NUMBER) &&
    	    (id->bInterfaceNumber != int_desc->bInterfaceNumber))
    		return 0;
    
    	return 1;
    }
    
    /* returns 0 if no match, 1 if match */
    int usb_match_one_id(struct usb_device_descriptor *desc,
    		     struct usb_interface_descriptor *int_desc,
    		     const struct usb_device_id *id)
    {
    	if (!usb_match_device(desc, id))
    		return 0;
    
    	return usb_match_one_id_intf(desc, int_desc, id);
    }
    
    /**
     * usb_find_and_bind_driver() - Find and bind the right USB driver
     *
     * This only looks at certain fields in the descriptor.
     */
    static int usb_find_and_bind_driver(struct udevice *parent,
    				    struct usb_device_descriptor *desc,
    				    struct usb_interface_descriptor *iface,
    				    int bus_seq, int devnum,
    				    struct udevice **devp)
    {
    	struct usb_driver_entry *start, *entry;
    	int n_ents;
    	int ret;
    	char name[30], *str;
    
    	*devp = NULL;
    	debug("%s: Searching for driver\n", __func__);
    	start = ll_entry_start(struct usb_driver_entry, usb_driver_entry);
    	n_ents = ll_entry_count(struct usb_driver_entry, usb_driver_entry);
    	for (entry = start; entry != start + n_ents; entry++) {
    		const struct usb_device_id *id;
    		struct udevice *dev;
    		const struct driver *drv;
    		struct usb_dev_platdata *plat;
    
    		for (id = entry->match; id->match_flags; id++) {
    			if (!usb_match_one_id(desc, iface, id))
    				continue;
    
    			drv = entry->driver;
    			/*
    			 * We could pass the descriptor to the driver as
    			 * platdata (instead of NULL) and allow its bind()
    			 * method to return -ENOENT if it doesn't support this
    			 * device. That way we could continue the search to
    			 * find another driver. For now this doesn't seem
    			 * necesssary, so just bind the first match.
    			 */
    			ret = device_bind(parent, drv, drv->name, NULL, -1,
    					  &dev);
    			if (ret)
    				goto error;
    			debug("%s: Match found: %s\n", __func__, drv->name);
    			dev->driver_data = id->driver_info;
    			plat = dev_get_parent_platdata(dev);
    			plat->id = *id;
    			*devp = dev;
    			return 0;
    		}
    	}
    
    
    	/* Bind a generic driver so that the device can be used */
    	snprintf(name, sizeof(name), "generic_bus_%x_dev_%x", bus_seq, devnum);
    	str = strdup(name);
    	if (!str)
    		return -ENOMEM;
    	ret = device_bind_driver(parent, "usb_dev_generic_drv", str, devp);
    
    
    error:
    	debug("%s: No match found: %d\n", __func__, ret);
    	return ret;
    }
    
    /**
    
     * usb_find_child() - Find an existing device which matches our needs
     *
     *
    
    static int usb_find_child(struct udevice *parent,
    			  struct usb_device_descriptor *desc,
    			  struct usb_interface_descriptor *iface,
    			  struct udevice **devp)
    
    {
    	struct udevice *dev;
    
    	*devp = NULL;
    	for (device_find_first_child(parent, &dev);
    	     dev;
    	     device_find_next_child(&dev)) {
    		struct usb_dev_platdata *plat = dev_get_parent_platdata(dev);
    
    		/* If this device is already in use, skip it */
    		if (device_active(dev))
    			continue;
    		debug("   %s: name='%s', plat=%d, desc=%d\n", __func__,
    		      dev->name, plat->id.bDeviceClass, desc->bDeviceClass);
    		if (usb_match_one_id(desc, iface, &plat->id)) {
    			*devp = dev;
    			return 0;
    		}
    	}
    
    int usb_scan_device(struct udevice *parent, int port,
    		    enum usb_device_speed speed, struct udevice **devp)
    {
    	struct udevice *dev;
    	bool created = false;
    	struct usb_dev_platdata *plat;
    	struct usb_bus_priv *priv;
    	struct usb_device *parent_udev;
    	int ret;
    	ALLOC_CACHE_ALIGN_BUFFER(struct usb_device, udev, 1);
    	struct usb_interface_descriptor *iface = &udev->config.if_desc[0].desc;
    
