Skip to content
Snippets Groups Projects
s3c24x0_i2c.c 9.56 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * (C) Copyright 2002
     * David Mueller, ELSOFT AG, d.mueller@elsoft.ch
     *
     * See file CREDITS for list of people who contributed to this
     * project.
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public License as
     * published by the Free Software Foundation; either version 2 of
     * the License, or (at your option) any later version.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software
     * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
     * MA 02111-1307 USA
     */
    
    /* This code should work for both the S3C2400 and the S3C2410
     * as they seem to have the same I2C controller inside.
     * The different address mapping is handled by the s3c24xx.h files below.
     */
    
    #include <common.h>
    
    #ifdef CONFIG_DRIVER_S3C24X0_I2C
    
    #if defined(CONFIG_S3C2400)
    #include <s3c2400.h>
    #elif defined(CONFIG_S3C2410)
    #include <s3c2410.h>
    #endif
    #include <i2c.h>
    
    #ifdef CONFIG_HARD_I2C
    
    #define	IIC_WRITE	0
    #define IIC_READ	1
    
    #define IIC_OK		0
    #define IIC_NOK		1
    #define IIC_NACK	2
    #define IIC_NOK_LA	3		/* Lost arbitration */
    #define IIC_NOK_TOUT	4		/* time out */
    
    #define IICSTAT_BSY	0x20		/* Busy bit */
    #define IICSTAT_NACK	0x01		/* Nack bit */
    #define IICCON_IRPND	0x10		/* Interrupt pending bit */
    #define IIC_MODE_MT	0xC0		/* Master Transmit Mode */
    #define IIC_MODE_MR	0x80		/* Master Receive Mode */
    #define IIC_START_STOP	0x20		/* START / STOP */
    #define IIC_TXRX_ENA	0x10		/* I2C Tx/Rx enable */
    
    #define IIC_TIMEOUT 1			/* 1 seconde */
    
    
    static int GetIICSDA(void)
    {
    	return (rGPEDAT & 0x8000) >> 15;
    }
    
    
    static void SetIICSDA(int x)
    {
    	rGPEDAT = (rGPEDAT & ~0x8000) | (x&1) << 15;
    }
    
    
    static void SetIICSCL(int x)
    {
    	rGPEDAT = (rGPEDAT & ~0x4000) | (x&1) << 14;
    }
    
    
    static int WaitForXfer(void)
    {
        int i, status;
    
        i = IIC_TIMEOUT * 1000;
        status = rIICCON;
        while ((i > 0) && !(status & IICCON_IRPND)) {
        	udelay(1000);
    	status = rIICCON;
    	i--;
        }
    
        return(status & IICCON_IRPND) ? IIC_OK : IIC_NOK_TOUT;
    }
    
    static int IsACK(void)
    {
        return(!(rIICSTAT & IICSTAT_NACK));
    }
    
    static void ReadWriteByte(void)
    {
        rIICCON &= ~IICCON_IRPND;
    }
    
    void i2c_init (int speed, int slaveadd)
    {
        ulong freq, pres = 16, div;
        int i, status;
    
        /* wait for some time to give previous transfer a chance to finish */
    
        i = IIC_TIMEOUT * 1000;
        status = rIICSTAT;
        while ((i > 0) && (status & IICSTAT_BSY)) {
    	udelay(1000);
    	status = rIICSTAT;
    	i--;
        }
    
        if ((status & IICSTAT_BSY) || GetIICSDA() == 0) {
    	ulong old_gpecon = rGPECON;
    	/* bus still busy probably by (most) previously interrupted transfer */
    
    	/* set IICSDA and IICSCL (GPE15, GPE14) to GPIO */
    	rGPECON = (rGPECON & ~0xF0000000) | 0x10000000;
    
    	/* toggle IICSCL until bus idle */
    	SetIICSCL(0); udelay(1000);
    	i = 10;
    	while ((i > 0) && (GetIICSDA() != 1)) {
    		SetIICSCL(1); udelay(1000);
    		SetIICSCL(0); udelay(1000);
    		i--;
    	}
    	SetIICSCL(1); udelay(1000);
    
