Newer
Older
/*
* (C) Copyright 2008
* Texas Instruments, <www.ti.com>
* Sukumar Ghorai <s-ghorai@ti.com>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation's version 2 of
* the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <config.h>
#include <common.h>
#include <malloc.h>
#include <memalign.h>
#include <mmc.h>
#include <part.h>
#include <i2c.h>
#if defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)
#include <asm/io.h>
#include <asm/arch/mmc_host_def.h>
#ifdef CONFIG_OMAP54XX
#include <asm/arch/mux_dra7xx.h>
#include <asm/arch/dra7xx_iodelay.h>
#endif
#if !defined(CONFIG_SOC_KEYSTONE)
#include <asm/gpio.h>
#include <asm/arch/sys_proto.h>
#ifdef CONFIG_MMC_OMAP36XX_PINS
#include <asm/arch/mux.h>
#endif
#include <dm.h>
#include <power/regulator.h>
DECLARE_GLOBAL_DATA_PTR;
/* simplify defines to OMAP_HSMMC_USE_GPIO */
#if (defined(CONFIG_OMAP_GPIO) && !defined(CONFIG_SPL_BUILD)) || \
(defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_GPIO_SUPPORT))
#define OMAP_HSMMC_USE_GPIO
#else
#undef OMAP_HSMMC_USE_GPIO
#endif
/* common definitions for all OMAPs */
#define SYSCTL_SRC (1 << 25)
#define SYSCTL_SRD (1 << 26)
#ifdef CONFIG_IODELAY_RECALIBRATION
struct omap_hsmmc_pinctrl_state {
struct pad_conf_entry *padconf;
int npads;
struct iodelay_cfg_entry *iodelay;
int niodelays;
};
#endif
struct omap_hsmmc_data {
struct hsmmc *base_addr;
#if !CONFIG_IS_ENABLED(DM_MMC)
struct mmc_config cfg;
#endif
ushort last_cmd;
#ifdef OMAP_HSMMC_USE_GPIO
struct gpio_desc cd_gpio; /* Change Detect GPIO */
struct gpio_desc wp_gpio; /* Write Protect GPIO */
bool cd_inverted;
#else
#endif
#if CONFIG_IS_ENABLED(DM_MMC)
enum bus_mode mode;
#endif
u8 controller_flags;
#ifdef CONFIG_MMC_OMAP_HS_ADMA
struct omap_hsmmc_adma_desc *adma_desc_table;
uint desc_slot;
#endif
Kishon Vijay Abraham I
committed
const char *hw_rev;
struct udevice *pbias_supply;
uint signal_voltage;
#ifdef CONFIG_IODELAY_RECALIBRATION
struct omap_hsmmc_pinctrl_state *default_pinctrl_state;
struct omap_hsmmc_pinctrl_state *hs_pinctrl_state;
struct omap_hsmmc_pinctrl_state *hs200_1_8v_pinctrl_state;
struct omap_hsmmc_pinctrl_state *ddr_1_8v_pinctrl_state;
struct omap_hsmmc_pinctrl_state *sdr12_pinctrl_state;
struct omap_hsmmc_pinctrl_state *sdr25_pinctrl_state;
struct omap_hsmmc_pinctrl_state *ddr50_pinctrl_state;
struct omap_hsmmc_pinctrl_state *sdr50_pinctrl_state;
struct omap_hsmmc_pinctrl_state *sdr104_pinctrl_state;
#endif
};
struct omap_mmc_of_data {
u8 controller_flags;
#ifdef CONFIG_MMC_OMAP_HS_ADMA
struct omap_hsmmc_adma_desc {
u8 attr;
u8 reserved;
u16 len;
u32 addr;
#define ADMA_MAX_LEN 63488
/* Decriptor table defines */
#define ADMA_DESC_ATTR_VALID BIT(0)
#define ADMA_DESC_ATTR_END BIT(1)
#define ADMA_DESC_ATTR_INT BIT(2)
#define ADMA_DESC_ATTR_ACT1 BIT(4)
#define ADMA_DESC_ATTR_ACT2 BIT(5)
#define ADMA_DESC_TRANSFER_DATA ADMA_DESC_ATTR_ACT2
#define ADMA_DESC_LINK_DESC (ADMA_DESC_ATTR_ACT1 | ADMA_DESC_ATTR_ACT2)
#endif
/* If we fail after 1 second wait, something is really bad */
#define MAX_RETRY_MS 1000
#define MMC_TIMEOUT_MS 20
/* DMA transfers can take a long time if a lot a data is transferred.
