Skip to content
Snippets Groups Projects
exynos_spi.c 14.7 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * (C) Copyright 2012 SAMSUNG Electronics
     * Padmavathi Venna <padma.v@samsung.com>
     *
    
     * SPDX-License-Identifier:	GPL-2.0+
    
     */
    
    #include <common.h>
    #include <malloc.h>
    #include <spi.h>
    
    #include <fdtdec.h>
    
    #include <asm/arch/clk.h>
    #include <asm/arch/clock.h>
    #include <asm/arch/cpu.h>
    #include <asm/arch/gpio.h>
    #include <asm/arch/pinmux.h>
    #include <asm/arch-exynos/spi.h>
    #include <asm/io.h>
    
    
    DECLARE_GLOBAL_DATA_PTR;
    
    
    /* Information about each SPI controller */
    struct spi_bus {
    	enum periph_id periph_id;
    	s32 frequency;		/* Default clock frequency, -1 for none */
    	struct exynos_spi *regs;
    	int inited;		/* 1 if this bus is ready for use */
    
    	uint deactivate_delay_us;	/* Delay to wait after deactivate */
    
    };
    
    /* A list of spi buses that we know about */
    static struct spi_bus spi_bus[EXYNOS5_SPI_NUM_CONTROLLERS];
    
    static unsigned int bus_count;
    
    
    struct exynos_spi_slave {
    	struct spi_slave slave;
    	struct exynos_spi *regs;
    	unsigned int freq;		/* Default frequency */
    	unsigned int mode;
    	enum periph_id periph_id;	/* Peripheral ID for this device */
    	unsigned int fifo_size;
    
    	int skip_preamble;
    
    	struct spi_bus *bus;		/* Pointer to our SPI bus info */
    	ulong last_transaction_us;	/* Time of last transaction end */
    
    };
    
    static struct spi_bus *spi_get_bus(unsigned dev_index)
    {
    
    	if (dev_index < bus_count)
    
    		return &spi_bus[dev_index];
    	debug("%s: invalid bus %d", __func__, dev_index);
    
    	return NULL;
    }
    
    static inline struct exynos_spi_slave *to_exynos_spi(struct spi_slave *slave)
    {
    	return container_of(slave, struct exynos_spi_slave, slave);
    }
    
    /**
     * Setup the driver private data
     *
     * @param bus		ID of the bus that the slave is attached to
     * @param cs		ID of the chip select connected to the slave
     * @param max_hz	Required spi frequency
     * @param mode		Required spi mode (clk polarity, clk phase and
     *			master or slave)
     * @return new device or NULL
     */
    struct spi_slave *spi_setup_slave(unsigned int busnum, unsigned int cs,
    			unsigned int max_hz, unsigned int mode)
    {
    	struct exynos_spi_slave *spi_slave;
    	struct spi_bus *bus;
    
    	if (!spi_cs_is_valid(busnum, cs)) {
    		debug("%s: Invalid bus/chip select %d, %d\n", __func__,
    		      busnum, cs);
    		return NULL;
    	}
    
    
    	spi_slave = spi_alloc_slave(struct exynos_spi_slave, busnum, cs);
    
    	if (!spi_slave) {
    		debug("%s: Could not allocate spi_slave\n", __func__);
    		return NULL;
    	}
    
    	bus = &spi_bus[busnum];
    
    	spi_slave->bus = bus;
    
    	spi_slave->regs = bus->regs;
    	spi_slave->mode = mode;
    	spi_slave->periph_id = bus->periph_id;
    	if (bus->periph_id == PERIPH_ID_SPI1 ||
    	    bus->periph_id == PERIPH_ID_SPI2)
    		spi_slave->fifo_size = 64;
    	else
    		spi_slave->fifo_size = 256;
    
    
    	spi_slave->skip_preamble = 0;
    
    	spi_slave->last_transaction_us = timer_get_us();
    
    	spi_slave->freq = bus->frequency;
    	if (max_hz)
    		spi_slave->freq = min(max_hz, spi_slave->freq);
    
