Skip to content
Snippets Groups Projects
nand_util.c 21.7 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * drivers/nand/nand_util.c
     *
     * Copyright (C) 2006 by Weiss-Electronic GmbH.
     * All rights reserved.
     *
     * @author:	Guido Classen <clagix@gmail.com>
     * @descr:	NAND Flash support
     * @references: borrowed heavily from Linux mtd-utils code:
     *		flash_eraseall.c by Arcom Control System Ltd
     *		nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
     *			       and Thomas Gleixner (tglx@linutronix.de)
     *
     * See file CREDITS for list of people who contributed to this
     * project.
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public License version
     * 2 as published by the Free Software Foundation.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software
     * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
     * MA 02111-1307 USA
     *
     */
    
    #include <common.h>
    
    
    #if defined(CONFIG_CMD_NAND) && !defined(CFG_NAND_LEGACY)
    
    
    #include <command.h>
    #include <watchdog.h>
    #include <malloc.h>
    
    #include <div64.h>
    
    
    #include <nand.h>
    #include <jffs2/jffs2.h>
    
    typedef struct erase_info erase_info_t;
    typedef struct mtd_info	  mtd_info_t;
    
    /* support only for native endian JFFS2 */
    #define cpu_to_je16(x) (x)
    #define cpu_to_je32(x) (x)
    
    /*****************************************************************************/
    static int nand_block_bad_scrub(struct mtd_info *mtd, loff_t ofs, int getchip)
    {
    	return 0;
    }
    
    /**
     * nand_erase_opts: - erase NAND flash with support for various options
     *		      (jffs2 formating)
     *
     * @param meminfo	NAND device to erase
     * @param opts		options,  @see struct nand_erase_options
     * @return		0 in case of success
     *
     * This code is ported from flash_eraseall.c from Linux mtd utils by
     * Arcom Control System Ltd.
     */
    int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts)
    {
    	struct jffs2_unknown_node cleanmarker;
    	int clmpos = 0;
    	int clmlen = 8;
    	erase_info_t erase;
    	ulong erase_length;
    	int isNAND;
    	int bbtest = 1;
    	int result;
    	int percent_complete = -1;
    	int (*nand_block_bad_old)(struct mtd_info *, loff_t, int) = NULL;
    	const char *mtd_device = meminfo->name;
    
    	memset(&erase, 0, sizeof(erase));
    
    	erase.mtd = meminfo;
    	erase.len  = meminfo->erasesize;
    
    	erase.addr = opts->offset;
    	erase_length = opts->length;
    
    
    	isNAND = meminfo->type == MTD_NANDFLASH ? 1 : 0;
    
    	if (opts->jffs2) {
    		cleanmarker.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
    		cleanmarker.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
    		if (isNAND) {
    			struct nand_oobinfo *oobinfo = &meminfo->oobinfo;
    
    			/* check for autoplacement */
    			if (oobinfo->useecc == MTD_NANDECC_AUTOPLACE) {
    				/* get the position of the free bytes */
    				if (!oobinfo->oobfree[0][1]) {
    					printf(" Eeep. Autoplacement selected "
    					       "and no empty space in oob\n");
    					return -1;
    				}
    				clmpos = oobinfo->oobfree[0][0];
    				clmlen = oobinfo->oobfree[0][1];
    				if (clmlen > 8)
    					clmlen = 8;
    			} else {
    				/* legacy mode */
    				switch (meminfo->oobsize) {
    				case 8:
    					clmpos = 6;
    					clmlen = 2;
    					break;
    				case 16:
    					clmpos = 8;
    					clmlen = 8;
    					break;
    				case 64:
    					clmpos = 16;
    					clmlen = 8;
    					break;
    				}
    			}
    
    			cleanmarker.totlen = cpu_to_je32(8);
    		} else {
    			cleanmarker.totlen =
    				cpu_to_je32(sizeof(struct jffs2_unknown_node));
    		}
    		cleanmarker.hdr_crc =  cpu_to_je32(
    			crc32_no_comp(0, (unsigned char *) &cleanmarker,
    				      sizeof(struct jffs2_unknown_node) - 4));
    	}
    