* The timeout must take in account the amount of data. Let's assume
* that the time will never exceed 333 ms per MB (in other word we assume
* that the bandwidth is always above 3MB/s).
*/
#define DMA_TIMEOUT_PER_MB 333
#define OMAP_HSMMC_SUPPORTS_DUAL_VOLT BIT(0)
#define OMAP_HSMMC_NO_1_8_V BIT(1)
#define OMAP_HSMMC_USE_ADMA BIT(2)
#define OMAP_HSMMC_REQUIRE_IODELAY BIT(3)
static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size);
static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
unsigned int siz);
static void omap_hsmmc_start_clock(struct hsmmc *mmc_base);
static void omap_hsmmc_stop_clock(struct hsmmc *mmc_base);
static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit);
static inline struct omap_hsmmc_data *omap_hsmmc_get_data(struct mmc *mmc)
{
#if CONFIG_IS_ENABLED(DM_MMC)
return dev_get_priv(mmc->dev);
#else
return (struct omap_hsmmc_data *)mmc->priv;
#endif
}
static inline struct mmc_config *omap_hsmmc_get_cfg(struct mmc *mmc)
{
#if CONFIG_IS_ENABLED(DM_MMC)
struct omap_hsmmc_plat *plat = dev_get_platdata(mmc->dev);
return &plat->cfg;
#else
return &((struct omap_hsmmc_data *)mmc->priv)->cfg;
#endif
#if defined(OMAP_HSMMC_USE_GPIO) && !CONFIG_IS_ENABLED(DM_MMC)
static int omap_mmc_setup_gpio_in(int gpio, const char *label)
{
#ifndef CONFIG_DM_GPIO
if (!gpio_is_valid(gpio))
#endif
ret = gpio_request(gpio, label);
if (ret)
return ret;
ret = gpio_direction_input(gpio);
if (ret)
return ret;
return gpio;
}
#endif
static unsigned char mmc_board_init(struct mmc *mmc)
{
#if defined(CONFIG_OMAP34XX)
struct mmc_config *cfg = omap_hsmmc_get_cfg(mmc);
t2_t *t2_base = (t2_t *)T2_BASE;
struct prcm *prcm_base = (struct prcm *)PRCM_BASE;
#ifdef CONFIG_MMC_OMAP36XX_PINS
u32 wkup_ctrl = readl(OMAP34XX_CTRL_WKUP_CTRL);
#endif
pbias_lite = readl(&t2_base->pbias_lite);
pbias_lite &= ~(PBIASLITEPWRDNZ1 | PBIASLITEPWRDNZ0);
#ifdef CONFIG_TARGET_OMAP3_CAIRO
/* for cairo board, we need to set up 1.8 Volt bias level on MMC1 */
pbias_lite &= ~PBIASLITEVMODE0;
#endif
#ifdef CONFIG_MMC_OMAP36XX_PINS
if (get_cpu_family() == CPU_OMAP36XX) {
/* Disable extended drain IO before changing PBIAS */
wkup_ctrl &= ~OMAP34XX_CTRL_WKUP_CTRL_GPIO_IO_PWRDNZ;
writel(wkup_ctrl, OMAP34XX_CTRL_WKUP_CTRL);
}
writel(pbias_lite, &t2_base->pbias_lite);
writel(pbias_lite | PBIASLITEPWRDNZ1 |
PBIASSPEEDCTRL0 | PBIASLITEPWRDNZ0,
&t2_base->pbias_lite);
#ifdef CONFIG_MMC_OMAP36XX_PINS
if (get_cpu_family() == CPU_OMAP36XX)
/* Enable extended drain IO after changing PBIAS */
writel(wkup_ctrl |
OMAP34XX_CTRL_WKUP_CTRL_GPIO_IO_PWRDNZ,
OMAP34XX_CTRL_WKUP_CTRL);
#endif
writel(readl(&t2_base->devconf0) | MMCSDIO1ADPCLKISEL,
&t2_base->devconf0);
writel(readl(&t2_base->devconf1) | MMCSDIO2ADPCLKISEL,
&t2_base->devconf1);
/* Change from default of 52MHz to 26MHz if necessary */
if (!(cfg->host_caps & MMC_MODE_HS_52MHz))
