Skip to content
Snippets Groups Projects
s3c24x0_i2c.c 37.4 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * (C) Copyright 2002
     * David Mueller, ELSOFT AG, d.mueller@elsoft.ch
     *
    
     * SPDX-License-Identifier:	GPL-2.0+
    
     */
    
    /* This code should work for both the S3C2400 and the S3C2410
     * as they seem to have the same I2C controller inside.
     * The different address mapping is handled by the s3c24xx.h files below.
     */
    #include <common.h>
    
    #include <errno.h>
    #include <dm.h>
    
    #include <fdtdec.h>
    
    #if (defined CONFIG_EXYNOS4 || defined CONFIG_EXYNOS5)
    
    #include <asm/arch/clk.h>
    #include <asm/arch/cpu.h>
    
    #include <asm/arch/pinmux.h>
    
    #include <asm/arch/s3c24x0_cpu.h>
    
    #include <i2c.h>
    
    #include "s3c24x0_i2c.h"
    
    #define	I2C_WRITE	0
    #define I2C_READ	1
    
    #define I2C_OK		0
    #define I2C_NOK		1
    #define I2C_NACK	2
    
    #define I2C_NOK_LA	3	/* Lost arbitration */
    #define I2C_NOK_TOUT	4	/* time out */
    
    /* HSI2C specific register description */
    
    /* I2C_CTL Register bits */
    #define HSI2C_FUNC_MODE_I2C		(1u << 0)
    #define HSI2C_MASTER			(1u << 3)
    #define HSI2C_RXCHON			(1u << 6)	/* Write/Send */
    #define HSI2C_TXCHON			(1u << 7)	/* Read/Receive */
    #define HSI2C_SW_RST			(1u << 31)
    
    /* I2C_FIFO_CTL Register bits */
    #define HSI2C_RXFIFO_EN			(1u << 0)
    #define HSI2C_TXFIFO_EN			(1u << 1)
    #define HSI2C_TXFIFO_TRIGGER_LEVEL	(0x20 << 16)
    #define HSI2C_RXFIFO_TRIGGER_LEVEL	(0x20 << 4)
    
    /* I2C_TRAILING_CTL Register bits */
    #define HSI2C_TRAILING_COUNT		(0xff)
    
    /* I2C_INT_EN Register bits */
    #define HSI2C_TX_UNDERRUN_EN		(1u << 2)
    #define HSI2C_TX_OVERRUN_EN		(1u << 3)
    #define HSI2C_RX_UNDERRUN_EN		(1u << 4)
    #define HSI2C_RX_OVERRUN_EN		(1u << 5)
    #define HSI2C_INT_TRAILING_EN		(1u << 6)
    #define HSI2C_INT_I2C_EN		(1u << 9)
    
    #define HSI2C_INT_ERROR_MASK	(HSI2C_TX_UNDERRUN_EN |\
    				 HSI2C_TX_OVERRUN_EN  |\
    				 HSI2C_RX_UNDERRUN_EN |\
    				 HSI2C_RX_OVERRUN_EN  |\
    				 HSI2C_INT_TRAILING_EN)
    
    /* I2C_CONF Register bits */
    #define HSI2C_AUTO_MODE			(1u << 31)
    #define HSI2C_10BIT_ADDR_MODE		(1u << 30)
    #define HSI2C_HS_MODE			(1u << 29)
    
    /* I2C_AUTO_CONF Register bits */
    #define HSI2C_READ_WRITE		(1u << 16)
    #define HSI2C_STOP_AFTER_TRANS		(1u << 17)
    #define HSI2C_MASTER_RUN		(1u << 31)
    
    /* I2C_TIMEOUT Register bits */
    #define HSI2C_TIMEOUT_EN		(1u << 31)
    
    /* I2C_TRANS_STATUS register bits */
    #define HSI2C_MASTER_BUSY		(1u << 17)
    #define HSI2C_SLAVE_BUSY		(1u << 16)
    #define HSI2C_TIMEOUT_AUTO		(1u << 4)
    #define HSI2C_NO_DEV			(1u << 3)
    #define HSI2C_NO_DEV_ACK		(1u << 2)
    #define HSI2C_TRANS_ABORT		(1u << 1)
    #define HSI2C_TRANS_SUCCESS		(1u << 0)
    #define HSI2C_TRANS_ERROR_MASK	(HSI2C_TIMEOUT_AUTO |\
    				 HSI2C_NO_DEV | HSI2C_NO_DEV_ACK |\
    				 HSI2C_TRANS_ABORT)
    #define HSI2C_TRANS_FINISHED_MASK (HSI2C_TRANS_ERROR_MASK | HSI2C_TRANS_SUCCESS)
    