    	/* restore pin functions */
    	rGPECON = old_gpecon;
        }
    
        /* calculate prescaler and divisor values */
        freq = get_PCLK();
        if ((freq / pres / (16+1)) > speed)
    	/* set prescaler to 512 */
    	pres = 512;
    
        div = 0;
        while ((freq / pres / (div+1)) > speed)
    	div++;
    
        /* set prescaler, divisor according to freq, also set
           ACKGEN, IRQ */
        rIICCON = (div & 0x0F) | 0xA0 | ((pres == 512) ? 0x40 : 0);
    
        /* init to SLAVE REVEIVE and set slaveaddr */
        rIICSTAT = 0;
        rIICADD = slaveadd;
        /* program Master Transmit (and implicit STOP) */
        rIICSTAT = IIC_MODE_MT | IIC_TXRX_ENA;
    
    }
    
    /*
      cmd_type is 0 for write 1 for read.
    
      addr_len can take any value from 0-255, it is only limited
      by the char, we could make it larger if needed. If it is
      0 we skip the address write cycle.
    
    */
    static
    int i2c_transfer(unsigned char cmd_type,
                     unsigned char chip,
                     unsigned char addr[],
                     unsigned char addr_len,
                     unsigned char data[],
    		 unsigned short data_len)
    {
        int i, status, result;
    
        if (data == 0 || data_len == 0) {
    	/*Don't support data transfer of no length or to address 0*/
    	printf( "i2c_transfer: bad call\n" );
    	return IIC_NOK;
        }
    
        //CheckDelay();
    
        /* Check I2C bus idle */
        i = IIC_TIMEOUT * 1000;
        status = rIICSTAT;
        while ((i > 0) && (status & IICSTAT_BSY)) {
    	udelay(1000);
    	status = rIICSTAT;
    	i--;
        }
    
    
        if (status & IICSTAT_BSY) {
    	result = IIC_NOK_TOUT;
            return(result);
        }
    
        rIICCON |= 0x80;
    
        result = IIC_OK;
    
        switch (cmd_type) {
    	case IIC_WRITE:
    	    if (addr && addr_len) {
    		rIICDS = chip;
    		/* send START */
    		rIICSTAT = IIC_MODE_MT | IIC_TXRX_ENA | IIC_START_STOP;
    		i = 0;
    		while ((i < addr_len) && (result == IIC_OK)) {
    		    result = WaitForXfer();
    		    rIICDS = addr[i];
    		    ReadWriteByte();
    		    i++;
    		}
    		i = 0;
    		while ((i < data_len) && (result == IIC_OK)) {
    		    result = WaitForXfer();
    		    rIICDS = data[i];
    		    ReadWriteByte();
    		    i++;
    		}
    	    } else {
    		rIICDS = chip;
    		/* send START */
    		rIICSTAT = IIC_MODE_MT | IIC_TXRX_ENA | IIC_START_STOP;
    		i = 0;
    		while ((i < data_len) && (result = IIC_OK)) {
    		    result = WaitForXfer();
    		    rIICDS = data[i];
    		    ReadWriteByte();
    		    i++;
    		}
    	    }
    
    	    if (result == IIC_OK)
    	        result = WaitForXfer();
    
    	    /* send STOP */
    	    rIICSTAT = IIC_MODE_MR | IIC_TXRX_ENA;
    	    ReadWriteByte();
    	    break;
    
    	case IIC_READ:
    	    if (addr && addr_len) {
    		rIICSTAT = IIC_MODE_MT | IIC_TXRX_ENA;
    		rIICDS = chip;
    		/* send START */
    		rIICSTAT |= IIC_START_STOP;
    		result = WaitForXfer();
    		if (IsACK()) {
    		    i = 0;
    		    while ((i < addr_len) && (result == IIC_OK)) {
    			rIICDS = addr[i];
    			ReadWriteByte();
    			result = WaitForXfer();
    			i++;
    		    }
    
    		    rIICDS = chip;
    		    /* resend START */
    		    rIICSTAT = IIC_MODE_MR | IIC_TXRX_ENA | IIC_START_STOP;
    		    ReadWriteByte();
    		    result = WaitForXfer();
    		    i = 0;
    		    while ((i < data_len) && (result == IIC_OK)) {
    			/* disable ACK for final READ */
    			if (i == data_len - 1)
    			    rIICCON &= ~0x80;
    			ReadWriteByte();
    			result = WaitForXfer();
    			data[i] = rIICDS;
    			i++;
    		    }
    		} else {
    		    result = IIC_NACK;
    		}
    