writel(readl(&t2_base->ctl_prog_io1) & ~CTLPROGIO1SPEEDCTRL,
&t2_base->ctl_prog_io1);
writel(readl(&prcm_base->fclken1_core) |
EN_MMC1 | EN_MMC2 | EN_MMC3,
&prcm_base->fclken1_core);
writel(readl(&prcm_base->iclken1_core) |
EN_MMC1 | EN_MMC2 | EN_MMC3,
&prcm_base->iclken1_core);
#endif
#if (defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)) &&\
!CONFIG_IS_ENABLED(DM_REGULATOR)
if (mmc_get_blk_desc(mmc)->devnum == 0)
vmmc_pbias_config(LDO_VOLT_3V0);
return 0;
}
writel(readl(&mmc_base->con) | INIT_INITSTREAM, &mmc_base->con);
writel(MMC_CMD0, &mmc_base->cmd);
start = get_timer(0);
while (!(readl(&mmc_base->stat) & CC_MASK)) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for cc!\n", __func__);
return;
}
}
writel(CC_MASK, &mmc_base->stat)
;
writel(MMC_CMD0, &mmc_base->cmd)
;
start = get_timer(0);
while (!(readl(&mmc_base->stat) & CC_MASK)) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for cc2!\n", __func__);
return;
}
}
writel(readl(&mmc_base->con) & ~INIT_INITSTREAM, &mmc_base->con);
}
#if CONFIG_IS_ENABLED(DM_MMC)
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
#ifdef CONFIG_IODELAY_RECALIBRATION
static void omap_hsmmc_io_recalibrate(struct mmc *mmc)
{
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
struct omap_hsmmc_pinctrl_state *pinctrl_state;
switch (priv->mode) {
case MMC_HS_200:
pinctrl_state = priv->hs200_1_8v_pinctrl_state;
break;
case UHS_SDR104:
pinctrl_state = priv->sdr104_pinctrl_state;
break;
case UHS_SDR50:
pinctrl_state = priv->sdr50_pinctrl_state;
break;
case UHS_DDR50:
pinctrl_state = priv->ddr50_pinctrl_state;
break;
case UHS_SDR25:
pinctrl_state = priv->sdr25_pinctrl_state;
break;
case UHS_SDR12:
pinctrl_state = priv->sdr12_pinctrl_state;
break;
case SD_HS:
case MMC_HS:
case MMC_HS_52:
pinctrl_state = priv->hs_pinctrl_state;
break;
case MMC_DDR_52:
pinctrl_state = priv->ddr_1_8v_pinctrl_state;
default:
pinctrl_state = priv->default_pinctrl_state;
break;
}
if (!pinctrl_state)
pinctrl_state = priv->default_pinctrl_state;
if (priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY) {
if (pinctrl_state->iodelay)
late_recalibrate_iodelay(pinctrl_state->padconf,
pinctrl_state->npads,
pinctrl_state->iodelay,
pinctrl_state->niodelays);
else
do_set_mux32((*ctrl)->control_padconf_core_base,
pinctrl_state->padconf,
pinctrl_state->npads);
}
}
#endif
static void omap_hsmmc_set_timing(struct mmc *mmc)
{
u32 val;
struct hsmmc *mmc_base;
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
mmc_base = priv->base_addr;
omap_hsmmc_stop_clock(mmc_base);
val = readl(&mmc_base->ac12);
val &= ~AC12_UHSMC_MASK;
priv->mode = mmc->selected_mode;
if (mmc_is_mode_ddr(priv->mode))
writel(readl(&mmc_base->con) | DDR, &mmc_base->con);
else
writel(readl(&mmc_base->con) & ~DDR, &mmc_base->con);
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