    
    /* I2C_FIFO_STAT Register bits */
    #define HSI2C_RX_FIFO_EMPTY		(1u << 24)
    #define HSI2C_RX_FIFO_FULL		(1u << 23)
    #define HSI2C_TX_FIFO_EMPTY		(1u << 8)
    #define HSI2C_TX_FIFO_FULL		(1u << 7)
    #define HSI2C_RX_FIFO_LEVEL(x)		(((x) >> 16) & 0x7f)
    #define HSI2C_TX_FIFO_LEVEL(x)		((x) & 0x7f)
    
    #define HSI2C_SLV_ADDR_MAS(x)		((x & 0x3ff) << 10)
    
    /* S3C I2C Controller bits */
    
    #define I2CSTAT_BSY	0x20	/* Busy bit */
    #define I2CSTAT_NACK	0x01	/* Nack bit */
    
    #define I2CCON_ACKGEN	0x80	/* Acknowledge generation */
    
    #define I2CCON_IRPND	0x10	/* Interrupt pending bit */
    #define I2C_MODE_MT	0xC0	/* Master Transmit Mode */
    #define I2C_MODE_MR	0x80	/* Master Receive Mode */
    #define I2C_START_STOP	0x20	/* START / STOP */
    #define I2C_TXRX_ENA	0x10	/* I2C Tx/Rx enable */
    
    #define I2C_TIMEOUT_MS 10		/* 10 ms */
    
    #define	HSI2C_TIMEOUT_US 10000 /* 10 ms, finer granularity */
    
    
    
    /* To support VCMA9 boards and other who dont define max_i2c_num */
    #ifndef CONFIG_MAX_I2C_NUM
    #define CONFIG_MAX_I2C_NUM 1
    #endif
    
    DECLARE_GLOBAL_DATA_PTR;
    
    
    /*
     * For SPL boot some boards need i2c before SDRAM is initialised so force
     * variables to live in SRAM
     */
    
    #ifdef CONFIG_SYS_I2C
    
    static struct s3c24x0_i2c_bus i2c_bus[CONFIG_MAX_I2C_NUM]
    			__attribute__((section(".data")));
    
    #endif
    
    enum exynos_i2c_type {
    	EXYNOS_I2C_STD,
    	EXYNOS_I2C_HS,
    };
    
    #ifdef CONFIG_SYS_I2C
    
    /**
     * Get a pointer to the given bus index
     *
     * @bus_idx: Bus index to look up
     * @return pointer to bus, or NULL if invalid or not available
     */
    static struct s3c24x0_i2c_bus *get_bus(unsigned int bus_idx)
    {
    	if (bus_idx < ARRAY_SIZE(i2c_bus)) {
    		struct s3c24x0_i2c_bus *bus;
    
    		bus = &i2c_bus[bus_idx];
    		if (bus->active)
    			return bus;
    	}
    
    	debug("Undefined bus: %d\n", bus_idx);
    	return NULL;
    }
    
    #if !(defined CONFIG_EXYNOS4 || defined CONFIG_EXYNOS5)
    
    static int GetI2CSDA(void)
    
    	struct s3c24x0_gpio *gpio = s3c24x0_get_base_gpio();
    
    #if defined(CONFIG_S3C2410) || defined(CONFIG_S3C2440)
    
    	return (readl(&gpio->gpedat) & 0x8000) >> 15;
    
    #endif
    #ifdef CONFIG_S3C2400
    
    	return (readl(&gpio->pgdat) & 0x0020) >> 5;
    
    static void SetI2CSCL(int x)
    
    	struct s3c24x0_gpio *gpio = s3c24x0_get_base_gpio();
    
    #if defined(CONFIG_S3C2410) || defined(CONFIG_S3C2440)
    
    	writel((readl(&gpio->gpedat) & ~0x4000) |
    					(x & 1) << 14, &gpio->gpedat);
    
    #endif
    #ifdef CONFIG_S3C2400
    
    	writel((readl(&gpio->pgdat) & ~0x0040) | (x & 1) << 6, &gpio->pgdat);
    
    /*
     * Wait til the byte transfer is completed.
     *
     * @param i2c- pointer to the appropriate i2c register bank.
     * @return I2C_OK, if transmission was ACKED
     *         I2C_NACK, if transmission was NACKED
     *         I2C_NOK_TIMEOUT, if transaction did not complete in I2C_TIMEOUT_MS
     */
    
    
    static int WaitForXfer(struct s3c24x0_i2c *i2c)
    
    	ulong start_time = get_timer(0);
    
    	do {
    		if (readl(&i2c->iiccon) & I2CCON_IRPND)
    			return (readl(&i2c->iicstat) & I2CSTAT_NACK) ?
    				I2C_NACK : I2C_OK;
    	} while (get_timer(start_time) < I2C_TIMEOUT_MS);
    
