Skip to content
Snippets Groups Projects
nand_util.c 15.6 KiB
Newer Older
  • Learn to ignore specific revisions
  •  * drivers/mtd/nand/nand_util.c
    
     *
     * Copyright (C) 2006 by Weiss-Electronic GmbH.
     * All rights reserved.
     *
     * @author:	Guido Classen <clagix@gmail.com>
     * @descr:	NAND Flash support
     * @references: borrowed heavily from Linux mtd-utils code:
     *		flash_eraseall.c by Arcom Control System Ltd
     *		nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
     *			       and Thomas Gleixner (tglx@linutronix.de)
     *
     * See file CREDITS for list of people who contributed to this
     * project.
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public License version
     * 2 as published by the Free Software Foundation.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software
     * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
     * MA 02111-1307 USA
     *
     */
    
    #include <common.h>
    #include <command.h>
    #include <watchdog.h>
    #include <malloc.h>
    
    #include <div64.h>
    
    #include <asm/errno.h>
    #include <linux/mtd/mtd.h>
    
    #include <nand.h>
    #include <jffs2/jffs2.h>
    
    
    #if !defined(CONFIG_SYS_64BIT_VSPRINTF)
    #warning Please define CONFIG_SYS_64BIT_VSPRINTF for correct output!
    #endif
    
    
    typedef struct erase_info erase_info_t;
    typedef struct mtd_info	  mtd_info_t;
    
    /* support only for native endian JFFS2 */
    #define cpu_to_je16(x) (x)
    #define cpu_to_je32(x) (x)
    
    /*****************************************************************************/
    static int nand_block_bad_scrub(struct mtd_info *mtd, loff_t ofs, int getchip)
    {
    	return 0;
    }
    
    /**
     * nand_erase_opts: - erase NAND flash with support for various options
     *		      (jffs2 formating)
     *
     * @param meminfo	NAND device to erase
     * @param opts		options,  @see struct nand_erase_options
     * @return		0 in case of success
     *
     * This code is ported from flash_eraseall.c from Linux mtd utils by
     * Arcom Control System Ltd.
     */
    int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts)
    {
    	struct jffs2_unknown_node cleanmarker;
    	erase_info_t erase;
    	ulong erase_length;
    	int bbtest = 1;
    	int result;
    	int percent_complete = -1;
    	int (*nand_block_bad_old)(struct mtd_info *, loff_t, int) = NULL;
    	const char *mtd_device = meminfo->name;
    
    	struct mtd_oob_ops oob_opts;
    	struct nand_chip *chip = meminfo->priv;
    
    
    	memset(&erase, 0, sizeof(erase));
    
    	memset(&oob_opts, 0, sizeof(oob_opts));
    
    
    	erase.mtd = meminfo;
    	erase.len  = meminfo->erasesize;
    
    	erase.addr = opts->offset;
    	erase_length = opts->length;
    
    	cleanmarker.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
    	cleanmarker.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
    	cleanmarker.totlen = cpu_to_je32(8);
    
    
    	/* scrub option allows to erase badblock. To prevent internal
    	 * check from erase() method, set block check method to dummy
    	 * and disable bad block table while erasing.
    	 */
    	if (opts->scrub) {
    		struct nand_chip *priv_nand = meminfo->priv;
    
    		nand_block_bad_old = priv_nand->block_bad;
    		priv_nand->block_bad = nand_block_bad_scrub;
    		/* we don't need the bad block table anymore...
    		 * after scrub, there are no bad blocks left!
    		 */
    		if (priv_nand->bbt) {
    			kfree(priv_nand->bbt);
    		}
    		priv_nand->bbt = NULL;
    	}
    
    
    	if (erase_length < meminfo->erasesize) {
    
    		printf("Warning: Erase size 0x%08lx smaller than one "	\
    
    		       "erase block 0x%08x\n",erase_length, meminfo->erasesize);
    		printf("         Erasing 0x%08x instead\n", meminfo->erasesize);
    		erase_length = meminfo->erasesize;
    	}
    
    
    	for (;
    	     erase.addr < opts->offset + erase_length;
    	     erase.addr += meminfo->erasesize) {
    
    		WATCHDOG_RESET ();
    
    		if (!opts->scrub && bbtest) {
    			int ret = meminfo->block_isbad(meminfo, erase.addr);
    			if (ret > 0) {
    				if (!opts->quiet)
    					printf("\rSkipping bad block at  "
    
    					       "                         \n",
    					       erase.addr);
    
    				continue;
    
    			} else if (ret < 0) {
    				printf("\n%s: MTD get bad block failed: %d\n",
    				       mtd_device,
    				       ret);
    				return -1;
    			}
    		}
    
    		result = meminfo->erase(meminfo, &erase);
    		if (result != 0) {
    			printf("\n%s: MTD Erase failure: %d\n",
    			       mtd_device, result);
    			continue;
    		}
    