switch (priv->mode) {
case MMC_HS_200:
case UHS_SDR104:
val |= AC12_UHSMC_SDR104;
break;
case UHS_SDR50:
val |= AC12_UHSMC_SDR50;
break;
case MMC_DDR_52:
case UHS_DDR50:
val |= AC12_UHSMC_DDR50;
break;
case SD_HS:
case MMC_HS_52:
case UHS_SDR25:
val |= AC12_UHSMC_SDR25;
break;
case MMC_LEGACY:
case MMC_HS:
case SD_LEGACY:
case UHS_SDR12:
val |= AC12_UHSMC_SDR12;
break;
default:
val |= AC12_UHSMC_RES;
break;
}
writel(val, &mmc_base->ac12);
#ifdef CONFIG_IODELAY_RECALIBRATION
omap_hsmmc_io_recalibrate(mmc);
#endif
omap_hsmmc_start_clock(mmc_base);
static void omap_hsmmc_conf_bus_power(struct mmc *mmc, uint signal_voltage)
{
struct hsmmc *mmc_base;
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
u32 hctl, ac12;
mmc_base = priv->base_addr;
hctl = readl(&mmc_base->hctl) & ~SDVS_MASK;
ac12 = readl(&mmc_base->ac12) & ~AC12_V1V8_SIGEN;
switch (signal_voltage) {
case MMC_SIGNAL_VOLTAGE_330:
hctl |= SDVS_3V0;
case MMC_SIGNAL_VOLTAGE_180:
hctl |= SDVS_1V8;
ac12 |= AC12_V1V8_SIGEN;
break;
}
writel(hctl, &mmc_base->hctl);
writel(ac12, &mmc_base->ac12);
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
#if CONFIG_IS_ENABLED(MMC_UHS_SUPPORT)
static int omap_hsmmc_wait_dat0(struct udevice *dev, int state, int timeout)
{
int ret = -ETIMEDOUT;
u32 con;
bool dat0_high;
bool target_dat0_high = !!state;
struct omap_hsmmc_data *priv = dev_get_priv(dev);
struct hsmmc *mmc_base = priv->base_addr;
con = readl(&mmc_base->con);
writel(con | CON_CLKEXTFREE | CON_PADEN, &mmc_base->con);
timeout = DIV_ROUND_UP(timeout, 10); /* check every 10 us. */
while (timeout--) {
dat0_high = !!(readl(&mmc_base->pstate) & PSTATE_DLEV_DAT0);
if (dat0_high == target_dat0_high) {
ret = 0;
break;
}
udelay(10);
}
writel(con, &mmc_base->con);
return ret;
}
#endif
#if CONFIG_IS_ENABLED(MMC_IO_VOLTAGE)
#if CONFIG_IS_ENABLED(DM_REGULATOR)
static int omap_hsmmc_set_io_regulator(struct mmc *mmc, int mV)
{
int ret = 0;
int uV = mV * 1000;
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
if (!mmc->vqmmc_supply)
return 0;
/* Disable PBIAS */
ret = regulator_set_enable(priv->pbias_supply, false);
if (ret && ret != -ENOSYS)
return ret;
/* Turn off IO voltage */
ret = regulator_set_enable(mmc->vqmmc_supply, false);
if (ret && ret != -ENOSYS)
return ret;
/* Program a new IO voltage value */
ret = regulator_set_value(mmc->vqmmc_supply, uV);
if (ret)
return ret;
/* Turn on IO voltage */
ret = regulator_set_enable(mmc->vqmmc_supply, true);
if (ret && ret != -ENOSYS)
return ret;
/* Program PBIAS voltage*/
ret = regulator_set_value(priv->pbias_supply, uV);
if (ret && ret != -ENOSYS)
return ret;
/* Enable PBIAS */
ret = regulator_set_enable(priv->pbias_supply, true);
if (ret && ret != -ENOSYS)
return ret;
return 0;
}
#endif
static int omap_hsmmc_set_signal_voltage(struct mmc *mmc)
{
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