    /*
     * Wait for transfer completion.
     *
     * This function reads the interrupt status register waiting for the INT_I2C
     * bit to be set, which indicates copletion of a transaction.
     *
     * @param i2c: pointer to the appropriate register bank
     *
     * @return: I2C_OK in case of successful completion, I2C_NOK_TIMEOUT in case
     *          the status bits do not get set in time, or an approrpiate error
     *          value in case of transfer errors.
     */
    static int hsi2c_wait_for_trx(struct exynos5_hsi2c *i2c)
    {
    	int i = HSI2C_TIMEOUT_US;
    
    	while (i-- > 0) {
    		u32 int_status = readl(&i2c->usi_int_stat);
    
    		if (int_status & HSI2C_INT_I2C_EN) {
    			u32 trans_status = readl(&i2c->usi_trans_status);
    
    			/* Deassert pending interrupt. */
    			writel(int_status, &i2c->usi_int_stat);
    
    			if (trans_status & HSI2C_NO_DEV_ACK) {
    				debug("%s: no ACK from device\n", __func__);
    				return I2C_NACK;
    			}
    			if (trans_status & HSI2C_NO_DEV) {
    				debug("%s: no device\n", __func__);
    				return I2C_NOK;
    			}
    			if (trans_status & HSI2C_TRANS_ABORT) {
    				debug("%s: arbitration lost\n", __func__);
    				return I2C_NOK_LA;
    			}
    			if (trans_status & HSI2C_TIMEOUT_AUTO) {
    				debug("%s: device timed out\n", __func__);
    				return I2C_NOK_TOUT;
    			}
    			return I2C_OK;
    		}
    		udelay(1);
    	}
    	debug("%s: transaction timeout!\n", __func__);
    	return I2C_NOK_TOUT;
    }
    
    
    static void ReadWriteByte(struct s3c24x0_i2c *i2c)
    
    	writel(readl(&i2c->iiccon) & ~I2CCON_IRPND, &i2c->iiccon);
    
    #ifdef CONFIG_SYS_I2C
    
    static struct s3c24x0_i2c *get_base_i2c(int bus)
    
    #ifdef CONFIG_EXYNOS4
    	struct s3c24x0_i2c *i2c = (struct s3c24x0_i2c *)(samsung_get_base_i2c()
    							+ (EXYNOS4_I2C_SPACING
    
    	return i2c;
    #elif defined CONFIG_EXYNOS5
    
    	struct s3c24x0_i2c *i2c = (struct s3c24x0_i2c *)(samsung_get_base_i2c()
    							+ (EXYNOS5_I2C_SPACING
    
    	return i2c;
    #else
    	return s3c24x0_get_base_i2c();
    #endif
    }
    
    
    static void i2c_ch_init(struct s3c24x0_i2c *i2c, int speed, int slaveadd)
    {
    	ulong freq, pres = 16, div;
    
    #if (defined CONFIG_EXYNOS4 || defined CONFIG_EXYNOS5)
    
    	freq = get_i2c_clk();
    #else
    	freq = get_PCLK();
    #endif
    	/* calculate prescaler and divisor values */
    	if ((freq / pres / (16 + 1)) > speed)
    		/* set prescaler to 512 */
    		pres = 512;
    
    	div = 0;
    	while ((freq / pres / (div + 1)) > speed)
    		div++;
    
    	/* set prescaler, divisor according to freq, also set ACKGEN, IRQ */
    	writel((div & 0x0F) | 0xA0 | ((pres == 512) ? 0x40 : 0), &i2c->iiccon);
    
    	/* init to SLAVE REVEIVE and set slaveaddr */
    	writel(0, &i2c->iicstat);
    	writel(slaveadd, &i2c->iicadd);
    	/* program Master Transmit (and implicit STOP) */
    	writel(I2C_MODE_MT | I2C_TXRX_ENA, &i2c->iicstat);
    }
    
    
    static int hsi2c_get_clk_details(struct s3c24x0_i2c_bus *i2c_bus)
    {
    	struct exynos5_hsi2c *hsregs = i2c_bus->hsregs;
    	ulong clkin;
    	unsigned int op_clk = i2c_bus->clock_frequency;
    	unsigned int i = 0, utemp0 = 0, utemp1 = 0;
    	unsigned int t_ftl_cycle;
    
    
    #if (defined CONFIG_EXYNOS4 || defined CONFIG_EXYNOS5)
    
    	clkin = get_i2c_clk();
    
    #else
    	clkin = get_PCLK();
    
    #endif
    	/* FPCLK / FI2C =
    	 * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + 2 * FLT_CYCLE
    	 * uTemp0 = (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2)
    	 * uTemp1 = (TSCLK_L + TSCLK_H + 2)
    	 * uTemp2 = TSCLK_L + TSCLK_H
    	 */
    	t_ftl_cycle = (readl(&hsregs->usi_conf) >> 16) & 0x7;
    	utemp0 = (clkin / op_clk) - 8 - 2 * t_ftl_cycle;
    
    	/* CLK_DIV max is 256 */
    	for (i = 0; i < 256; i++) {
    		utemp1 = utemp0 / (i + 1);
    		if ((utemp1 < 512) && (utemp1 > 4)) {
    			i2c_bus->clk_cycle = utemp1 - 2;
    			i2c_bus->clk_div = i;
    			return 0;
    		}
    	}
    
    	return -EINVAL;
    
