MNT ZZ9000 ZYNQ FPGA Code and ZZ9000OS C/ARM Code
MNT ZZ9000 is a graphics and ARM coprocessor card for Amiga computers equipped with Zorro slots. It is based on a Xilinx ZYNQ Z-7020 chip that combines 7-series FPGA fabric with dual ARM Cortex-A9 CPUs clocked at 666MHz. The current version has 1GB of DDR3 RAM and no eMMC soldered.
This repository contains the sources for the FPGA logic as well as the miniature "operating system" that runs on the ARM core 0 and instruments core 1 for user applications.
Warning: this is still in the process of cleanup. Many hacks have been made.
Requirements
Currently requires Xilinx Vivado Webpack version.
Getting around the Code
The interesting bits:
-
mntzorro.v
is the Zorro 2/3 interface and 24-bit video capture engine, AXI4-Lite interface -
video_formatter.v
is the AXI video stream formatter that reinterprets and controls an incoming 32-bit word stream as 8-bit palette indexed, 16-bit 565 or 24-bit RGBX pixels and outputs a 24-bit true color parallel RGB stream with horizontal and vertical sync -
zz9000-fw/ZZ9000_proto.sdk/ZZ9000OS/src
-
main.c
is the main entrypoint of ZZ9000OS.elf which runs on the ARM core 0 and talks toMNTZorro
andvideo_formatter
in the FPGA fabric -
gfx.c
graphics acceleration routines, currently mainly rect fill and copy -
ethernet.c
low-level ethernet driver/framer
-
-
ZZ9000_proto.srcs/constrs_1/new/zz9000.xdc
XDC constraints file that contains the pin/ball mappings and some timing voodoo
Set up Vivado Project
As Vivado projects are not suitable for version control, the Vivado project / block design is exported as a TCL script zz9000_project.tcl
.
Start Vivado from your terminal in tcl mode:
source /path/to/Xilinx/Vivado/2018.3/settings64.sh
cd /place/where/you/checked/out/zz9000-firmware
vivado -mode tcl
Then, execute in the Vivado TCL shell:
source zz9000_project.tcl
exit
A folder ZZ9000_proto
should have been created. Start Vivado normally (GUI) and navigate in the Open Project dialog to zz9000-firmware/ZZ9000_proto
and open ZZ9000_proto.xpr
.
After a while you should be able to select "Run Synthesis" in Flow Navigator, and after that completes, "Run Implementation" and finally "Generate Bitstream". Finally, select "Export Hardware" from the "File" menu and check "Include Bitstream". Export to "Local to Project". Then, open the SDK by selecting "Launch SDK" from the "File" menu. Leave everything at "Local to Project" and click OK.
Your SDK workspace will start with the zz9000_ps_wrapper_hw_platform_0
project.
To recreate a project for ZZ9000OS, go to "File" / "New" / "Application Project". Enter "ZZ9000OS" as the Project name and click "Next". Select "Empty Application". Click "Finish". Right click "ZZ9000OS" in your Project Explorer and select "Import". Select "General" / "File System", click "Next". Select the ZZ9000_proto.sdk
/ ZZ9000OS
subfolder in your zz9000-firmware
folder. Check the checkmark next to "ZZ9000OS". Click Finish. Select "Yes to all" in the overwrite dialog. Now you will be able to build ZZ9000OS.
Before the next step, configure your BSP Project. Expand the ZZ9000OS_bsp node and double click system.mss
. Click "Modify this BSP's Settings". Check xilffs
in the Supported Libraries.
To recreate the bootloader project, go to "File" / "New" / "Application Project". Enter "ZZ9000FSBL" as the Project name, select "Use existing" under Target Software and click "Next". Select "Zynq FSBL". Click "Finish".
Building BOOT.bin
The Eclipse-based Vivado SDK has a built-in tool (Menu "Xilinx" / "Create Boot Image") to generate the boot image BOOT.bin
. To prepare, open ZZ9000_proto.sdk/ZZ9000OS/bootimage/ZZ9000OS.bif
in a text editor and change the absolute paths to match the correct ELF files on your filesystem.
In the "Create Boot Image" dialog, select "Import from existing BIF file" and select the definition file ZZ9000_proto.sdk/ZZ9000OS/bootimage/ZZ9000OS.bif
and click "Create Image".
BOOT.bin
contains 3 files (“partitions”):
-
FSBL.elf
(first stage bootloader, written in C, Xilinx default) - FPGA bitfile (synthesized by Vivado from Verilog sources and Block Design)
-
ZZ9000OS.elf
(ZZ9000OS ARM executable, written in C)
Hardware Connectivity
Schematics are in the manual (PDF): https://mntre.com/media/ZZ9000_info_md/zz9000-manual.pdf
- DVI (via non-HDMI compliant HDMI connector) with SiliconImage 9022 encoder
- Gigabit Ethernet port with Micrel KSZ9031 PHY
- MicroSD slot (for firmware loading)
- USB 2.0 port (not yet used)
License / Copyright
If not stated otherwise in specific source code files, everything here is:
Copyright (C) 2016-2019, Lukas F. Hartmann lukas@mntre.com MNT Research GmbH, Berlin https://mntre.com
SPDX-License-Identifier: GPL-3.0-or-later https://spdx.org/licenses/GPL-3.0-or-later.html
Making the Platform Cable Work
First, apt install fxload
Copy the xilinx-xusb
folder to /etc/xilinx-xusb
.
Edit /etc/udev/rules.d/xusbdfwu.rules
with the following content:
# version 0003
ATTRS{idVendor}=="03fd", ATTRS{idProduct}=="0008", MODE="666"
SUBSYSTEM=="usb", ACTION=="add", ATTRS{idVendor}=="03fd", ATTRS{idProduct}=="0007", RUN+="/sbin/fxload -v -t fx2 -I /etc/xilinx-xusb/xusbdfwu.hex -D $tempnode"
SUBSYSTEM=="usb", ACTION=="add", ATTRS{idVendor}=="03fd", ATTRS{idProduct}=="0009", RUN+="/sbin/fxload -v -t fx2 -I /etc/xilinx-xusb/xusb_xup.hex -D $tempnode"
SUBSYSTEM=="usb", ACTION=="add", ATTRS{idVendor}=="03fd", ATTRS{idProduct}=="000d", RUN+="/sbin/fxload -v -t fx2 -I /etc/xilinx-xusb/xusb_emb.hex -D $tempnode"
SUBSYSTEM=="usb", ACTION=="add", ATTRS{idVendor}=="03fd", ATTRS{idProduct}=="000f", RUN+="/sbin/fxload -v -t fx2 -I /etc/xilinx-xusb/xusb_xlp.hex -D $tempnode"
SUBSYSTEM=="usb", ACTION=="add", ATTRS{idVendor}=="03fd", ATTRS{idProduct}=="0013", RUN+="/sbin/fxload -v -t fx2 -I /etc/xilinx-xusb/xusb_xp2.hex -D $tempnode"
SUBSYSTEM=="usb", ACTION=="add", ATTRS{idVendor}=="03fd", ATTRS{idProduct}=="0015", RUN+="/sbin/fxload -v -t fx2 -I /etc/xilinx-xusb/xusb_xse.hex -D $tempnode"
This will make udev launch fxload whenever the platform cable is plugged in. Fxload will in turn load those hex files (firmware) into the cable. The LED on the cable should then turn green.