struct hsmmc *mmc_base = priv->base_addr;
int mv = mmc_voltage_to_mv(mmc->signal_voltage);
u32 capa_mask;
__maybe_unused u8 palmas_ldo_volt;
u32 val;
if (mv < 0)
return -EINVAL;
if (mmc->signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
/* Use 3.0V rather than 3.3V */
mv = 3000;
capa_mask = VS30_3V0SUP;
palmas_ldo_volt = LDO_VOLT_3V0;
} else if (mmc->signal_voltage == MMC_SIGNAL_VOLTAGE_180) {
capa_mask = VS18_1V8SUP;
palmas_ldo_volt = LDO_VOLT_1V8;
} else {
return -EOPNOTSUPP;
}
val = readl(&mmc_base->capa);
if (!(val & capa_mask))
return -EOPNOTSUPP;
priv->signal_voltage = mmc->signal_voltage;
omap_hsmmc_conf_bus_power(mmc, mmc->signal_voltage);
#if CONFIG_IS_ENABLED(DM_REGULATOR)
return omap_hsmmc_set_io_regulator(mmc, mv);
#elif (defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)) && \
defined(CONFIG_PALMAS_POWER)
if (mmc_get_blk_desc(mmc)->devnum == 0)
vmmc_pbias_config(palmas_ldo_volt);
return 0;
#else
return 0;
#endif
}
#endif
static uint32_t omap_hsmmc_set_capabilities(struct mmc *mmc)
{
struct hsmmc *mmc_base;
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
u32 val;
mmc_base = priv->base_addr;
val = readl(&mmc_base->capa);
if (priv->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
val |= (VS30_3V0SUP | VS18_1V8SUP);
} else if (priv->controller_flags & OMAP_HSMMC_NO_1_8_V) {
val |= VS30_3V0SUP;
val &= ~VS18_1V8SUP;
} else {
val |= VS18_1V8SUP;
val &= ~VS30_3V0SUP;
}
writel(val, &mmc_base->capa);
return val;
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
#ifdef MMC_SUPPORTS_TUNING
static void omap_hsmmc_disable_tuning(struct mmc *mmc)
{
struct hsmmc *mmc_base;
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
u32 val;
mmc_base = priv->base_addr;
val = readl(&mmc_base->ac12);
val &= ~(AC12_SCLK_SEL);
writel(val, &mmc_base->ac12);
val = readl(&mmc_base->dll);
val &= ~(DLL_FORCE_VALUE | DLL_SWT);
writel(val, &mmc_base->dll);
}
static void omap_hsmmc_set_dll(struct mmc *mmc, int count)
{
int i;
struct hsmmc *mmc_base;
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
u32 val;
mmc_base = priv->base_addr;
val = readl(&mmc_base->dll);
val |= DLL_FORCE_VALUE;
val &= ~(DLL_FORCE_SR_C_MASK << DLL_FORCE_SR_C_SHIFT);
val |= (count << DLL_FORCE_SR_C_SHIFT);
writel(val, &mmc_base->dll);
val |= DLL_CALIB;
writel(val, &mmc_base->dll);
for (i = 0; i < 1000; i++) {
if (readl(&mmc_base->dll) & DLL_CALIB)
break;
}
val &= ~DLL_CALIB;
writel(val, &mmc_base->dll);
}
static int omap_hsmmc_execute_tuning(struct udevice *dev, uint opcode)
{
struct omap_hsmmc_data *priv = dev_get_priv(dev);
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
struct mmc *mmc = upriv->mmc;
struct hsmmc *mmc_base;
u32 val;
u8 cur_match, prev_match = 0;
int ret;
u32 phase_delay = 0;
u32 start_window = 0, max_window = 0;
u32 length = 0, max_len = 0;
mmc_base = priv->base_addr;