    		/* format for JFFS2 ? */
    
    		if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) {
    			chip->ops.ooblen = 8;
    
    			chip->ops.datbuf = NULL;
    
    			chip->ops.oobbuf = (uint8_t *)&cleanmarker;
    			chip->ops.ooboffs = 0;
    			chip->ops.mode = MTD_OOB_AUTO;
    
    			result = meminfo->write_oob(meminfo,
    
    			                            erase.addr,
    			                            &chip->ops);
    
    			if (result != 0) {
    				printf("\n%s: MTD writeoob failure: %d\n",
    
    				       mtd_device, result);
    
    			unsigned long long n =(unsigned long long)
    
    				(erase.addr + meminfo->erasesize - opts->offset)
    				* 100;
    			int percent;
    
    			do_div(n, erase_length);
    			percent = (int)n;
    
    
    			/* output progress message only at whole percent
    			 * steps to reduce the number of messages printed
    			 * on (slow) serial consoles
    			 */
    			if (percent != percent_complete) {
    				percent_complete = percent;
    
    
    				printf("\rErasing at 0x%llx -- %3d%% complete.",
    
    				       erase.addr, percent);
    
    
    				if (opts->jffs2 && result == 0)
    
    					printf(" Cleanmarker written at 0x%llx.",
    
    					       erase.addr);
    
    			}
    		}
    	}
    	if (!opts->quiet)
    		printf("\n");
    
    	if (nand_block_bad_old) {
    		struct nand_chip *priv_nand = meminfo->priv;
    
    		priv_nand->block_bad = nand_block_bad_old;
    		priv_nand->scan_bbt(meminfo);
    	}
    
    	return 0;
    }
    
    
    /* XXX U-BOOT XXX */
    #if 0
    
    
    #define MAX_PAGE_SIZE	2048
    #define MAX_OOB_SIZE	64
    
    /*
     * buffer array used for writing data
     */
    static unsigned char data_buf[MAX_PAGE_SIZE];
    static unsigned char oob_buf[MAX_OOB_SIZE];
    
    /* OOB layouts to pass into the kernel as default */
    
    static struct nand_ecclayout none_ecclayout = {
    
    	.useecc = MTD_NANDECC_OFF,
    };
    
    
    static struct nand_ecclayout jffs2_ecclayout = {
    
    	.useecc = MTD_NANDECC_PLACE,
    	.eccbytes = 6,
    	.eccpos = { 0, 1, 2, 3, 6, 7 }
    };
    
    
    static struct nand_ecclayout yaffs_ecclayout = {
    
    	.useecc = MTD_NANDECC_PLACE,
    	.eccbytes = 6,
    	.eccpos = { 8, 9, 10, 13, 14, 15}
    };
    
    
    static struct nand_ecclayout autoplace_ecclayout = {
    
    	.useecc = MTD_NANDECC_AUTOPLACE
    };
    
    #endif
    
    /* XXX U-BOOT XXX */
    
    #ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
    
    
    /******************************************************************************
     * Support for locking / unlocking operations of some NAND devices
     *****************************************************************************/
    
    #define NAND_CMD_LOCK		0x2a
    #define NAND_CMD_LOCK_TIGHT	0x2c
    #define NAND_CMD_UNLOCK1	0x23
    #define NAND_CMD_UNLOCK2	0x24
    #define NAND_CMD_LOCK_STATUS	0x7a
    
    /**
     * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
     *	      state
     *
    
     * @param mtd		nand mtd instance
    
     * @param tight		bring device in lock tight mode
     *
     * @return		0 on success, -1 in case of error
     *
     * The lock / lock-tight command only applies to the whole chip. To get some
     * parts of the chip lock and others unlocked use the following sequence:
     *
     * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
     * - Call nand_unlock() once for each consecutive area to be unlocked
     * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
     *
     *   If the device is in lock-tight state software can't change the
     *   current active lock/unlock state of all pages. nand_lock() / nand_unlock()
     *   calls will fail. It is only posible to leave lock-tight state by
     *   an hardware signal (low pulse on _WP pin) or by power down.
     */
    
    int nand_lock(struct mtd_info *mtd, int tight)
    
    	struct nand_chip *chip = mtd->priv;
    
    
    	/* select the NAND device */
    
    	chip->select_chip(mtd, 0);
    
    	chip->cmdfunc(mtd,
    
    		      (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
    		      -1, -1);
    
    	/* call wait ready function */
    
    	status = chip->waitfunc(mtd, chip);
    
    
    	/* see if device thinks it succeeded */
    	if (status & 0x01) {
    		ret = -1;
    	}
    
    	/* de-select the NAND device */
    
    	chip->select_chip(mtd, -1);
    
    	return ret;
    }
    
    /**
     * nand_get_lock_status: - query current lock state from one page of NAND
     *			   flash
     *
    
