Skip to content
Snippets Groups Projects
efi_boottime.c 31.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     *  EFI application boot time services
     *
     *  Copyright (c) 2016 Alexander Graf
     *
     *  SPDX-License-Identifier:     GPL-2.0+
     */
    
    #include <common.h>
    #include <efi_loader.h>
    #include <malloc.h>
    #include <asm/global_data.h>
    #include <libfdt_env.h>
    #include <u-boot/crc.h>
    #include <bootm.h>
    #include <inttypes.h>
    #include <watchdog.h>
    
    DECLARE_GLOBAL_DATA_PTR;
    
    /* This list contains all the EFI objects our payload has access to */
    LIST_HEAD(efi_obj_list);
    
    /*
     * If we're running on nasty systems (32bit ARM booting into non-EFI Linux)
     * we need to do trickery with caches. Since we don't want to break the EFI
     * aware boot path, only apply hacks when loading exiting directly (breaking
     * direct Linux EFI booting along the way - oh well).
     */
    static bool efi_is_direct_boot = true;
    
    /*
     * EFI can pass arbitrary additional "tables" containing vendor specific
     * information to the payload. One such table is the FDT table which contains
     * a pointer to a flattened device tree blob.
     *
     * In most cases we want to pass an FDT to the payload, so reserve one slot of
     * config table space for it. The pointer gets populated by do_bootefi_exec().
     */
    
    static struct efi_configuration_table __efi_runtime_data efi_conf_table[2];
    
    #ifdef CONFIG_ARM
    
    /*
     * The "gd" pointer lives in a register on ARM and AArch64 that we declare
     * fixed when compiling U-Boot. However, the payload does not know about that
     * restriction so we need to manually swap its and our view of that register on
     * EFI callback entry/exit.
     */
    static volatile void *efi_gd, *app_gd;
    
    static int nesting_level;
    
    
    /* Called on every callback entry */
    int __efi_entry_check(void)
    {
    	int ret = entry_count++ == 0;
    #ifdef CONFIG_ARM
    	assert(efi_gd);
    	app_gd = gd;
    	gd = efi_gd;
    #endif
    	return ret;
    }
    
    /* Called on every callback exit */
    int __efi_exit_check(void)
    {
    	int ret = --entry_count == 0;
    #ifdef CONFIG_ARM
    	gd = app_gd;
    #endif
    	return ret;
    }
    
    
    /* Called from do_bootefi_exec() */
    void efi_save_gd(void)
    {
    
    #ifdef CONFIG_ARM
    
    	efi_gd = gd;
    
    /*
     * Special case handler for error/abort that just forces things back
     * to u-boot world so we can dump out an abort msg, without any care
     * about returning back to UEFI world.
     */
    
    void efi_restore_gd(void)
    {
    
    #ifdef CONFIG_ARM
    
    	/* Only restore if we're already in EFI context */
    	if (!efi_gd)
    		return;
    	gd = efi_gd;
    
    /*
     * Two spaces per indent level, maxing out at 10.. which ought to be
     * enough for anyone ;-)
     */
    static const char *indent_string(int level)
    {
    	const char *indent = "                    ";
    	const int max = strlen(indent);
    	level = min(max, level * 2);
    	return &indent[max - level];
    }
    
    
    const char *__efi_nesting(void)
    {
    	return indent_string(nesting_level);
    }
    
    
    const char *__efi_nesting_inc(void)
    {
    	return indent_string(nesting_level++);
    }
    
    const char *__efi_nesting_dec(void)
    {
    	return indent_string(--nesting_level);
    }
    
    
    /* Low 32 bit */
    #define EFI_LOW32(a) (a & 0xFFFFFFFFULL)
    /* High 32 bit */
    #define EFI_HIGH32(a) (a >> 32)
    
    /*
     * 64bit division by 10 implemented as multiplication by 1 / 10
     *
     * Decimals of one tenth: 0x1 / 0xA = 0x0.19999...
     */
    #define EFI_TENTH 0x199999999999999A
    static u64 efi_div10(u64 a)
    {
    	u64 prod;
    	u64 rem;
    	u64 ret;
    
    	ret  = EFI_HIGH32(a) * EFI_HIGH32(EFI_TENTH);
    	prod = EFI_HIGH32(a) * EFI_LOW32(EFI_TENTH);
    	rem  = EFI_LOW32(prod);
    	ret += EFI_HIGH32(prod);
    	prod = EFI_LOW32(a) * EFI_HIGH32(EFI_TENTH);
    	rem += EFI_LOW32(prod);
    	ret += EFI_HIGH32(prod);
    	prod = EFI_LOW32(a) * EFI_LOW32(EFI_TENTH);
    	rem += EFI_HIGH32(prod);
    	ret += EFI_HIGH32(rem);
    	/* Round to nearest integer */
    	if (rem >= (1 << 31))
    		++ret;
    	return ret;
    }
    
    
    void efi_signal_event(struct efi_event *event)
    