val = readl(&mmc_base->capa2);
/* clock tuning is not needed for upto 52MHz */
if (!((mmc->selected_mode == MMC_HS_200) ||
(mmc->selected_mode == UHS_SDR104) ||
((mmc->selected_mode == UHS_SDR50) && (val & CAPA2_TSDR50))))
return 0;
val = readl(&mmc_base->dll);
val |= DLL_SWT;
writel(val, &mmc_base->dll);
while (phase_delay <= MAX_PHASE_DELAY) {
omap_hsmmc_set_dll(mmc, phase_delay);
cur_match = !mmc_send_tuning(mmc, opcode, NULL);
if (cur_match) {
if (prev_match) {
length++;
} else {
start_window = phase_delay;
length = 1;
}
}
if (length > max_len) {
max_window = start_window;
max_len = length;
}
prev_match = cur_match;
phase_delay += 4;
}
if (!max_len) {
ret = -EIO;
goto tuning_error;
}
val = readl(&mmc_base->ac12);
if (!(val & AC12_SCLK_SEL)) {
ret = -EIO;
goto tuning_error;
}
phase_delay = max_window + 4 * ((3 * max_len) >> 2);
omap_hsmmc_set_dll(mmc, phase_delay);
mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
return 0;
tuning_error:
omap_hsmmc_disable_tuning(mmc);
mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
return ret;
}
#endif
static void omap_hsmmc_send_init_stream(struct udevice *dev)
{
struct omap_hsmmc_data *priv = dev_get_priv(dev);
struct hsmmc *mmc_base = priv->base_addr;
mmc_init_stream(mmc_base);
}
#endif
static void mmc_enable_irq(struct mmc *mmc, struct mmc_cmd *cmd)
{
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
struct hsmmc *mmc_base = priv->base_addr;
u32 irq_mask = INT_EN_MASK;
/*
* TODO: Errata i802 indicates only DCRC interrupts can occur during
* tuning procedure and DCRC should be disabled. But see occurences
* of DEB, CIE, CEB, CCRC interupts during tuning procedure. These
* interrupts occur along with BRR, so the data is actually in the
* buffer. It has to be debugged why these interrutps occur
*/
if (cmd && mmc_is_tuning_cmd(cmd->cmdidx))
irq_mask &= ~(IE_DEB | IE_DCRC | IE_CIE | IE_CEB | IE_CCRC);
writel(irq_mask, &mmc_base->ie);
}
static int omap_hsmmc_init_setup(struct mmc *mmc)
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
unsigned int reg_val;
unsigned int dsor;
mmc_base = priv->base_addr;
writel(readl(&mmc_base->sysconfig) | MMC_SOFTRESET,
&mmc_base->sysconfig);
start = get_timer(0);
while ((readl(&mmc_base->sysstatus) & RESETDONE) == 0) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for cc2!\n", __func__);
writel(readl(&mmc_base->sysctl) | SOFTRESETALL, &mmc_base->sysctl);
start = get_timer(0);
while ((readl(&mmc_base->sysctl) & SOFTRESETALL) != 0x0) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for softresetall!\n",
__func__);
#ifdef CONFIG_MMC_OMAP_HS_ADMA
reg_val = readl(&mmc_base->hl_hwinfo);
if (reg_val & MADMA_EN)
priv->controller_flags |= OMAP_HSMMC_USE_ADMA;
#endif
#if CONFIG_IS_ENABLED(DM_MMC)
reg_val = omap_hsmmc_set_capabilities(mmc);
omap_hsmmc_conf_bus_power(mmc, (reg_val & VS30_3V0SUP) ?