    }
    
    static void hsi2c_ch_init(struct s3c24x0_i2c_bus *i2c_bus)
    {
    	struct exynos5_hsi2c *hsregs = i2c_bus->hsregs;
    	unsigned int t_sr_release;
    	unsigned int n_clkdiv;
    	unsigned int t_start_su, t_start_hd;
    	unsigned int t_stop_su;
    	unsigned int t_data_su, t_data_hd;
    	unsigned int t_scl_l, t_scl_h;
    	u32 i2c_timing_s1;
    	u32 i2c_timing_s2;
    	u32 i2c_timing_s3;
    	u32 i2c_timing_sla;
    
    	n_clkdiv = i2c_bus->clk_div;
    	t_scl_l = i2c_bus->clk_cycle / 2;
    	t_scl_h = i2c_bus->clk_cycle / 2;
    	t_start_su = t_scl_l;
    	t_start_hd = t_scl_l;
    	t_stop_su = t_scl_l;
    	t_data_su = t_scl_l / 2;
    	t_data_hd = t_scl_l / 2;
    	t_sr_release = i2c_bus->clk_cycle;
    
    	i2c_timing_s1 = t_start_su << 24 | t_start_hd << 16 | t_stop_su << 8;
    	i2c_timing_s2 = t_data_su << 24 | t_scl_l << 8 | t_scl_h << 0;
    	i2c_timing_s3 = n_clkdiv << 16 | t_sr_release << 0;
    	i2c_timing_sla = t_data_hd << 0;
    
    	writel(HSI2C_TRAILING_COUNT, &hsregs->usi_trailing_ctl);
    
    	/* Clear to enable Timeout */
    	clrsetbits_le32(&hsregs->usi_timeout, HSI2C_TIMEOUT_EN, 0);
    
    	/* set AUTO mode */
    	writel(readl(&hsregs->usi_conf) | HSI2C_AUTO_MODE, &hsregs->usi_conf);
    
    	/* Enable completion conditions' reporting. */
    	writel(HSI2C_INT_I2C_EN, &hsregs->usi_int_en);
    
    	/* Enable FIFOs */
    	writel(HSI2C_RXFIFO_EN | HSI2C_TXFIFO_EN, &hsregs->usi_fifo_ctl);
    
    	/* Currently operating in Fast speed mode. */
    	writel(i2c_timing_s1, &hsregs->usi_timing_fs1);
    	writel(i2c_timing_s2, &hsregs->usi_timing_fs2);
    	writel(i2c_timing_s3, &hsregs->usi_timing_fs3);
    	writel(i2c_timing_sla, &hsregs->usi_timing_sla);
    }
    
    /* SW reset for the high speed bus */
    static void exynos5_i2c_reset(struct s3c24x0_i2c_bus *i2c_bus)
    {
    	struct exynos5_hsi2c *i2c = i2c_bus->hsregs;
    	u32 i2c_ctl;
    
    	/* Set and clear the bit for reset */
    	i2c_ctl = readl(&i2c->usi_ctl);
    	i2c_ctl |= HSI2C_SW_RST;
    	writel(i2c_ctl, &i2c->usi_ctl);
    
    	i2c_ctl = readl(&i2c->usi_ctl);
    	i2c_ctl &= ~HSI2C_SW_RST;
    	writel(i2c_ctl, &i2c->usi_ctl);
    
    	/* Initialize the configure registers */
    	hsi2c_ch_init(i2c_bus);
    }
    
    
    #ifdef CONFIG_SYS_I2C
    
    static void s3c24x0_i2c_init(struct i2c_adapter *adap, int speed, int slaveadd)
    
    	struct s3c24x0_i2c *i2c;
    
    	struct s3c24x0_i2c_bus *bus;
    
    #if !(defined CONFIG_EXYNOS4 || defined CONFIG_EXYNOS5)
    
    	struct s3c24x0_gpio *gpio = s3c24x0_get_base_gpio();
    
    	ulong start_time = get_timer(0);
    
    	i2c = get_base_i2c(adap->hwadapnr);
    
    	bus = &i2c_bus[adap->hwadapnr];
    	if (!bus)
    		return;
    
    	/*
    	 * In case the previous transfer is still going, wait to give it a
    	 * chance to finish.
    	 */
    	while (readl(&i2c->iicstat) & I2CSTAT_BSY) {
    		if (get_timer(start_time) > I2C_TIMEOUT_MS) {
    			printf("%s: I2C bus busy for %p\n", __func__,
    			       &i2c->iicstat);
    			return;
    		}
    
    #if !(defined CONFIG_EXYNOS4 || defined CONFIG_EXYNOS5)
    
    	if ((readl(&i2c->iicstat) & I2CSTAT_BSY) || GetI2CSDA() == 0) {
    
    #if defined(CONFIG_S3C2410) || defined(CONFIG_S3C2440)
    
    		ulong old_gpecon = readl(&gpio->gpecon);
    