     * @param mtd		nand mtd instance
    
     * @param offset	page address to query (muss be page aligned!)
     *
     * @return		-1 in case of error
     *			>0 lock status:
     *			  bitfield with the following combinations:
     *			  NAND_LOCK_STATUS_TIGHT: page in tight state
     *			  NAND_LOCK_STATUS_LOCK:  page locked
     *			  NAND_LOCK_STATUS_UNLOCK: page unlocked
     *
     */
    
    int nand_get_lock_status(struct mtd_info *mtd, loff_t offset)
    
    {
    	int ret = 0;
    	int chipnr;
    	int page;
    
    	struct nand_chip *chip = mtd->priv;
    
    
    	/* select the NAND device */
    
    	chipnr = (int)(offset >> chip->chip_shift);
    	chip->select_chip(mtd, chipnr);
    
    	if ((offset & (mtd->writesize - 1)) != 0) {
    
    		printf ("nand_get_lock_status: "
    			"Start address must be beginning of "
    			"nand page!\n");
    		ret = -1;
    		goto out;
    	}
    
    	/* check the Lock Status */
    
    	page = (int)(offset >> chip->page_shift);
    	chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
    
    	ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT
    
    					  | NAND_LOCK_STATUS_LOCK
    					  | NAND_LOCK_STATUS_UNLOCK);
    
     out:
    	/* de-select the NAND device */
    
    	chip->select_chip(mtd, -1);
    
    	return ret;
    }
    
    /**
     * nand_unlock: - Unlock area of NAND pages
     *		  only one consecutive area can be unlocked at one time!
     *
    
     * @param mtd		nand mtd instance
    
     * @param start		start byte address
     * @param length	number of bytes to unlock (must be a multiple of
    
     *			page size nand->writesize)
    
     *
     * @return		0 on success, -1 in case of error
     */
    
    int nand_unlock(struct mtd_info *mtd, ulong start, ulong length)
    
    {
    	int ret = 0;
    	int chipnr;
    	int status;
    	int page;
    
    	struct nand_chip *chip = mtd->priv;
    
    	printf ("nand_unlock: start: %08x, length: %d!\n",
    		(int)start, (int)length);
    
    	/* select the NAND device */
    
    	chipnr = (int)(start >> chip->chip_shift);
    	chip->select_chip(mtd, chipnr);
    
    	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
    	if (!(chip->read_byte(mtd) & NAND_STATUS_WP)) {
    
    		printf ("nand_unlock: Device is write protected!\n");
    		ret = -1;
    		goto out;
    	}
    
    
    	if ((start & (mtd->erasesize - 1)) != 0) {
    
    		printf ("nand_unlock: Start address must be beginning of "
    
    			"nand block!\n");
    
    	if (length == 0 || (length & (mtd->erasesize - 1)) != 0) {
    		printf ("nand_unlock: Length must be a multiple of nand block "
    			"size %08x!\n", mtd->erasesize);
    
    	/*
    	 * Set length so that the last address is set to the
    	 * starting address of the last block
    	 */
    	length -= mtd->erasesize;
    
    
    	/* submit address of first page to unlock */
    
    	page = (int)(start >> chip->page_shift);
    	chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
    
    
    	/* submit ADDRESS of LAST page to unlock */
    
    	page += (int)(length >> chip->page_shift);
    	chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask);
    
    
    	/* call wait ready function */
    
    	status = chip->waitfunc(mtd, chip);
    
    	/* see if device thinks it succeeded */
    	if (status & 0x01) {
    		/* there was an error */
    		ret = -1;
    		goto out;
    	}
    
     out:
    	/* de-select the NAND device */
    
    	chip->select_chip(mtd, -1);
    
    Scott Wood's avatar
    Scott Wood committed
    /**
     * get_len_incl_bad
     *
     * Check if length including bad blocks fits into device.
     *
     * @param nand NAND device
     * @param offset offset in flash
     * @param length image length
     * @return image length including bad blocks
     */
    
    static size_t get_len_incl_bad (nand_info_t *nand, loff_t offset,
    
    				const size_t length)
    
    Scott Wood's avatar
    Scott Wood committed
    {
    	size_t len_incl_bad = 0;
    	size_t len_excl_bad = 0;
    	size_t block_len;
    
    	while (len_excl_bad < length) {
    		block_len = nand->erasesize - (offset & (nand->erasesize - 1));
    
    		if (!nand_block_isbad (nand, offset & ~(nand->erasesize - 1)))
    			len_excl_bad += block_len;
    
    		len_incl_bad += block_len;
    		offset       += block_len;
    
    		if ((offset + len_incl_bad) >= nand->size)
    			break;
    	}
    
    	return len_incl_bad;
    }
    
    /**
     * nand_write_skip_bad:
     *
     * Write image to NAND flash.
     * Blocks that are marked bad are skipped and the is written to the next
     * block instead as long as the image is short enough to fit even after
     * skipping the bad blocks.
     *
     * @param nand  	NAND device
     * @param offset	offset in flash
     * @param length	buffer length
     * @param buf           buffer to read from
     * @return		0 in case of success
     */
    
    int nand_write_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
    
    			u_char *buffer)
    