    	return &spi_slave->slave;
    }
    
    /**
     * Free spi controller
     *
     * @param slave	Pointer to spi_slave to which controller has to
     *		communicate with
     */
    void spi_free_slave(struct spi_slave *slave)
    {
    	struct exynos_spi_slave *spi_slave = to_exynos_spi(slave);
    
    	free(spi_slave);
    }
    
    /**
     * Flush spi tx, rx fifos and reset the SPI controller
     *
     * @param slave	Pointer to spi_slave to which controller has to
     *		communicate with
     */
    static void spi_flush_fifo(struct spi_slave *slave)
    {
    	struct exynos_spi_slave *spi_slave = to_exynos_spi(slave);
    	struct exynos_spi *regs = spi_slave->regs;
    
    	clrsetbits_le32(&regs->ch_cfg, SPI_CH_HS_EN, SPI_CH_RST);
    	clrbits_le32(&regs->ch_cfg, SPI_CH_RST);
    	setbits_le32(&regs->ch_cfg, SPI_TX_CH_ON | SPI_RX_CH_ON);
    }
    
    /**
     * Initialize the spi base registers, set the required clock frequency and
     * initialize the gpios
     *
     * @param slave	Pointer to spi_slave to which controller has to
     *		communicate with
     * @return zero on success else a negative value
     */
    int spi_claim_bus(struct spi_slave *slave)
    {
    	struct exynos_spi_slave *spi_slave = to_exynos_spi(slave);
    	struct exynos_spi *regs = spi_slave->regs;
    	u32 reg = 0;
    	int ret;
    
    	ret = set_spi_clk(spi_slave->periph_id,
    					spi_slave->freq);
    	if (ret < 0) {
    		debug("%s: Failed to setup spi clock\n", __func__);
    		return ret;
    	}
    
    	exynos_pinmux_config(spi_slave->periph_id, PINMUX_FLAG_NONE);
    
    	spi_flush_fifo(slave);
    
    	reg = readl(&regs->ch_cfg);
    	reg &= ~(SPI_CH_CPHA_B | SPI_CH_CPOL_L);
    
    	if (spi_slave->mode & SPI_CPHA)
    		reg |= SPI_CH_CPHA_B;
    
    	if (spi_slave->mode & SPI_CPOL)
    		reg |= SPI_CH_CPOL_L;
    
    	writel(reg, &regs->ch_cfg);
    	writel(SPI_FB_DELAY_180, &regs->fb_clk);
    
    	return 0;
    }
    
    /**
     * Reset the spi H/W and flush the tx and rx fifos
     *
     * @param slave	Pointer to spi_slave to which controller has to
     *		communicate with
     */
    void spi_release_bus(struct spi_slave *slave)
    {
    	spi_flush_fifo(slave);
    }
    
    static void spi_get_fifo_levels(struct exynos_spi *regs,
    	int *rx_lvl, int *tx_lvl)
    {
    	uint32_t spi_sts = readl(&regs->spi_sts);
    
    	*rx_lvl = (spi_sts >> SPI_RX_LVL_OFFSET) & SPI_FIFO_LVL_MASK;
    	*tx_lvl = (spi_sts >> SPI_TX_LVL_OFFSET) & SPI_FIFO_LVL_MASK;
    }
    
    /**
     * If there's something to transfer, do a software reset and set a
     * transaction size.
     *
     * @param regs	SPI peripheral registers
     * @param count	Number of bytes to transfer
    
     * @param step	Number of bytes to transfer in each packet (1 or 4)
    
    static void spi_request_bytes(struct exynos_spi *regs, int count, int step)
    
    	/* For word address we need to swap bytes */
    	if (step == 4) {
    		setbits_le32(&regs->mode_cfg,
    			     SPI_MODE_CH_WIDTH_WORD | SPI_MODE_BUS_WIDTH_WORD);
    		count /= 4;
    		setbits_le32(&regs->swap_cfg, SPI_TX_SWAP_EN | SPI_RX_SWAP_EN |
    			SPI_TX_BYTE_SWAP | SPI_RX_BYTE_SWAP |
    			SPI_TX_HWORD_SWAP | SPI_RX_HWORD_SWAP);
    	} else {
    		/* Select byte access and clear the swap configuration */
    		clrbits_le32(&regs->mode_cfg,
    			     SPI_MODE_CH_WIDTH_WORD | SPI_MODE_BUS_WIDTH_WORD);
    		writel(0, &regs->swap_cfg);
    	}
    