    #endif
    #ifdef CONFIG_S3C2400
    
    		ulong old_gpecon = readl(&gpio->pgcon);
    
    		/* bus still busy probably by (most) previously interrupted
    		   transfer */
    
    #if defined(CONFIG_S3C2410) || defined(CONFIG_S3C2440)
    
    		/* set I2CSDA and I2CSCL (GPE15, GPE14) to GPIO */
    
    		writel((readl(&gpio->gpecon) & ~0xF0000000) | 0x10000000,
    		       &gpio->gpecon);
    
    #endif
    #ifdef CONFIG_S3C2400
    
    		/* set I2CSDA and I2CSCL (PG5, PG6) to GPIO */
    
    		writel((readl(&gpio->pgcon) & ~0x00003c00) | 0x00001000,
    		       &gpio->pgcon);
    
    		/* toggle I2CSCL until bus idle */
    
    		while ((i > 0) && (GetI2CSDA() != 1)) {
    			SetI2CSCL(1);
    			udelay(1000);
    			SetI2CSCL(0);
    			udelay(1000);
    
    		/* restore pin functions */
    
    #if defined(CONFIG_S3C2410) || defined(CONFIG_S3C2440)
    
    		writel(old_gpecon, &gpio->gpecon);
    
    #endif
    #ifdef CONFIG_S3C2400
    
    		writel(old_gpecon, &gpio->pgcon);
    
    #endif /* #if !(defined CONFIG_EXYNOS4 || defined CONFIG_EXYNOS5) */
    
    	i2c_ch_init(i2c, speed, slaveadd);
    
    
    	bus->active = true;
    	bus->regs = i2c;
    
    #endif /* CONFIG_SYS_I2C */
    
    /*
     * Poll the appropriate bit of the fifo status register until the interface is
     * ready to process the next byte or timeout expires.
     *
     * In addition to the FIFO status register this function also polls the
     * interrupt status register to be able to detect unexpected transaction
     * completion.
     *
     * When FIFO is ready to process the next byte, this function returns I2C_OK.
     * If in course of polling the INT_I2C assertion is detected, the function
     * returns I2C_NOK. If timeout happens before any of the above conditions is
     * met - the function returns I2C_NOK_TOUT;
    
     * @param i2c: pointer to the appropriate i2c register bank.
     * @param rx_transfer: set to True if the receive transaction is in progress.
     * @return: as described above.
     */
    static unsigned hsi2c_poll_fifo(struct exynos5_hsi2c *i2c, bool rx_transfer)
    {
    	u32 fifo_bit = rx_transfer ? HSI2C_RX_FIFO_EMPTY : HSI2C_TX_FIFO_FULL;
    	int i = HSI2C_TIMEOUT_US;
    
    	while (readl(&i2c->usi_fifo_stat) & fifo_bit) {
    		if (readl(&i2c->usi_int_stat) & HSI2C_INT_I2C_EN) {
    			/*
    			 * There is a chance that assertion of
    			 * HSI2C_INT_I2C_EN and deassertion of
    			 * HSI2C_RX_FIFO_EMPTY happen simultaneously. Let's
    			 * give FIFO status priority and check it one more
    			 * time before reporting interrupt. The interrupt will
    			 * be reported next time this function is called.
    			 */
    			if (rx_transfer &&
    			    !(readl(&i2c->usi_fifo_stat) & fifo_bit))
    				break;
    			return I2C_NOK;
    		}
    		if (!i--) {
    			debug("%s: FIFO polling timeout!\n", __func__);
    			return I2C_NOK_TOUT;
    		}
    		udelay(1);
    	}
    	return I2C_OK;
    }
    
    /*
     * Preapre hsi2c transaction, either read or write.
     *
     * Set up transfer as described in section 27.5.1.2 'I2C Channel Auto Mode' of
     * the 5420 UM.
     *
     * @param i2c: pointer to the appropriate i2c register bank.
     * @param chip: slave address on the i2c bus (with read/write bit exlcuded)
     * @param len: number of bytes expected to be sent or received
     * @param rx_transfer: set to true for receive transactions
     * @param: issue_stop: set to true if i2c stop condition should be generated
     *         after this transaction.
     * @return: I2C_NOK_TOUT in case the bus remained busy for HSI2C_TIMEOUT_US,
     *          I2C_OK otherwise.
     */
    static int hsi2c_prepare_transaction(struct exynos5_hsi2c *i2c,
    				     u8 chip,
    				     u16 len,
    				     bool rx_transfer,
    				     bool issue_stop)
    {
    	u32 conf;
    
    	conf = len | HSI2C_MASTER_RUN;
    
    	if (issue_stop)
    		conf |= HSI2C_STOP_AFTER_TRANS;
    
    	/* Clear to enable Timeout */
    	writel(readl(&i2c->usi_timeout) & ~HSI2C_TIMEOUT_EN, &i2c->usi_timeout);
    