    	*devp = NULL;
    	memset(udev, '\0', sizeof(*udev));
    
    	udev->controller_dev = usb_get_bus(parent);
    
    	priv = dev_get_uclass_priv(udev->controller_dev);
    
    	/*
    	 * Somewhat nasty, this. We create a local device and use the normal
    	 * USB stack to read its descriptor. Then we know what type of device
    	 * to create for real.
    	 *
    	 * udev->dev is set to the parent, since we don't have a real device
    	 * yet. The USB stack should not access udev.dev anyway, except perhaps
    	 * to find the controller, and the controller will either be @parent,
    	 * or some parent of @parent.
    	 *
    	 * Another option might be to create the device as a generic USB
    	 * device, then morph it into the correct one when we know what it
    	 * should be. This means that a generic USB device would morph into
    	 * a network controller, or a USB flash stick, for example. However,
    	 * we don't support such morphing and it isn't clear that it would
    	 * be easy to do.
    	 *
    	 * Yet another option is to split out the USB stack parts of udev
    	 * into something like a 'struct urb' (as Linux does) which can exist
    	 * independently of any device. This feels cleaner, but calls for quite
    	 * a big change to the USB stack.
    	 *
    	 * For now, the approach is to set up an empty udev, read its
    	 * descriptor and assign it an address, then bind a real device and
    	 * stash the resulting information into the device's parent
    	 * platform data. Then when we probe it, usb_child_pre_probe() is called
    	 * and it will pull the information out of the stash.
    	 */
    	udev->dev = parent;
    	udev->speed = speed;
    	udev->devnum = priv->next_addr + 1;
    	udev->portnr = port;
    	debug("Calling usb_setup_device(), portnr=%d\n", udev->portnr);
    	parent_udev = device_get_uclass_id(parent) == UCLASS_USB_HUB ?
    
    		dev_get_parent_priv(parent) : NULL;
    
    	ret = usb_setup_device(udev, priv->desc_before_addr, parent_udev);
    
    	debug("read_descriptor for '%s': ret=%d\n", parent->name, ret);
    	if (ret)
    		return ret;
    
    	ret = usb_find_child(parent, &udev->descriptor, iface, &dev);
    	debug("** usb_find_child returns %d\n", ret);
    
    	if (ret) {
    		if (ret != -ENOENT)
    			return ret;
    		ret = usb_find_and_bind_driver(parent, &udev->descriptor, iface,
    					       udev->controller_dev->seq,
    					       udev->devnum, &dev);
    		if (ret)
    			return ret;
    		created = true;
    	}
    	plat = dev_get_parent_platdata(dev);
    	debug("%s: Probing '%s', plat=%p\n", __func__, dev->name, plat);
    	plat->devnum = udev->devnum;
    
    	priv->next_addr++;
    	ret = device_probe(dev);
    	if (ret) {
    		debug("%s: Device '%s' probe failed\n", __func__, dev->name);
    		priv->next_addr--;
    		if (created)
    			device_unbind(dev);
    		return ret;
    	}
    	*devp = dev;
    
    /*
     * Detect if a USB device has been plugged or unplugged.
     */
    int usb_detect_change(void)
    {
    	struct udevice *hub;
    	struct uclass *uc;
    	int change = 0;
    	int ret;
    
    	ret = uclass_get(UCLASS_USB_HUB, &uc);
    	if (ret)
    		return ret;
    
    	uclass_foreach_dev(hub, uc) {
    		struct usb_device *udev;
    		struct udevice *dev;
    
    		if (!device_active(hub))
    			continue;
    		for (device_find_first_child(hub, &dev);
    		     dev;
    		     device_find_next_child(&dev)) {
    			struct usb_port_status status;
    
    			if (!device_active(dev))
    				continue;
    