    Scott Wood's avatar
    Scott Wood committed
    {
    	int rval;
    	size_t left_to_write = *length;
    	size_t len_incl_bad;
    	u_char *p_buffer = buffer;
    
    	/* Reject writes, which are not page aligned */
    	if ((offset & (nand->writesize - 1)) != 0 ||
    	    (*length & (nand->writesize - 1)) != 0) {
    		printf ("Attempt to write non page aligned data\n");
    		return -EINVAL;
    	}
    
    	len_incl_bad = get_len_incl_bad (nand, offset, *length);
    
    	if ((offset + len_incl_bad) >= nand->size) {
    		printf ("Attempt to write outside the flash area\n");
    		return -EINVAL;
    	}
    
    	if (len_incl_bad == *length) {
    		rval = nand_write (nand, offset, length, buffer);
    
    			printf ("NAND write to offset %llx failed %d\n",
    
    				offset, rval);
    
    Scott Wood's avatar
    Scott Wood committed
    	}
    
    	while (left_to_write > 0) {
    		size_t block_offset = offset & (nand->erasesize - 1);
    		size_t write_size;
    
    		if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) {
    
    			printf ("Skip bad block 0x%08llx\n",
    
    Scott Wood's avatar
    Scott Wood committed
    				offset & ~(nand->erasesize - 1));
    			offset += nand->erasesize - block_offset;
    			continue;
    		}
    
    		if (left_to_write < (nand->erasesize - block_offset))
    			write_size = left_to_write;
    		else
    			write_size = nand->erasesize - block_offset;
    
    		rval = nand_write (nand, offset, &write_size, p_buffer);
    		if (rval != 0) {
    
    			printf ("NAND write to offset %llx failed %d\n",
    
    				offset, rval);
    
    Scott Wood's avatar
    Scott Wood committed
    			*length -= left_to_write;
    			return rval;
    		}
    
    		left_to_write -= write_size;
    		offset        += write_size;
    		p_buffer      += write_size;
    	}
    
    	return 0;
    }
    
    /**
     * nand_read_skip_bad:
     *
     * Read image from NAND flash.
     * Blocks that are marked bad are skipped and the next block is readen
     * instead as long as the image is short enough to fit even after skipping the
     * bad blocks.
     *
     * @param nand NAND device
     * @param offset offset in flash
     * @param length buffer length, on return holds remaining bytes to read
     * @param buffer buffer to write to
     * @return 0 in case of success
     */
    
    int nand_read_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
    
    Scott Wood's avatar
    Scott Wood committed
    		       u_char *buffer)
    {
    	int rval;
    	size_t left_to_read = *length;
    	size_t len_incl_bad;
    	u_char *p_buffer = buffer;
    
    	len_incl_bad = get_len_incl_bad (nand, offset, *length);
    
    	if ((offset + len_incl_bad) >= nand->size) {
    		printf ("Attempt to read outside the flash area\n");
    		return -EINVAL;
    	}
    
    	if (len_incl_bad == *length) {
    		rval = nand_read (nand, offset, length, buffer);
    
    		if (!rval || rval == -EUCLEAN)
    			return 0;
    		printf ("NAND read from offset %llx failed %d\n",
    			offset, rval);
    
    Scott Wood's avatar
    Scott Wood committed
    	}
    
    	while (left_to_read > 0) {
    		size_t block_offset = offset & (nand->erasesize - 1);
    		size_t read_length;
    
    		if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) {
    
    			printf ("Skipping bad block 0x%08llx\n",
    
    Scott Wood's avatar
    Scott Wood committed
    				offset & ~(nand->erasesize - 1));
    			offset += nand->erasesize - block_offset;
    			continue;
    		}
    
    		if (left_to_read < (nand->erasesize - block_offset))
    			read_length = left_to_read;
    		else
    			read_length = nand->erasesize - block_offset;
    
    		rval = nand_read (nand, offset, &read_length, p_buffer);
    
    		if (rval && rval != -EUCLEAN) {
    
    			printf ("NAND read from offset %llx failed %d\n",
    
    				offset, rval);
    
    Scott Wood's avatar
    Scott Wood committed
    			*length -= left_to_read;
    			return rval;
    		}
    
    		left_to_read -= read_length;
    		offset       += read_length;
    		p_buffer     += read_length;
    	}
    
    	return 0;
    }