    	/* scrub option allows to erase badblock. To prevent internal
    	 * check from erase() method, set block check method to dummy
    	 * and disable bad block table while erasing.
    	 */
    	if (opts->scrub) {
    		struct nand_chip *priv_nand = meminfo->priv;
    
    		nand_block_bad_old = priv_nand->block_bad;
    		priv_nand->block_bad = nand_block_bad_scrub;
    		/* we don't need the bad block table anymore...
    		 * after scrub, there are no bad blocks left!
    		 */
    		if (priv_nand->bbt) {
    			kfree(priv_nand->bbt);
    		}
    		priv_nand->bbt = NULL;
    	}
    
    	for (;
    	     erase.addr < opts->offset + erase_length;
    	     erase.addr += meminfo->erasesize) {
    
    		WATCHDOG_RESET ();
    
    		if (!opts->scrub && bbtest) {
    			int ret = meminfo->block_isbad(meminfo, erase.addr);
    			if (ret > 0) {
    				if (!opts->quiet)
    					printf("\rSkipping bad block at  "
    
    					       "0x%08x                   "
    					       "                         \n",
    					       erase.addr);
    
    				continue;
    
    			} else if (ret < 0) {
    				printf("\n%s: MTD get bad block failed: %d\n",
    				       mtd_device,
    				       ret);
    				return -1;
    			}
    		}
    
    		result = meminfo->erase(meminfo, &erase);
    		if (result != 0) {
    			printf("\n%s: MTD Erase failure: %d\n",
    			       mtd_device, result);
    			continue;
    		}
    
    		/* format for JFFS2 ? */
    		if (opts->jffs2) {
    
    			/* write cleanmarker */
    			if (isNAND) {
    				size_t written;
    				result = meminfo->write_oob(meminfo,
    							    erase.addr + clmpos,
    							    clmlen,
    							    &written,
    							    (unsigned char *)
    							    &cleanmarker);
    				if (result != 0) {
    					printf("\n%s: MTD writeoob failure: %d\n",
    					       mtd_device, result);
    					continue;
    				}
    			} else {
    				printf("\n%s: this erase routine only supports"
    				       " NAND devices!\n",
    				       mtd_device);
    			}
    		}
    
    		if (!opts->quiet) {
    
    			unsigned long long n =(unsigned long long)
    
    				 (erase.addr+meminfo->erasesize-opts->offset)
    
    				 * 100;
    			int percent = (int)do_div(n, erase_length);
    
    
    			/* output progress message only at whole percent
    			 * steps to reduce the number of messages printed
    			 * on (slow) serial consoles
    			 */
    			if (percent != percent_complete) {
    				percent_complete = percent;
    
    				printf("\rErasing at 0x%x -- %3d%% complete.",
    				       erase.addr, percent);
    
    				if (opts->jffs2 && result == 0)
    					printf(" Cleanmarker written at 0x%x.",
    					       erase.addr);
    			}
    		}
    	}
    	if (!opts->quiet)
    		printf("\n");
    
    	if (nand_block_bad_old) {
    		struct nand_chip *priv_nand = meminfo->priv;
    
    		priv_nand->block_bad = nand_block_bad_old;
    		priv_nand->scan_bbt(meminfo);
    	}
    
    	return 0;
    }
    
    #define MAX_PAGE_SIZE	2048
    #define MAX_OOB_SIZE	64
    
    /*
     * buffer array used for writing data
     */
    static unsigned char data_buf[MAX_PAGE_SIZE];
    static unsigned char oob_buf[MAX_OOB_SIZE];
    