    	/* Set slave address */
    	writel(HSI2C_SLV_ADDR_MAS(chip), &i2c->i2c_addr);
    
    	if (rx_transfer) {
    		/* i2c master, read transaction */
    		writel((HSI2C_RXCHON | HSI2C_FUNC_MODE_I2C | HSI2C_MASTER),
    		       &i2c->usi_ctl);
    
    		/* read up to len bytes, stop after transaction is finished */
    		writel(conf | HSI2C_READ_WRITE, &i2c->usi_auto_conf);
    	} else {
    		/* i2c master, write transaction */
    		writel((HSI2C_TXCHON | HSI2C_FUNC_MODE_I2C | HSI2C_MASTER),
    		       &i2c->usi_ctl);
    
    		/* write up to len bytes, stop after transaction is finished */
    		writel(conf, &i2c->usi_auto_conf);
    	}
    
    	/* Reset all pending interrupt status bits we care about, if any */
    	writel(HSI2C_INT_I2C_EN, &i2c->usi_int_stat);
    
    	return I2C_OK;
    }
    
    /*
     * Wait while i2c bus is settling down (mostly stop gets completed).
     */
    static int hsi2c_wait_while_busy(struct exynos5_hsi2c *i2c)
    {
    	int i = HSI2C_TIMEOUT_US;
    
    	while (readl(&i2c->usi_trans_status) & HSI2C_MASTER_BUSY) {
    		if (!i--) {
    			debug("%s: bus busy\n", __func__);
    			return I2C_NOK_TOUT;
    		}
    		udelay(1);
    	}
    	return I2C_OK;
    }
    
    static int hsi2c_write(struct exynos5_hsi2c *i2c,
    		       unsigned char chip,
    		       unsigned char addr[],
    		       unsigned char alen,
    		       unsigned char data[],
    		       unsigned short len,
    		       bool issue_stop)
    {
    	int i, rv = 0;
    
    	if (!(len + alen)) {
    		/* Writes of zero length not supported in auto mode. */
    		debug("%s: zero length writes not supported\n", __func__);
    		return I2C_NOK;
    	}
    
    	rv = hsi2c_prepare_transaction
    		(i2c, chip, len + alen, false, issue_stop);
    	if (rv != I2C_OK)
    		return rv;
    
    	/* Move address, if any, and the data, if any, into the FIFO. */
    	for (i = 0; i < alen; i++) {
    		rv = hsi2c_poll_fifo(i2c, false);
    		if (rv != I2C_OK) {
    			debug("%s: address write failed\n", __func__);
    			goto write_error;
    		}
    		writel(addr[i], &i2c->usi_txdata);
    	}
    
    	for (i = 0; i < len; i++) {
    		rv = hsi2c_poll_fifo(i2c, false);
    		if (rv != I2C_OK) {
    			debug("%s: data write failed\n", __func__);
    			goto write_error;
    		}
    		writel(data[i], &i2c->usi_txdata);
    	}
    
    	rv = hsi2c_wait_for_trx(i2c);
    
     write_error:
    	if (issue_stop) {
    		int tmp_ret = hsi2c_wait_while_busy(i2c);
    		if (rv == I2C_OK)
    			rv = tmp_ret;
    	}
    
    	writel(HSI2C_FUNC_MODE_I2C, &i2c->usi_ctl); /* done */
    	return rv;
    }
    
    static int hsi2c_read(struct exynos5_hsi2c *i2c,
    		      unsigned char chip,
    		      unsigned char addr[],
    		      unsigned char alen,
    		      unsigned char data[],
    		      unsigned short len)
    {
    	int i, rv, tmp_ret;
    	bool drop_data = false;
    
    	if (!len) {
    		/* Reads of zero length not supported in auto mode. */
    		debug("%s: zero length read adjusted\n", __func__);
    		drop_data = true;
    		len = 1;
    	}
    
    	if (alen) {
    		/* Internal register adress needs to be written first. */
    		rv = hsi2c_write(i2c, chip, addr, alen, NULL, 0, false);
    		if (rv != I2C_OK)
    			return rv;
    	}
    
    	rv = hsi2c_prepare_transaction(i2c, chip, len, true, true);
    
    	if (rv != I2C_OK)
    		return rv;
    
    	for (i = 0; i < len; i++) {
    		rv = hsi2c_poll_fifo(i2c, true);
    		if (rv != I2C_OK)
    			goto read_err;
    		if (drop_data)
    			continue;
    		data[i] = readl(&i2c->usi_rxdata);
    	}
    
    	rv = hsi2c_wait_for_trx(i2c);
    
     read_err:
    	tmp_ret = hsi2c_wait_while_busy(i2c);
    	if (rv == I2C_OK)
    		rv = tmp_ret;
    
    	writel(HSI2C_FUNC_MODE_I2C, &i2c->usi_ctl); /* done */
    	return rv;
    }
    
    
    #ifdef CONFIG_SYS_I2C
    
    static unsigned int s3c24x0_i2c_set_bus_speed(struct i2c_adapter *adap,
    
    					      unsigned int speed)
    #else
    static int s3c24x0_i2c_set_bus_speed(struct udevice *dev, unsigned int speed)
    #endif
    