    	    } else {
    		rIICSTAT = IIC_MODE_MR | IIC_TXRX_ENA;
    		rIICDS = chip;
    		/* send START */
    		rIICSTAT |= IIC_START_STOP;
    		result = WaitForXfer();
    
    		if (IsACK()) {
    		    i = 0;
    		    while ((i < data_len) && (result == IIC_OK)) {
    			/* disable ACK for final READ */
    			if (i == data_len - 1)
    			    rIICCON &= ~0x80;
    		        ReadWriteByte();
    			result = WaitForXfer();
    			data[i] = rIICDS;
    			i++;
    		    }
    		} else {
    		    result = IIC_NACK;
    		}
    	    }
    
    	    /* send STOP */
    	    rIICSTAT = IIC_MODE_MR | IIC_TXRX_ENA;
    	    ReadWriteByte();
    	    break;
    
    	default:
    	    printf( "i2c_transfer: bad call\n" );
        	    result = IIC_NOK;
    	    break;
        }
    
        return (result);
    }
    
    int i2c_probe (uchar chip)
    {
        uchar buf[1];
    
        buf[0] = 0;
    
        /*
         * What is needed is to send the chip address and verify that the
         * address was <ACK>ed (i.e. there was a chip at that address which
         * drove the data line low).
         */
        return(i2c_transfer (IIC_READ, chip << 1, 0, 0, buf, 1) != IIC_OK);
    }
    
    int i2c_read (uchar chip, uint addr, int alen, uchar * buffer, int len)
    {
        uchar xaddr[4];
        int ret;
    
        if ( alen > 4 ) {
    	printf ("I2C read: addr len %d not supported\n", alen);
    	return 1;
        }
    
        if ( alen > 0 ) {
    	xaddr[0] = (addr >> 24) & 0xFF;
            xaddr[1] = (addr >> 16) & 0xFF;
            xaddr[2] = (addr >> 8) & 0xFF;
            xaddr[3] = addr & 0xFF;
        }
    
    
    #ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW
        /*
         * EEPROM chips that implement "address overflow" are ones
         * like Catalyst 24WC04/08/16 which has 9/10/11 bits of
         * address and the extra bits end up in the "chip address"
         * bit slots. This makes a 24WC08 (1Kbyte) chip look like
         * four 256 byte chips.
         *
         * Note that we consider the length of the address field to
         * still be one byte because the extra address bits are
         * hidden in the chip address.
         */
        if( alen > 0 )
    	chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW);
    #endif
        if( (ret = i2c_transfer(IIC_READ, chip<<1, &xaddr[4-alen], alen, buffer, len )) != 0) {
            printf( "I2c read: failed %d\n", ret);
            return 1;
        }
        return 0;
    }
    
    int i2c_write (uchar chip, uint addr, int alen, uchar * buffer, int len)
    {
        uchar xaddr[4];
    
        if ( alen > 4 ) {
    	printf ("I2C write: addr len %d not supported\n", alen);
    	return 1;
        }
    
        if ( alen > 0 ) {
            xaddr[0] = (addr >> 24) & 0xFF;
            xaddr[1] = (addr >> 16) & 0xFF;
            xaddr[2] = (addr >> 8) & 0xFF;
            xaddr[3] = addr & 0xFF;
        }
    
    #ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW
        /*
         * EEPROM chips that implement "address overflow" are ones
         * like Catalyst 24WC04/08/16 which has 9/10/11 bits of
         * address and the extra bits end up in the "chip address"
         * bit slots. This makes a 24WC08 (1Kbyte) chip look like
         * four 256 byte chips.
         *
         * Note that we consider the length of the address field to
         * still be one byte because the extra address bits are
         * hidden in the chip address.
         */
        if( alen > 0 )
            chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW);
    #endif
        return (i2c_transfer(IIC_WRITE, chip<<1, &xaddr[4-alen], alen, buffer, len ) != 0);
    }
    
    #endif	/* CONFIG_HARD_I2C */
    
    #endif /* CONFIG_DRIVER_S3C24X0_I2C */