    /* OOB layouts to pass into the kernel as default */
    static struct nand_oobinfo none_oobinfo = {
    	.useecc = MTD_NANDECC_OFF,
    };
    
    static struct nand_oobinfo jffs2_oobinfo = {
    	.useecc = MTD_NANDECC_PLACE,
    	.eccbytes = 6,
    	.eccpos = { 0, 1, 2, 3, 6, 7 }
    };
    
    static struct nand_oobinfo yaffs_oobinfo = {
    	.useecc = MTD_NANDECC_PLACE,
    	.eccbytes = 6,
    	.eccpos = { 8, 9, 10, 13, 14, 15}
    };
    
    static struct nand_oobinfo autoplace_oobinfo = {
    	.useecc = MTD_NANDECC_AUTOPLACE
    };
    
    /**
     * nand_write_opts: - write image to NAND flash with support for various options
     *
     * @param meminfo	NAND device to erase
     * @param opts		write options (@see nand_write_options)
     * @return		0 in case of success
     *
     * This code is ported from nandwrite.c from Linux mtd utils by
     * Steven J. Hill and Thomas Gleixner.
     */
    int nand_write_opts(nand_info_t *meminfo, const nand_write_options_t *opts)
    {
    	int imglen = 0;
    	int pagelen;
    	int baderaseblock;
    	int blockstart = -1;
    	loff_t offs;
    	int readlen;
    	int oobinfochanged = 0;
    	int percent_complete = -1;
    	struct nand_oobinfo old_oobinfo;
    	ulong mtdoffset = opts->offset;
    	ulong erasesize_blockalign;
    	u_char *buffer = opts->buffer;
    	size_t written;
    	int result;
    
    	if (opts->pad && opts->writeoob) {
    		printf("Can't pad when oob data is present.\n");
    		return -1;
    	}
    
    	/* set erasesize to specified number of blocks - to match
    	 * jffs2 (virtual) block size */
    	if (opts->blockalign == 0) {
    		erasesize_blockalign = meminfo->erasesize;
    	} else {
    		erasesize_blockalign = meminfo->erasesize * opts->blockalign;
    	}
    
    	/* make sure device page sizes are valid */
    	if (!(meminfo->oobsize == 16 && meminfo->oobblock == 512)
    	    && !(meminfo->oobsize == 8 && meminfo->oobblock == 256)
    	    && !(meminfo->oobsize == 64 && meminfo->oobblock == 2048)) {
    		printf("Unknown flash (not normal NAND)\n");
    		return -1;
    	}
    
    	/* read the current oob info */
    	memcpy(&old_oobinfo, &meminfo->oobinfo, sizeof(old_oobinfo));
    
    	/* write without ecc? */
    	if (opts->noecc) {
    		memcpy(&meminfo->oobinfo, &none_oobinfo,
    		       sizeof(meminfo->oobinfo));
    		oobinfochanged = 1;
    	}
    
    	/* autoplace ECC? */
    	if (opts->autoplace && (old_oobinfo.useecc != MTD_NANDECC_AUTOPLACE)) {
    
    		memcpy(&meminfo->oobinfo, &autoplace_oobinfo,
    		       sizeof(meminfo->oobinfo));
    		oobinfochanged = 1;
    	}
    
    	/* force OOB layout for jffs2 or yaffs? */
    	if (opts->forcejffs2 || opts->forceyaffs) {
    		struct nand_oobinfo *oobsel =
    			opts->forcejffs2 ? &jffs2_oobinfo : &yaffs_oobinfo;
    
    		if (meminfo->oobsize == 8) {
    			if (opts->forceyaffs) {
    				printf("YAFSS cannot operate on "
    				       "256 Byte page size\n");
    				goto restoreoob;
    			}
    			/* Adjust number of ecc bytes */
    			jffs2_oobinfo.eccbytes = 3;
    		}
    
    		memcpy(&meminfo->oobinfo, oobsel, sizeof(meminfo->oobinfo));
    	}
    
    	/* get image length */
    	imglen = opts->length;
    	pagelen = meminfo->oobblock
    		+ ((opts->writeoob != 0) ? meminfo->oobsize : 0);
    