    {
    	struct s3c24x0_i2c_bus *i2c_bus;
    
    
    #ifdef CONFIG_SYS_I2C
    
    	i2c_bus = get_bus(adap->hwadapnr);
    	if (!i2c_bus)
    
    		return -EFAULT;
    #else
    	i2c_bus = dev_get_priv(dev);
    #endif
    
    	i2c_bus->clock_frequency = speed;
    
    	if (i2c_bus->is_highspeed) {
    		if (hsi2c_get_clk_details(i2c_bus))
    
    			return -EFAULT;
    
    		hsi2c_ch_init(i2c_bus);
    	} else {
    		i2c_ch_init(i2c_bus->regs, i2c_bus->clock_frequency,
    			    CONFIG_SYS_I2C_S3C24X0_SLAVE);
    	}
    
    	return 0;
    }
    
    
     * cmd_type is 0 for write, 1 for read.
     *
     * addr_len can take any value from 0-255, it is only limited
     * by the char, we could make it larger if needed. If it is
     * 0 we skip the address write cycle.
     */
    
    static int i2c_transfer(struct s3c24x0_i2c *i2c,
    			unsigned char cmd_type,
    			unsigned char chip,
    			unsigned char addr[],
    			unsigned char addr_len,
    			unsigned char data[],
    			unsigned short data_len)
    
    	int i = 0, result;
    	ulong start_time = get_timer(0);
    
    	if (data == 0 || data_len == 0) {
    		/*Don't support data transfer of no length or to address 0 */
    
    		debug("i2c_transfer: bad call\n");
    
    		return I2C_NOK;
    	}
    
    	while (readl(&i2c->iicstat) & I2CSTAT_BSY) {
    		if (get_timer(start_time) > I2C_TIMEOUT_MS)
    			return I2C_NOK_TOUT;
    
    	writel(readl(&i2c->iiccon) | I2CCON_ACKGEN, &i2c->iiccon);
    
    	/* Get the slave chip address going */
    	writel(chip, &i2c->iicds);
    	if ((cmd_type == I2C_WRITE) || (addr && addr_len))
    		writel(I2C_MODE_MT | I2C_TXRX_ENA | I2C_START_STOP,
    		       &i2c->iicstat);
    	else
    		writel(I2C_MODE_MR | I2C_TXRX_ENA | I2C_START_STOP,
    		       &i2c->iicstat);
    
    	/* Wait for chip address to transmit. */
    	result = WaitForXfer(i2c);
    	if (result != I2C_OK)
    		goto bailout;
    
    	/* If register address needs to be transmitted - do it now. */
    	if (addr && addr_len) {
    		while ((i < addr_len) && (result == I2C_OK)) {
    			writel(addr[i++], &i2c->iicds);
    			ReadWriteByte(i2c);
    			result = WaitForXfer(i2c);
    
    		i = 0;
    		if (result != I2C_OK)
    			goto bailout;
    	}
    
    	switch (cmd_type) {
    	case I2C_WRITE:
    		while ((i < data_len) && (result == I2C_OK)) {
    			writel(data[i++], &i2c->iicds);
    			ReadWriteByte(i2c);
    
    			result = WaitForXfer(i2c);
    
    	case I2C_READ:
    
    		if (addr && addr_len) {
    
    			/*
    			 * Register address has been sent, now send slave chip
    			 * address again to start the actual read transaction.
    			 */
    
    			writel(chip, &i2c->iicds);
    
    			writel(I2C_MODE_MR | I2C_TXRX_ENA | I2C_START_STOP,
    				&i2c->iicstat);
    
    			result = WaitForXfer(i2c);
    
    			if (result != I2C_OK)
    				goto bailout;
    
    		while ((i < data_len) && (result == I2C_OK)) {
    			/* disable ACK for final READ */
    			if (i == data_len - 1)
    				writel(readl(&i2c->iiccon)
    				       & ~I2CCON_ACKGEN,
    				       &i2c->iiccon);
    			ReadWriteByte(i2c);
    			result = WaitForXfer(i2c);
    			data[i++] = readl(&i2c->iicds);
    		}
    		if (result == I2C_NACK)
    			result = I2C_OK; /* Normal terminated read. */
    
    		debug("i2c_transfer: bad call\n");
    
    		result = I2C_NOK;
    		break;
    	}
    
    bailout:
    	/* Send STOP. */
    	writel(I2C_MODE_MR | I2C_TXRX_ENA, &i2c->iicstat);
    	ReadWriteByte(i2c);
    
    
    #ifdef CONFIG_SYS_I2C
    
    static int s3c24x0_i2c_probe(struct i2c_adapter *adap, uchar chip)
    