    {
    	if (event->signaled)
    		return;
    	event->signaled = 1;
    	if (event->type & EVT_NOTIFY_SIGNAL) {
    
    		EFI_CALL_VOID(event->notify_function(event,
    						     event->notify_context));
    
    static efi_status_t efi_unsupported(const char *funcname)
    {
    
    	debug("EFI: App called into unimplemented function %s\n", funcname);
    
    	return EFI_EXIT(EFI_UNSUPPORTED);
    }
    
    
    static unsigned long EFIAPI efi_raise_tpl(UINTN new_tpl)
    
    	EFI_ENTRY("0x%zx", new_tpl);
    
    	return EFI_EXIT(0);
    }
    
    
    static void EFIAPI efi_restore_tpl(UINTN old_tpl)
    
    	EFI_ENTRY("0x%zx", old_tpl);
    
    	efi_unsupported(__func__);
    
    static efi_status_t EFIAPI efi_allocate_pages_ext(int type, int memory_type,
    						  unsigned long pages,
    						  uint64_t *memory)
    
    {
    	efi_status_t r;
    
    	EFI_ENTRY("%d, %d, 0x%lx, %p", type, memory_type, pages, memory);
    	r = efi_allocate_pages(type, memory_type, pages, memory);
    	return EFI_EXIT(r);
    }
    
    
    static efi_status_t EFIAPI efi_free_pages_ext(uint64_t memory,
    					      unsigned long pages)
    
    {
    	efi_status_t r;
    
    	EFI_ENTRY("%"PRIx64", 0x%lx", memory, pages);
    	r = efi_free_pages(memory, pages);
    	return EFI_EXIT(r);
    }
    
    
    static efi_status_t EFIAPI efi_get_memory_map_ext(
    					unsigned long *memory_map_size,
    					struct efi_mem_desc *memory_map,
    					unsigned long *map_key,
    					unsigned long *descriptor_size,
    					uint32_t *descriptor_version)
    
    {
    	efi_status_t r;
    
    	EFI_ENTRY("%p, %p, %p, %p, %p", memory_map_size, memory_map,
    		  map_key, descriptor_size, descriptor_version);
    	r = efi_get_memory_map(memory_map_size, memory_map, map_key,
    			       descriptor_size, descriptor_version);
    	return EFI_EXIT(r);
    }
    
    
    static efi_status_t EFIAPI efi_allocate_pool_ext(int pool_type,
    						 unsigned long size,
    						 void **buffer)
    
    	efi_status_t r;
    
    	EFI_ENTRY("%d, %ld, %p", pool_type, size, buffer);
    
    	r = efi_allocate_pool(pool_type, size, buffer);
    
    	return EFI_EXIT(r);
    
    static efi_status_t EFIAPI efi_free_pool_ext(void *buffer)
    
    	efi_status_t r;
    
    	EFI_ENTRY("%p", buffer);
    
    	return EFI_EXIT(r);
    
     * Our event capabilities are very limited. Only a small limited
     * number of events is allowed to coexist.
    
    static struct efi_event efi_events[16];
    
    efi_status_t efi_create_event(uint32_t type, UINTN notify_tpl,
    
    			      void (EFIAPI *notify_function) (
    
    					struct efi_event *event,
    					void *context),
    
    			      void *notify_context, struct efi_event **event)
    
    	if (event == NULL)
    
    		return EFI_INVALID_PARAMETER;
    
    
    	if ((type & EVT_NOTIFY_SIGNAL) && (type & EVT_NOTIFY_WAIT))
    
    		return EFI_INVALID_PARAMETER;
    
    
    	if ((type & (EVT_NOTIFY_SIGNAL|EVT_NOTIFY_WAIT)) &&
    	    notify_function == NULL)
    
    		return EFI_INVALID_PARAMETER;
    
    	for (i = 0; i < ARRAY_SIZE(efi_events); ++i) {
    		if (efi_events[i].type)
    			continue;
    		efi_events[i].type = type;
    		efi_events[i].notify_tpl = notify_tpl;
    		efi_events[i].notify_function = notify_function;
    		efi_events[i].notify_context = notify_context;
    		/* Disable timers on bootup */
    		efi_events[i].trigger_next = -1ULL;
    		efi_events[i].signaled = 0;
    		*event = &efi_events[i];
    