    	/* check, if file is pagealigned */
    	if ((!opts->pad) && ((imglen % pagelen) != 0)) {
    		printf("Input block length is not page aligned\n");
    		goto restoreoob;
    	}
    
    	/* check, if length fits into device */
    	if (((imglen / pagelen) * meminfo->oobblock)
    	     > (meminfo->size - opts->offset)) {
    		printf("Image %d bytes, NAND page %d bytes, "
    		       "OOB area %u bytes, device size %u bytes\n",
    		       imglen, pagelen, meminfo->oobblock, meminfo->size);
    		printf("Input block does not fit into device\n");
    		goto restoreoob;
    	}
    
    	if (!opts->quiet)
    		printf("\n");
    
    	/* get data from input and write to the device */
    	while (imglen && (mtdoffset < meminfo->size)) {
    
    		WATCHDOG_RESET ();
    
    		/*
    		 * new eraseblock, check for bad block(s). Stay in the
    		 * loop to be sure if the offset changes because of
    		 * a bad block, that the next block that will be
    		 * written to is also checked. Thus avoiding errors if
    		 * the block(s) after the skipped block(s) is also bad
    		 * (number of blocks depending on the blockalign
    		 */
    		while (blockstart != (mtdoffset & (~erasesize_blockalign+1))) {
    			blockstart = mtdoffset & (~erasesize_blockalign+1);
    			offs = blockstart;
    			baderaseblock = 0;
    
    			/* check all the blocks in an erase block for
    			 * bad blocks */
    			do {
    				int ret = meminfo->block_isbad(meminfo, offs);
    
    				if (ret < 0) {
    					printf("Bad block check failed\n");
    					goto restoreoob;
    				}
    				if (ret == 1) {
    					baderaseblock = 1;
    					if (!opts->quiet)
    						printf("\rBad block at 0x%lx "
    						       "in erase block from "
    						       "0x%x will be skipped\n",
    						       (long) offs,
    						       blockstart);
    				}
    
    				if (baderaseblock) {
    					mtdoffset = blockstart
    						+ erasesize_blockalign;
    				}
    				offs +=	 erasesize_blockalign
    					/ opts->blockalign;
    			} while (offs < blockstart + erasesize_blockalign);
    		}
    
    		readlen = meminfo->oobblock;
    		if (opts->pad && (imglen < readlen)) {
    			readlen = imglen;
    			memset(data_buf + readlen, 0xff,
    			       meminfo->oobblock - readlen);
    		}
    
    		/* read page data from input memory buffer */
    		memcpy(data_buf, buffer, readlen);
    		buffer += readlen;
    
    		if (opts->writeoob) {
    			/* read OOB data from input memory block, exit
    			 * on failure */
    			memcpy(oob_buf, buffer, meminfo->oobsize);
    			buffer += meminfo->oobsize;
    
    			/* write OOB data first, as ecc will be placed
    			 * in there*/
    			result = meminfo->write_oob(meminfo,
    						    mtdoffset,
    						    meminfo->oobsize,
    						    &written,
    						    (unsigned char *)
    						    &oob_buf);
    
    			if (result != 0) {
    				printf("\nMTD writeoob failure: %d\n",
    				       result);
    				goto restoreoob;
    			}
    			imglen -= meminfo->oobsize;
    		}
    
    		/* write out the page data */
    		result = meminfo->write(meminfo,
    					mtdoffset,
    					meminfo->oobblock,
    					&written,
    					(unsigned char *) &data_buf);
    
    		if (result != 0) {
    			printf("writing NAND page at offset 0x%lx failed\n",
    			       mtdoffset);
    			goto restoreoob;
    		}
    		imglen -= readlen;
    
    		if (!opts->quiet) {
    
    			unsigned long long n = (unsigned long long)
    				 (opts->length-imglen) * 100;
    
    			int percent = (int)do_div(n, opts->length);
    