    
    			udev = dev_get_parent_priv(dev);
    
    			if (usb_get_port_status(udev, udev->portnr, &status)
    					< 0)
    				/* USB request failed */
    				continue;
    
    			if (le16_to_cpu(status.wPortChange) &
    			    USB_PORT_STAT_C_CONNECTION)
    				change++;
    		}
    	}
    
    	return change;
    }
    
    
    int usb_child_post_bind(struct udevice *dev)
    {
    	struct usb_dev_platdata *plat = dev_get_parent_platdata(dev);
    	const void *blob = gd->fdt_blob;
    	int val;
    
    	if (dev->of_offset == -1)
    		return 0;
    
    	/* We only support matching a few things */
    	val = fdtdec_get_int(blob, dev->of_offset, "usb,device-class", -1);
    	if (val != -1) {
    		plat->id.match_flags |= USB_DEVICE_ID_MATCH_DEV_CLASS;
    		plat->id.bDeviceClass = val;
    	}
    	val = fdtdec_get_int(blob, dev->of_offset, "usb,interface-class", -1);
    	if (val != -1) {
    		plat->id.match_flags |= USB_DEVICE_ID_MATCH_INT_CLASS;
    		plat->id.bInterfaceClass = val;
    	}
    
    	return 0;
    }
    
    
    struct udevice *usb_get_bus(struct udevice *dev)
    
    {
    	struct udevice *bus;
    
    	for (bus = dev; bus && device_get_uclass_id(bus) != UCLASS_USB; )
    		bus = bus->parent;
    	if (!bus) {
    		/* By design this cannot happen */
    		assert(bus);
    		debug("USB HUB '%s' does not have a controller\n", dev->name);
    	}
    
    
    }
    
    int usb_child_pre_probe(struct udevice *dev)
    {
    
    	struct usb_device *udev = dev_get_parent_priv(dev);
    
    	struct usb_dev_platdata *plat = dev_get_parent_platdata(dev);
    	int ret;
    
    
    	if (plat->udev) {
    		/*
    		 * Copy over all the values set in the on stack struct
    		 * usb_device in usb_scan_device() to our final struct
    		 * usb_device for this dev.
    		 */
    		*udev = *(plat->udev);
    		/* And clear plat->udev as it will not be valid for long */
    		plat->udev = NULL;
    		udev->dev = dev;
    	} else {
    		/*
    		 * This happens with devices which are explicitly bound
    		 * instead of being discovered through usb_scan_device()
    		 * such as sandbox emul devices.
    		 */
    		udev->dev = dev;
    		udev->controller_dev = usb_get_bus(dev);
    		udev->devnum = plat->devnum;
    
    		/*
    		 * udev did not go through usb_scan_device(), so we need to
    		 * select the config and read the config descriptors.
    		 */
    		ret = usb_select_config(udev);
    		if (ret)
    			return ret;
    	}
    
    
    	return 0;
    }
    
    UCLASS_DRIVER(usb) = {
    	.id		= UCLASS_USB,
    	.name		= "usb",
    	.flags		= DM_UC_FLAG_SEQ_ALIAS,
    	.post_bind	= usb_post_bind,
    
    	.priv_auto_alloc_size = sizeof(struct usb_uclass_priv),
    
    	.per_child_auto_alloc_size = sizeof(struct usb_device),
    	.per_device_auto_alloc_size = sizeof(struct usb_bus_priv),
    	.child_post_bind = usb_child_post_bind,
    	.child_pre_probe = usb_child_pre_probe,
    	.per_child_platdata_auto_alloc_size = sizeof(struct usb_dev_platdata),
    };
    
    
    UCLASS_DRIVER(usb_dev_generic) = {
    	.id		= UCLASS_USB_DEV_GENERIC,
    	.name		= "usb_dev_generic",
    };
    
    U_BOOT_DRIVER(usb_dev_generic_drv) = {
    	.id		= UCLASS_USB_DEV_GENERIC,
    	.name		= "usb_dev_generic_drv",
    };