    #else
    static int s3c24x0_i2c_probe(struct udevice *dev, uint chip, uint chip_flags)
    #endif
    
    	struct s3c24x0_i2c_bus *i2c_bus;
    
    	uchar buf[1];
    
    #ifdef CONFIG_SYS_I2C
    
    	i2c_bus = get_bus(adap->hwadapnr);
    
    		return -EFAULT;
    #else
    	i2c_bus = dev_get_priv(dev);
    #endif
    
    	buf[0] = 0;
    
    	/*
    	 * What is needed is to send the chip address and verify that the
    	 * address was <ACK>ed (i.e. there was a chip at that address which
    	 * drove the data line low).
    	 */
    
    	if (i2c_bus->is_highspeed) {
    		ret = hsi2c_read(i2c_bus->hsregs,
    				chip, 0, 0, buf, 1);
    	} else {
    		ret = i2c_transfer(i2c_bus->regs,
    				I2C_READ, chip << 1, 0, 0, buf, 1);
    	}
    
    	return ret != I2C_OK;
    
    #ifdef CONFIG_SYS_I2C
    
    static int s3c24x0_i2c_read(struct i2c_adapter *adap, uchar chip, uint addr,
    			    int alen, uchar *buffer, int len)
    
    	struct s3c24x0_i2c_bus *i2c_bus;
    
    	uchar xaddr[4];
    	int ret;
    
    	i2c_bus = get_bus(adap->hwadapnr);
    	if (!i2c_bus)
    		return -EFAULT;
    
    
    	if (alen > 4) {
    
    		debug("I2C read: addr len %d not supported\n", alen);
    
    		return -EADDRNOTAVAIL;
    
    	if (alen > 0) {
    		xaddr[0] = (addr >> 24) & 0xFF;
    		xaddr[1] = (addr >> 16) & 0xFF;
    		xaddr[2] = (addr >> 8) & 0xFF;
    		xaddr[3] = addr & 0xFF;
    	}
    
    #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
    
    	/*
    	 * EEPROM chips that implement "address overflow" are ones
    	 * like Catalyst 24WC04/08/16 which has 9/10/11 bits of
    	 * address and the extra bits end up in the "chip address"
    	 * bit slots. This makes a 24WC08 (1Kbyte) chip look like
    	 * four 256 byte chips.
    	 *
    	 * Note that we consider the length of the address field to
    	 * still be one byte because the extra address bits are
    	 * hidden in the chip address.
    	 */
    	if (alen > 0)
    
    		chip |= ((addr >> (alen * 8)) &
    			 CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
    
    	if (i2c_bus->is_highspeed)
    		ret = hsi2c_read(i2c_bus->hsregs, chip, &xaddr[4 - alen],
    				 alen, buffer, len);
    	else
    		ret = i2c_transfer(i2c_bus->regs, I2C_READ, chip << 1,
    				&xaddr[4 - alen], alen, buffer, len);
    
    	if (ret) {
    		if (i2c_bus->is_highspeed)
    			exynos5_i2c_reset(i2c_bus);
    		debug("I2c read failed %d\n", ret);
    
    static int s3c24x0_i2c_write(struct i2c_adapter *adap, uchar chip, uint addr,
    			 int alen, uchar *buffer, int len)
    
    	struct s3c24x0_i2c_bus *i2c_bus;
    
    	uchar xaddr[4];
    
    	i2c_bus = get_bus(adap->hwadapnr);
    	if (!i2c_bus)
    		return -EFAULT;
    
    
    	if (alen > 4) {
    
    		debug("I2C write: addr len %d not supported\n", alen);
    
    		return -EINVAL;
    
    	if (alen > 0) {
    		xaddr[0] = (addr >> 24) & 0xFF;
    		xaddr[1] = (addr >> 16) & 0xFF;
    		xaddr[2] = (addr >> 8) & 0xFF;
    		xaddr[3] = addr & 0xFF;
    	}
    
    #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
    
    	/*
    	 * EEPROM chips that implement "address overflow" are ones
    	 * like Catalyst 24WC04/08/16 which has 9/10/11 bits of
    	 * address and the extra bits end up in the "chip address"
    	 * bit slots. This makes a 24WC08 (1Kbyte) chip look like
    	 * four 256 byte chips.
    	 *
    	 * Note that we consider the length of the address field to
    	 * still be one byte because the extra address bits are
    	 * hidden in the chip address.
    	 */
    	if (alen > 0)
    
    		chip |= ((addr >> (alen * 8)) &
    			 CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
    
    	if (i2c_bus->is_highspeed)
    		ret = hsi2c_write(i2c_bus->hsregs, chip, &xaddr[4 - alen],
    				  alen, buffer, len, true);
    	else
    		ret = i2c_transfer(i2c_bus->regs, I2C_WRITE, chip << 1,
    				&xaddr[4 - alen], alen, buffer, len);
    
    	if (ret != 0) {
    		if (i2c_bus->is_highspeed)
    			exynos5_i2c_reset(i2c_bus);
    		return 1;
    	} else {