Skip to content
Snippets Groups Projects
nand_boot.c 6.59 KiB
Newer Older
  • Learn to ignore specific revisions
  •  * Stefan Roese, DENX Software Engineering, sr@denx.de.
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public License as
     * published by the Free Software Foundation; either version 2 of
     * the License, or (at your option) any later version.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software
     * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
     * MA 02111-1307 USA
     */
    
    #include <common.h>
    #include <nand.h>
    
    #define CFG_NAND_READ_DELAY \
    	{ volatile int dummy; int i; for (i=0; i<10000; i++) dummy = i; }
    
    
    static int nand_ecc_pos[] = CFG_NAND_ECCPOS;
    
    
    extern void board_nand_init(struct nand_chip *nand);
    
    
    #if (CFG_NAND_PAGE_SIZE <= 512)
    /*
     * NAND command for small page NAND devices (512)
     */
    
    static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    	struct nand_chip *this = mtd->priv;
    
    	int page_addr = page + block * CFG_NAND_PAGE_COUNT;
    
    	if (this->dev_ready)
    		this->dev_ready(mtd);
    	else
    		CFG_NAND_READ_DELAY;
    
    
    	/* Begin command latch cycle */
    	this->hwcontrol(mtd, NAND_CTL_SETCLE);
    
    	/* Set ALE and clear CLE to start address cycle */
    	this->hwcontrol(mtd, NAND_CTL_CLRCLE);
    	this->hwcontrol(mtd, NAND_CTL_SETALE);
    	/* Column address */
    
    	this->write_byte(mtd, offs);					/* A[7:0] */
    
    	this->write_byte(mtd, (uchar)(page_addr & 0xff));		/* A[16:9] */
    	this->write_byte(mtd, (uchar)((page_addr >> 8) & 0xff));	/* A[24:17] */
    #ifdef CFG_NAND_4_ADDR_CYCLE
    	/* One more address cycle for devices > 32MiB */
    	this->write_byte(mtd, (uchar)((page_addr >> 16) & 0x0f));	/* A[xx:25] */
    #endif
    	/* Latch in address */
    	this->hwcontrol(mtd, NAND_CTL_CLRALE);
    
    	/*
    	 * Wait a while for the data to be ready
    	 */
    	if (this->dev_ready)
    		this->dev_ready(mtd);
    	else
    		CFG_NAND_READ_DELAY;
    
    
    #else
    /*
     * NAND command for large page NAND devices (2k)
     */
    static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
    {
    	struct nand_chip *this = mtd->priv;
    	int page_offs = offs;
    	int page_addr = page + block * CFG_NAND_PAGE_COUNT;
    
    	if (this->dev_ready)
    		this->dev_ready(mtd);
    	else
    		CFG_NAND_READ_DELAY;
    
    	/* Emulate NAND_CMD_READOOB */
    	if (cmd == NAND_CMD_READOOB) {
    		page_offs += CFG_NAND_PAGE_SIZE;
    		cmd = NAND_CMD_READ0;
    	}
    
    	/* Begin command latch cycle */
    	this->hwcontrol(mtd, NAND_CTL_SETCLE);
    	this->write_byte(mtd, cmd);
    	/* Set ALE and clear CLE to start address cycle */
    	this->hwcontrol(mtd, NAND_CTL_CLRCLE);
    	this->hwcontrol(mtd, NAND_CTL_SETALE);
    	/* Column address */
    	this->write_byte(mtd, page_offs & 0xff);			/* A[7:0] */
    	this->write_byte(mtd, (uchar)((page_offs >> 8) & 0xff));	/* A[11:9] */
    	/* Row address */
    	this->write_byte(mtd, (uchar)(page_addr & 0xff));		/* A[19:12] */
    	this->write_byte(mtd, (uchar)((page_addr >> 8) & 0xff));	/* A[27:20] */
    #ifdef CFG_NAND_5_ADDR_CYCLE
    	/* One more address cycle for devices > 128MiB */
    	this->write_byte(mtd, (uchar)((page_addr >> 16) & 0x0f));	/* A[xx:28] */
    #endif
    	/* Latch in address */
    	this->hwcontrol(mtd, NAND_CTL_CLRALE);
    
    	/* Begin command latch cycle */
    	this->hwcontrol(mtd, NAND_CTL_SETCLE);
    	/* Write out the start read command */
    	this->write_byte(mtd, NAND_CMD_READSTART);
    	/* End command latch cycle */
    	this->hwcontrol(mtd, NAND_CTL_CLRCLE);
    