    			/* output progress message only at whole percent
    			 * steps to reduce the number of messages printed
    			 * on (slow) serial consoles
    			 */
    			if (percent != percent_complete) {
    				printf("\rWriting data at 0x%x "
    				       "-- %3d%% complete.",
    				       mtdoffset, percent);
    				percent_complete = percent;
    			}
    		}
    
    		mtdoffset += meminfo->oobblock;
    	}
    
    	if (!opts->quiet)
    		printf("\n");
    
    restoreoob:
    	if (oobinfochanged) {
    		memcpy(&meminfo->oobinfo, &old_oobinfo,
    		       sizeof(meminfo->oobinfo));
    	}
    
    	if (imglen > 0) {
    		printf("Data did not fit into device, due to bad blocks\n");
    		return -1;
    	}
    
    	/* return happy */
    	return 0;
    }
    
    /**
     * nand_read_opts: - read image from NAND flash with support for various options
     *
     * @param meminfo	NAND device to erase
     * @param opts		read options (@see struct nand_read_options)
     * @return		0 in case of success
     *
     */
    int nand_read_opts(nand_info_t *meminfo, const nand_read_options_t *opts)
    {
    	int imglen = opts->length;
    	int pagelen;
    	int baderaseblock;
    	int blockstart = -1;
    	int percent_complete = -1;
    	loff_t offs;
    	size_t readlen;
    	ulong mtdoffset = opts->offset;
    	u_char *buffer = opts->buffer;
    	int result;
    
    	/* make sure device page sizes are valid */
    	if (!(meminfo->oobsize == 16 && meminfo->oobblock == 512)
    	    && !(meminfo->oobsize == 8 && meminfo->oobblock == 256)
    	    && !(meminfo->oobsize == 64 && meminfo->oobblock == 2048)) {
    		printf("Unknown flash (not normal NAND)\n");
    		return -1;
    	}
    
    	pagelen = meminfo->oobblock
    		+ ((opts->readoob != 0) ? meminfo->oobsize : 0);
    
    	/* check, if length is not larger than device */
    	if (((imglen / pagelen) * meminfo->oobblock)
    	     > (meminfo->size - opts->offset)) {
    		printf("Image %d bytes, NAND page %d bytes, "
    		       "OOB area %u bytes, device size %u bytes\n",
    		       imglen, pagelen, meminfo->oobblock, meminfo->size);
    		printf("Input block is larger than device\n");
    		return -1;
    	}
    
    	if (!opts->quiet)
    		printf("\n");
    
    	/* get data from input and write to the device */
    	while (imglen && (mtdoffset < meminfo->size)) {
    
    		WATCHDOG_RESET ();
    
    		/*
    		 * new eraseblock, check for bad block(s). Stay in the
    		 * loop to be sure if the offset changes because of
    		 * a bad block, that the next block that will be
    		 * written to is also checked. Thus avoiding errors if
    		 * the block(s) after the skipped block(s) is also bad
    		 * (number of blocks depending on the blockalign
    		 */
    		while (blockstart != (mtdoffset & (~meminfo->erasesize+1))) {
    			blockstart = mtdoffset & (~meminfo->erasesize+1);
    			offs = blockstart;
    			baderaseblock = 0;
    
    			/* check all the blocks in an erase block for
    			 * bad blocks */
    			do {
    				int ret = meminfo->block_isbad(meminfo, offs);
    
    				if (ret < 0) {
    					printf("Bad block check failed\n");
    					return -1;
    				}
    				if (ret == 1) {
    					baderaseblock = 1;
    					if (!opts->quiet)
    						printf("\rBad block at 0x%lx "
    						       "in erase block from "
    						       "0x%x will be skipped\n",
    						       (long) offs,
    						       blockstart);
    				}
    
    				if (baderaseblock) {
    					mtdoffset = blockstart
    						+ meminfo->erasesize;
    				}
    				offs +=	 meminfo->erasesize;
    