MMC_SIGNAL_VOLTAGE_330 : MMC_SIGNAL_VOLTAGE_180);
writel(DTW_1_BITMODE | SDBP_PWROFF | SDVS_3V0, &mmc_base->hctl);
writel(readl(&mmc_base->capa) | VS30_3V0SUP | VS18_1V8SUP,
&mmc_base->capa);
reg_val = readl(&mmc_base->con) & RESERVED_MASK;
writel(CTPL_MMC_SD | reg_val | WPP_ACTIVEHIGH | CDP_ACTIVEHIGH |
MIT_CTO | DW8_1_4BITMODE | MODE_FUNC | STR_BLOCK |
HR_NOHOSTRESP | INIT_NOINIT | NOOPENDRAIN, &mmc_base->con);
dsor = 240;
mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK | CEN_MASK),
(ICE_STOP | DTO_15THDTO));
mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
(dsor << CLKD_OFFSET) | ICE_OSCILLATE);
start = get_timer(0);
while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for ics!\n", __func__);
writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
writel(readl(&mmc_base->hctl) | SDBP_PWRON, &mmc_base->hctl);
mmc_enable_irq(mmc, NULL);
#if !CONFIG_IS_ENABLED(DM_MMC)
mmc_init_stream(mmc_base);
return 0;
}
/*
* MMC controller internal finite state machine reset
*
* Used to reset command or data internal state machines, using respectively
* SRC or SRD bit of SYSCTL register
*/
static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit)
{
ulong start;
mmc_reg_out(&mmc_base->sysctl, bit, bit);
Oleksandr Tyshchenko
committed
/*
* CMD(DAT) lines reset procedures are slightly different
* for OMAP3 and OMAP4(AM335x,OMAP5,DRA7xx).
* According to OMAP3 TRM:
* Set SRC(SRD) bit in MMCHS_SYSCTL register to 0x1 and wait until it
* returns to 0x0.
* According to OMAP4(AM335x,OMAP5,DRA7xx) TRMs, CMD(DATA) lines reset
* procedure steps must be as follows:
* 1. Initiate CMD(DAT) line reset by writing 0x1 to SRC(SRD) bit in
* MMCHS_SYSCTL register (SD_SYSCTL for AM335x).
* 2. Poll the SRC(SRD) bit until it is set to 0x1.
* 3. Wait until the SRC (SRD) bit returns to 0x0
* (reset procedure is completed).
*/
#if defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \
defined(CONFIG_AM33XX) || defined(CONFIG_AM43XX)
Oleksandr Tyshchenko
committed
if (!(readl(&mmc_base->sysctl) & bit)) {
start = get_timer(0);
while (!(readl(&mmc_base->sysctl) & bit)) {
if (get_timer(0) - start > MMC_TIMEOUT_MS)
Oleksandr Tyshchenko
committed
return;
}
}
#endif
start = get_timer(0);
while ((readl(&mmc_base->sysctl) & bit) != 0) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for sysctl %x to clear\n",
__func__, bit);
return;
}
}
}
#ifdef CONFIG_MMC_OMAP_HS_ADMA
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
static void omap_hsmmc_adma_desc(struct mmc *mmc, char *buf, u16 len, bool end)
{
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
struct omap_hsmmc_adma_desc *desc;
u8 attr;
desc = &priv->adma_desc_table[priv->desc_slot];
attr = ADMA_DESC_ATTR_VALID | ADMA_DESC_TRANSFER_DATA;
if (!end)
priv->desc_slot++;
else
attr |= ADMA_DESC_ATTR_END;
desc->len = len;
desc->addr = (u32)buf;
desc->reserved = 0;
desc->attr = attr;
}
static void omap_hsmmc_prepare_adma_table(struct mmc *mmc,
struct mmc_data *data)
{
uint total_len = data->blocksize * data->blocks;