    	/*
    	 * Wait a while for the data to be ready
    	 */
    	if (this->dev_ready)
    		this->dev_ready(mtd);
    	else
    		CFG_NAND_READ_DELAY;
    
    	return 0;
    }
    #endif
    
    
    static int nand_is_bad_block(struct mtd_info *mtd, int block)
    {
    	struct nand_chip *this = mtd->priv;
    
    	nand_command(mtd, block, 0, CFG_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
    
    
    Marcel Ziswiler's avatar
    Marcel Ziswiler committed
    	 * Read one byte
    
    	 */
    	if (this->read_byte(mtd) != 0xff)
    		return 1;
    
    	return 0;
    }
    
    static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
    {
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    	struct nand_chip *this = mtd->priv;
    
    	u_char *ecc_calc;
    	u_char *ecc_code;
    	u_char *oob_data;
    
    	int eccsize = CFG_NAND_ECCSIZE;
    	int eccbytes = CFG_NAND_ECCBYTES;
    	int eccsteps = CFG_NAND_ECCSTEPS;
    	uint8_t *p = dst;
    	int stat;
    
    	nand_command(mtd, block, page, 0, NAND_CMD_READ0);
    
    	/* No malloc available for now, just use some temporary locations
    	 * in SDRAM
    
    	ecc_calc = (u_char *)(CFG_SDRAM_BASE + 0x10000);
    	ecc_code = ecc_calc + 0x100;
    	oob_data = ecc_calc + 0x200;
    
    	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
    		this->enable_hwecc(mtd, NAND_ECC_READ);
    		this->read_buf(mtd, p, eccsize);
    		this->calculate_ecc(mtd, p, &ecc_calc[i]);
    	}
    	this->read_buf(mtd, oob_data, CFG_NAND_OOBSIZE);
    
    	/* Pick the ECC bytes out of the oob data */
    	for (i = 0; i < CFG_NAND_ECCTOTAL; i++)
    		ecc_code[i] = oob_data[nand_ecc_pos[i]];
    
    	eccsteps = CFG_NAND_ECCSTEPS;
    	p = dst;
    
    	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
    		/* No chance to do something with the possible error message
    		 * from correct_data(). We just hope that all possible errors
    		 * are corrected by this routine.
    		 */
    		stat = this->correct_data(mtd, p, &ecc_code[i], &ecc_calc[i]);
    	}
    
    
    	return 0;
    }
    
    static int nand_load(struct mtd_info *mtd, int offs, int uboot_size, uchar *dst)
    {
    	int block;
    	int blockcopy_count;
    	int page;
    
    	/*
    	 * offs has to be aligned to a block address!
    	 */
    	block = offs / CFG_NAND_BLOCK_SIZE;
    	blockcopy_count = 0;
    
    	while (blockcopy_count < (uboot_size / CFG_NAND_BLOCK_SIZE)) {
    		if (!nand_is_bad_block(mtd, block)) {
    			/*
    			 * Skip bad blocks
    			 */
    			for (page = 0; page < CFG_NAND_PAGE_COUNT; page++) {
    				nand_read_page(mtd, block, page, dst);
    				dst += CFG_NAND_PAGE_SIZE;
    			}
    
    			blockcopy_count++;
    		}
    
    		block++;
    	}
    
    	return 0;
    }
    
    
    /*
     * The main entry for NAND booting. It's necessary that SDRAM is already
     * configured and available since this code loads the main U-Boot image
     * from NAND into SDRAM and starts it from there.
     */
    
    void nand_boot(void)
    {
    	struct nand_chip nand_chip;
    	nand_info_t nand_info;
    	int ret;
    	void (*uboot)(void);
    
    	/*
    	 * Init board specific nand support
    	 */
    	nand_info.priv = &nand_chip;
    	nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W = (void  __iomem *)CFG_NAND_BASE;
    	nand_chip.dev_ready = NULL;	/* preset to NULL */
    	board_nand_init(&nand_chip);
    
    	/*
    	 * Load U-Boot image from NAND into RAM
    	 */
    
    	ret = nand_load(&nand_info, CFG_NAND_U_BOOT_OFFS, CFG_NAND_U_BOOT_SIZE,
    
    			(uchar *)CFG_NAND_U_BOOT_DST);
    
    	/*
    	 * Jump to U-Boot image
    	 */
    	uboot = (void (*)(void))CFG_NAND_U_BOOT_START;
    	(*uboot)();
    }