    			} while (offs < blockstart + meminfo->erasesize);
    		}
    
    
    		/* read page data to memory buffer */
    		result = meminfo->read(meminfo,
    				       mtdoffset,
    				       meminfo->oobblock,
    				       &readlen,
    				       (unsigned char *) &data_buf);
    
    		if (result != 0) {
    			printf("reading NAND page at offset 0x%lx failed\n",
    			       mtdoffset);
    			return -1;
    		}
    
    		if (imglen < readlen) {
    			readlen = imglen;
    		}
    
    		memcpy(buffer, data_buf, readlen);
    		buffer += readlen;
    		imglen -= readlen;
    
    		if (opts->readoob) {
    			result = meminfo->read_oob(meminfo,
    						   mtdoffset,
    						   meminfo->oobsize,
    						   &readlen,
    						   (unsigned char *)
    						   &oob_buf);
    
    			if (result != 0) {
    				printf("\nMTD readoob failure: %d\n",
    				       result);
    				return -1;
    			}
    
    
    			if (imglen < readlen) {
    				readlen = imglen;
    			}
    
    			memcpy(buffer, oob_buf, readlen);
    
    			buffer += readlen;
    			imglen -= readlen;
    		}
    
    		if (!opts->quiet) {
    
    			unsigned long long n = (unsigned long long)
    				 (opts->length-imglen) * 100;
    
    			int percent = (int)do_div(n ,opts->length);
    
    			/* output progress message only at whole percent
    			 * steps to reduce the number of messages printed
    			 * on (slow) serial consoles
    			 */
    			if (percent != percent_complete) {
    			if (!opts->quiet)
    				printf("\rReading data from 0x%x "
    				       "-- %3d%% complete.",
    				       mtdoffset, percent);
    				percent_complete = percent;
    			}
    		}
    
    		mtdoffset += meminfo->oobblock;
    	}
    
    	if (!opts->quiet)
    		printf("\n");
    
    	if (imglen > 0) {
    		printf("Could not read entire image due to bad blocks\n");
    		return -1;
    	}
    
    	/* return happy */
    	return 0;
    }
    
    /******************************************************************************
     * Support for locking / unlocking operations of some NAND devices
     *****************************************************************************/
    
    #define NAND_CMD_LOCK		0x2a
    #define NAND_CMD_LOCK_TIGHT	0x2c
    #define NAND_CMD_UNLOCK1	0x23
    #define NAND_CMD_UNLOCK2	0x24
    #define NAND_CMD_LOCK_STATUS	0x7a
    
    /**
     * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
     *	      state
     *
     * @param meminfo	nand mtd instance
     * @param tight		bring device in lock tight mode
     *
     * @return		0 on success, -1 in case of error
     *
     * The lock / lock-tight command only applies to the whole chip. To get some
     * parts of the chip lock and others unlocked use the following sequence:
     *
     * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
     * - Call nand_unlock() once for each consecutive area to be unlocked
     * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
     *
     *   If the device is in lock-tight state software can't change the
     *   current active lock/unlock state of all pages. nand_lock() / nand_unlock()
     *   calls will fail. It is only posible to leave lock-tight state by
     *   an hardware signal (low pulse on _WP pin) or by power down.
     */
    int nand_lock(nand_info_t *meminfo, int tight)
    {
    	int ret = 0;
    	int status;
    	struct nand_chip *this = meminfo->priv;
    
    	/* select the NAND device */
    	this->select_chip(meminfo, 0);
    
    	this->cmdfunc(meminfo,
    		      (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
    		      -1, -1);
    
    	/* call wait ready function */
    	status = this->waitfunc(meminfo, this, FL_WRITING);
    
    	/* see if device thinks it succeeded */
    	if (status & 0x01) {
    		ret = -1;
    	}
    
    	/* de-select the NAND device */
    	this->select_chip(meminfo, -1);
    	return ret;
    }
    