    
    	assert(count && count < (1 << 16));
    	setbits_le32(&regs->ch_cfg, SPI_CH_RST);
    	clrbits_le32(&regs->ch_cfg, SPI_CH_RST);
    
    	writel(count | SPI_PACKET_CNT_EN, &regs->pkt_cnt);
    }
    
    
    static int spi_rx_tx(struct exynos_spi_slave *spi_slave, int todo,
    			void **dinp, void const **doutp, unsigned long flags)
    
    {
    	struct exynos_spi *regs = spi_slave->regs;
    	uchar *rxp = *dinp;
    	const uchar *txp = *doutp;
    	int rx_lvl, tx_lvl;
    	uint out_bytes, in_bytes;
    
    	int toread;
    	unsigned start = get_timer(0);
    	int stopping;
    
    
    	out_bytes = in_bytes = todo;
    
    
    	stopping = spi_slave->skip_preamble && (flags & SPI_XFER_END) &&
    					!(spi_slave->mode & SPI_SLAVE);
    
    
    	/*
    	 * Try to transfer words if we can. This helps read performance at
    	 * SPI clock speeds above about 20MHz.
    	 */
    	step = 1;
    	if (!((todo | (uintptr_t)rxp | (uintptr_t)txp) & 3) &&
    	    !spi_slave->skip_preamble)
    		step = 4;
    
    
    	/*
    	 * If there's something to send, do a software reset and set a
    	 * transaction size.
    	 */
    
    	spi_request_bytes(regs, todo, step);
    
    
    	/*
    	 * Bytes are transmitted/received in pairs. Wait to receive all the
    	 * data because then transmission will be done as well.
    	 */
    
    	while (in_bytes) {
    		int temp;
    
    		/* Keep the fifos full/empty. */
    		spi_get_fifo_levels(regs, &rx_lvl, &tx_lvl);
    
    
    		/*
    		 * Don't completely fill the txfifo, since we don't want our
    		 * rxfifo to overflow, and it may already contain data.
    		 */
    
    		while (tx_lvl < spi_slave->fifo_size/2 && out_bytes) {
    
    			if (!txp)
    				temp = -1;
    			else if (step == 4)
    				temp = *(uint32_t *)txp;
    			else
    				temp = *txp;
    
    			writel(temp, &regs->tx_data);
    
    			out_bytes -= step;
    			if (txp)
    				txp += step;
    			tx_lvl += step;
    
    		if (rx_lvl >= step) {
    			while (rx_lvl >= step) {
    
    				temp = readl(&regs->rx_data);
    				if (spi_slave->skip_preamble) {
    					if (temp == SPI_PREAMBLE_END_BYTE) {
    						spi_slave->skip_preamble = 0;
    						stopping = 0;
    					}
    				} else {
    
    					if (rxp || stopping) {
    
    						if (step == 4)
    							*(uint32_t *)rxp = temp;
    						else
    							*rxp = temp;
    
    						rxp += step;
    					}
    					in_bytes -= step;
    
    				toread -= step;
    				rx_lvl -= step;
    			}
    
    		} else if (!toread) {
    			/*
    			 * We have run out of input data, but haven't read
    			 * enough bytes after the preamble yet. Read some more,
    			 * and make sure that we transmit dummy bytes too, to
    			 * keep things going.
    			 */
    			assert(!out_bytes);
    			out_bytes = in_bytes;
    			toread = in_bytes;
    			txp = NULL;
    
    			spi_request_bytes(regs, toread, step);
    
    		}
    		if (spi_slave->skip_preamble && get_timer(start) > 100) {
    			printf("SPI timeout: in_bytes=%d, out_bytes=%d, ",
    			       in_bytes, out_bytes);
    			return -1;
    
    	*dinp = rxp;
    	*doutp = txp;
    