uint desc_count = DIV_ROUND_UP(total_len, ADMA_MAX_LEN);
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
int i = desc_count;
char *buf;
priv->desc_slot = 0;
priv->adma_desc_table = (struct omap_hsmmc_adma_desc *)
memalign(ARCH_DMA_MINALIGN, desc_count *
sizeof(struct omap_hsmmc_adma_desc));
if (data->flags & MMC_DATA_READ)
buf = data->dest;
else
buf = (char *)data->src;
while (--i) {
omap_hsmmc_adma_desc(mmc, buf, ADMA_MAX_LEN, false);
buf += ADMA_MAX_LEN;
total_len -= ADMA_MAX_LEN;
}
omap_hsmmc_adma_desc(mmc, buf, total_len, true);
flush_dcache_range((long)priv->adma_desc_table,
(long)priv->adma_desc_table +
ROUND(desc_count *
sizeof(struct omap_hsmmc_adma_desc),
ARCH_DMA_MINALIGN));
}
static void omap_hsmmc_prepare_data(struct mmc *mmc, struct mmc_data *data)
{
struct hsmmc *mmc_base;
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
u32 val;
char *buf;
mmc_base = priv->base_addr;
omap_hsmmc_prepare_adma_table(mmc, data);
if (data->flags & MMC_DATA_READ)
buf = data->dest;
else
buf = (char *)data->src;
val = readl(&mmc_base->hctl);
val |= DMA_SELECT;
writel(val, &mmc_base->hctl);
val = readl(&mmc_base->con);
val |= DMA_MASTER;
writel(val, &mmc_base->con);
writel((u32)priv->adma_desc_table, &mmc_base->admasal);
flush_dcache_range((u32)buf,
(u32)buf +
ROUND(data->blocksize * data->blocks,
ARCH_DMA_MINALIGN));
}
static void omap_hsmmc_dma_cleanup(struct mmc *mmc)
{
struct hsmmc *mmc_base;
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
u32 val;
mmc_base = priv->base_addr;
val = readl(&mmc_base->con);
val &= ~DMA_MASTER;
writel(val, &mmc_base->con);
val = readl(&mmc_base->hctl);
val &= ~DMA_SELECT;
writel(val, &mmc_base->hctl);
kfree(priv->adma_desc_table);
}
#else
#define omap_hsmmc_adma_desc
#define omap_hsmmc_prepare_adma_table
#define omap_hsmmc_prepare_data
#define omap_hsmmc_dma_cleanup
#endif
#if !CONFIG_IS_ENABLED(DM_MMC)
static int omap_hsmmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
#else
static int omap_hsmmc_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct omap_hsmmc_data *priv = dev_get_priv(dev);
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
struct mmc *mmc = upriv->mmc;
unsigned int flags, mmc_stat;
priv->last_cmd = cmd->cmdidx;
mmc_base = priv->base_addr;
if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
return 0;
while ((readl(&mmc_base->pstate) & (DATI_MASK | CMDI_MASK)) != 0) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting on cmd inhibit to clear\n",
__func__);
writel(0xFFFFFFFF, &mmc_base->stat);
start = get_timer(0);
while (readl(&mmc_base->stat)) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for STAT (%x) to clear\n",
__func__, readl(&mmc_base->stat));
/*
* CMDREG
* CMDIDX[13:8] : Command index
* DATAPRNT[5] : Data Present Select
* ENCMDIDX[4] : Command Index Check Enable
* ENCMDCRC[3] : Command CRC Check Enable
* RSPTYP[1:0]
* 00 = No Response
* 01 = Length 136
* 10 = Length 48
* 11 = Length 48 Check busy after response
*/
/* Delay added before checking the status of frq change