    /**
     * nand_get_lock_status: - query current lock state from one page of NAND
     *			   flash
     *
     * @param meminfo	nand mtd instance
     * @param offset	page address to query (muss be page aligned!)
     *
     * @return		-1 in case of error
     *			>0 lock status:
     *			  bitfield with the following combinations:
     *			  NAND_LOCK_STATUS_TIGHT: page in tight state
     *			  NAND_LOCK_STATUS_LOCK:  page locked
     *			  NAND_LOCK_STATUS_UNLOCK: page unlocked
     *
     */
    int nand_get_lock_status(nand_info_t *meminfo, ulong offset)
    {
    	int ret = 0;
    	int chipnr;
    	int page;
    	struct nand_chip *this = meminfo->priv;
    
    	/* select the NAND device */
    	chipnr = (int)(offset >> this->chip_shift);
    	this->select_chip(meminfo, chipnr);
    
    
    	if ((offset & (meminfo->oobblock - 1)) != 0) {
    		printf ("nand_get_lock_status: "
    			"Start address must be beginning of "
    			"nand page!\n");
    		ret = -1;
    		goto out;
    	}
    
    	/* check the Lock Status */
    	page = (int)(offset >> this->page_shift);
    	this->cmdfunc(meminfo, NAND_CMD_LOCK_STATUS, -1, page & this->pagemask);
    
    	ret = this->read_byte(meminfo) & (NAND_LOCK_STATUS_TIGHT
    					  | NAND_LOCK_STATUS_LOCK
    					  | NAND_LOCK_STATUS_UNLOCK);
    
     out:
    	/* de-select the NAND device */
    	this->select_chip(meminfo, -1);
    	return ret;
    }
    
    /**
     * nand_unlock: - Unlock area of NAND pages
     *		  only one consecutive area can be unlocked at one time!
     *
     * @param meminfo	nand mtd instance
     * @param start		start byte address
     * @param length	number of bytes to unlock (must be a multiple of
     *			page size nand->oobblock)
     *
     * @return		0 on success, -1 in case of error
     */
    int nand_unlock(nand_info_t *meminfo, ulong start, ulong length)
    {
    	int ret = 0;
    	int chipnr;
    	int status;
    	int page;
    	struct nand_chip *this = meminfo->priv;
    	printf ("nand_unlock: start: %08x, length: %d!\n",
    		(int)start, (int)length);
    
    	/* select the NAND device */
    	chipnr = (int)(start >> this->chip_shift);
    	this->select_chip(meminfo, chipnr);
    
    	/* check the WP bit */
    	this->cmdfunc(meminfo, NAND_CMD_STATUS, -1, -1);
    	if ((this->read_byte(meminfo) & 0x80) == 0) {
    		printf ("nand_unlock: Device is write protected!\n");
    		ret = -1;
    		goto out;
    	}
    
    	if ((start & (meminfo->oobblock - 1)) != 0) {
    		printf ("nand_unlock: Start address must be beginning of "
    			"nand page!\n");
    		ret = -1;
    		goto out;
    	}
    
    	if (length == 0 || (length & (meminfo->oobblock - 1)) != 0) {
    		printf ("nand_unlock: Length must be a multiple of nand page "
    			"size!\n");
    		ret = -1;
    		goto out;
    	}
    
    	/* submit address of first page to unlock */
    	page = (int)(start >> this->page_shift);
    	this->cmdfunc(meminfo, NAND_CMD_UNLOCK1, -1, page & this->pagemask);
    
    	/* submit ADDRESS of LAST page to unlock */
    	page += (int)(length >> this->page_shift) - 1;
    	this->cmdfunc(meminfo, NAND_CMD_UNLOCK2, -1, page & this->pagemask);
    
    	/* call wait ready function */
    	status = this->waitfunc(meminfo, this, FL_WRITING);
    	/* see if device thinks it succeeded */
    	if (status & 0x01) {
    		/* there was an error */
    		ret = -1;
    		goto out;
    	}
    
     out:
    	/* de-select the NAND device */
    	this->select_chip(meminfo, -1);
    	return ret;
    }