    }
    
    /**
     * Transfer and receive data
     *
     * @param slave		Pointer to spi_slave to which controller has to
     *			communicate with
     * @param bitlen	No of bits to tranfer or receive
     * @param dout		Pointer to transfer buffer
     * @param din		Pointer to receive buffer
     * @param flags		Flags for transfer begin and end
     * @return zero on success else a negative value
     */
    int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
    	     void *din, unsigned long flags)
    {
    	struct exynos_spi_slave *spi_slave = to_exynos_spi(slave);
    	int upto, todo;
    	int bytelen;
    
    
    	/* spi core configured to do 8 bit transfers */
    	if (bitlen % 8) {
    		debug("Non byte aligned SPI transfer.\n");
    		return -1;
    	}
    
    	/* Start the transaction, if necessary. */
    	if ((flags & SPI_XFER_BEGIN))
    		spi_cs_activate(slave);
    
    
    	/*
    	 * Exynos SPI limits each transfer to 65535 transfers. To keep
    	 * things simple, allow a maximum of 65532 bytes. We could allow
    	 * more in word mode, but the performance difference is small.
    	 */
    
    	bytelen =  bitlen / 8;
    
    	for (upto = 0; !ret && upto < bytelen; upto += todo) {
    
    		todo = min(bytelen - upto, (1 << 16) - 4);
    
    		ret = spi_rx_tx(spi_slave, todo, &din, &dout, flags);
    		if (ret)
    			break;
    
    	}
    
    	/* Stop the transaction, if necessary. */
    
    	if ((flags & SPI_XFER_END) && !(spi_slave->mode & SPI_SLAVE)) {
    
    		spi_cs_deactivate(slave);
    
    		if (spi_slave->skip_preamble) {
    			assert(!spi_slave->skip_preamble);
    			debug("Failed to complete premable transaction\n");
    			ret = -1;
    		}
    	}
    
    }
    
    /**
     * Validates the bus and chip select numbers
     *
     * @param bus	ID of the bus that the slave is attached to
     * @param cs	ID of the chip select connected to the slave
     * @return one on success else zero
     */
    int spi_cs_is_valid(unsigned int bus, unsigned int cs)
    {
    	return spi_get_bus(bus) && cs == 0;
    }
    
    /**
     * Activate the CS by driving it LOW
     *
     * @param slave	Pointer to spi_slave to which controller has to
     *		communicate with
     */
    void spi_cs_activate(struct spi_slave *slave)
    {
    	struct exynos_spi_slave *spi_slave = to_exynos_spi(slave);
    
    
    	/* If it's too soon to do another transaction, wait */
    	if (spi_slave->bus->deactivate_delay_us &&
    	    spi_slave->last_transaction_us) {
    		ulong delay_us;		/* The delay completed so far */
    		delay_us = timer_get_us() - spi_slave->last_transaction_us;
    		if (delay_us < spi_slave->bus->deactivate_delay_us)
    			udelay(spi_slave->bus->deactivate_delay_us - delay_us);
    	}
    
    
    	clrbits_le32(&spi_slave->regs->cs_reg, SPI_SLAVE_SIG_INACT);
    	debug("Activate CS, bus %d\n", spi_slave->slave.bus);
    
    	spi_slave->skip_preamble = spi_slave->mode & SPI_PREAMBLE;
    
    }
    
    /**
     * Deactivate the CS by driving it HIGH
     *
     * @param slave	Pointer to spi_slave to which controller has to
     *		communicate with
     */
    void spi_cs_deactivate(struct spi_slave *slave)
    {
    	struct exynos_spi_slave *spi_slave = to_exynos_spi(slave);
    
    	setbits_le32(&spi_slave->regs->cs_reg, SPI_SLAVE_SIG_INACT);
    
    
    	/* Remember time of this transaction so we can honour the bus delay */
    	if (spi_slave->bus->deactivate_delay_us)
    		spi_slave->last_transaction_us = timer_get_us();
    
    
    	debug("Deactivate CS, bus %d\n", spi_slave->slave.bus);
    }
    
    static inline struct exynos_spi *get_spi_base(int dev_index)
    {
    	if (dev_index < 3)
    		return (struct exynos_spi *)samsung_get_base_spi() + dev_index;
    	else
    		return (struct exynos_spi *)samsung_get_base_spi_isp() +
    					(dev_index - 3);
    }
    
    
    /*
     * Read the SPI config from the device tree node.
     *
     * @param blob  FDT blob to read from
     * @param node  Node offset to read from
     * @param bus   SPI bus structure to fill with information
     * @return 0 if ok, or -FDT_ERR_NOTFOUND if something was missing
     */
    
    #ifdef CONFIG_OF_CONTROL
    
    static int spi_get_config(const void *blob, int node, struct spi_bus *bus)
    {
    	bus->node = node;
    	bus->regs = (struct exynos_spi *)fdtdec_get_addr(blob, node, "reg");
    	bus->periph_id = pinmux_decode_periph_id(blob, node);
    
    	if (bus->periph_id == PERIPH_ID_NONE) {
    		debug("%s: Invalid peripheral ID %d\n", __func__,
    			bus->periph_id);
    		return -FDT_ERR_NOTFOUND;
    	}
    
    	/* Use 500KHz as a suitable default */
    	bus->frequency = fdtdec_get_int(blob, node, "spi-max-frequency",
    					500000);
    
    	bus->deactivate_delay_us = fdtdec_get_int(blob, node,
    					"spi-deactivate-delay", 0);
    
    
    	return 0;
    }
    
    /*
     * Process a list of nodes, adding them to our list of SPI ports.
     *
     * @param blob          fdt blob
     * @param node_list     list of nodes to process (any <=0 are ignored)
     * @param count         number of nodes to process
     * @param is_dvc        1 if these are DVC ports, 0 if standard I2C
     * @return 0 if ok, -1 on error
     */
    static int process_nodes(const void *blob, int node_list[], int count)
    {
    	int i;
    
    	/* build the i2c_controllers[] for each controller */
    	for (i = 0; i < count; i++) {
    		int node = node_list[i];
    		struct spi_bus *bus;
    
    		if (node <= 0)
    			continue;
    
    		bus = &spi_bus[i];
    		if (spi_get_config(blob, node, bus)) {
    			printf("exynos spi_init: failed to decode bus %d\n",
    				i);
    			return -1;
    		}
    
    		debug("spi: controller bus %d at %p, periph_id %d\n",
    		      i, bus->regs, bus->periph_id);
    		bus->inited = 1;
    		bus_count++;
    	}
    
    	return 0;
    }
    
    /**
     * Set up a new SPI slave for an fdt node
     *
     * @param blob		Device tree blob
     * @param node		SPI peripheral node to use
     * @return 0 if ok, -1 on error
     */
    
    struct spi_slave *spi_setup_slave_fdt(const void *blob, int slave_node,
    				      int spi_node)
    
    {
    	struct spi_bus *bus;
    	unsigned int i;
    
    	for (i = 0, bus = spi_bus; i < bus_count; i++, bus++) {
    
    		if (bus->node == spi_node)
    			return spi_base_setup_slave_fdt(blob, i, slave_node);
    
    	debug("%s: Failed to find bus node %d\n", __func__, spi_node);
    
    /* Sadly there is no error return from this function */
    void spi_init(void)
    {
    
    	int count;
    
    #ifdef CONFIG_OF_CONTROL
    	int node_list[EXYNOS5_SPI_NUM_CONTROLLERS];
    	const void *blob = gd->fdt_blob;
    
    	count = fdtdec_find_aliases_for_id(blob, "spi",
    			COMPAT_SAMSUNG_EXYNOS_SPI, node_list,
    			EXYNOS5_SPI_NUM_CONTROLLERS);
    	if (process_nodes(blob, node_list, count))
    		return;
    
    #else
    
    	struct spi_bus *bus;
    
    
    	for (count = 0; count < EXYNOS5_SPI_NUM_CONTROLLERS; count++) {
    		bus = &spi_bus[count];
    		bus->regs = get_spi_base(count);
    		bus->periph_id = PERIPH_ID_SPI0 + count;
    
    
    		/* Although Exynos5 supports upto 50Mhz speed,
    		 * we are setting it to 10Mhz for safe side
    		 */
    		bus->frequency = 10000000;
    		bus->inited = 1;
    
    		bus->node = 0;
    		bus_count = EXYNOS5_SPI_NUM_CONTROLLERS;