    		return EFI_SUCCESS;
    
    	return EFI_OUT_OF_RESOURCES;
    
    static efi_status_t EFIAPI efi_create_event_ext(
    
    			uint32_t type, UINTN notify_tpl,
    
    			void (EFIAPI *notify_function) (
    					struct efi_event *event,
    					void *context),
    			void *notify_context, struct efi_event **event)
    {
    	EFI_ENTRY("%d, 0x%zx, %p, %p", type, notify_tpl, notify_function,
    		  notify_context);
    	return EFI_EXIT(efi_create_event(type, notify_tpl, notify_function,
    					 notify_context, event));
    }
    
    
    
    /*
     * Our timers have to work without interrupts, so we check whenever keyboard
     * input or disk accesses happen if enough time elapsed for it to fire.
     */
    void efi_timer_check(void)
    {
    
    	u64 now = timer_get_us();
    
    
    	for (i = 0; i < ARRAY_SIZE(efi_events); ++i) {
    		if (!efi_events[i].type ||
    		    !(efi_events[i].type & EVT_TIMER) ||
    		    efi_events[i].trigger_type == EFI_TIMER_STOP ||
    		    now < efi_events[i].trigger_next)
    			continue;
    		if (efi_events[i].trigger_type == EFI_TIMER_PERIODIC) {
    			efi_events[i].trigger_next +=
    
    				efi_events[i].trigger_time;
    
    			efi_events[i].signaled = 0;
    		}
    		efi_signal_event(&efi_events[i]);
    
    efi_status_t efi_set_timer(struct efi_event *event, enum efi_timer_delay type,
    
    			   uint64_t trigger_time)
    
    	/*
    	 * The parameter defines a multiple of 100ns.
    	 * We use multiples of 1000ns. So divide by 10.
    	 */
    	trigger_time = efi_div10(trigger_time);
    
    	for (i = 0; i < ARRAY_SIZE(efi_events); ++i) {
    		if (event != &efi_events[i])
    			continue;
    
    		if (!(event->type & EVT_TIMER))
    			break;
    		switch (type) {
    		case EFI_TIMER_STOP:
    			event->trigger_next = -1ULL;
    			break;
    		case EFI_TIMER_PERIODIC:
    		case EFI_TIMER_RELATIVE:
    			event->trigger_next =
    
    				timer_get_us() + trigger_time;
    
    			return EFI_INVALID_PARAMETER;
    
    		}
    		event->trigger_type = type;
    		event->trigger_time = trigger_time;
    
    		return EFI_SUCCESS;
    
    	return EFI_INVALID_PARAMETER;
    }
    
    
    static efi_status_t EFIAPI efi_set_timer_ext(struct efi_event *event,
    					     enum efi_timer_delay type,
    					     uint64_t trigger_time)
    
    {
    	EFI_ENTRY("%p, %d, %"PRIx64, event, type, trigger_time);
    	return EFI_EXIT(efi_set_timer(event, type, trigger_time));
    
    }
    
    static efi_status_t EFIAPI efi_wait_for_event(unsigned long num_events,
    
    					      struct efi_event **event,
    					      unsigned long *index)
    
    
    	EFI_ENTRY("%ld, %p, %p", num_events, event, index);
    
    
    	/* Check parameters */
    	if (!num_events || !event)
    		return EFI_EXIT(EFI_INVALID_PARAMETER);
    	for (i = 0; i < num_events; ++i) {
    		for (j = 0; j < ARRAY_SIZE(efi_events); ++j) {
    			if (event[i] == &efi_events[j])
    				goto known_event;
    		}
    		return EFI_EXIT(EFI_INVALID_PARAMETER);
    known_event:
    		if (!event[i]->type || event[i]->type & EVT_NOTIFY_SIGNAL)
    			return EFI_EXIT(EFI_INVALID_PARAMETER);
    	}
    
    	/* Wait for signal */
    	for (;;) {
    		for (i = 0; i < num_events; ++i) {
    			if (event[i]->signaled)
    				goto out;
    		}
    		/* Allow events to occur. */
    		efi_timer_check();
    	}
    
    out:
    	/*
    	 * Reset the signal which is passed to the caller to allow periodic
    	 * events to occur.
    	 */
    	event[i]->signaled = 0;
    	if (index)
    		*index = i;
    
    
    	return EFI_EXIT(EFI_SUCCESS);
    }
    
    
    static efi_status_t EFIAPI efi_signal_event_ext(struct efi_event *event)
    
    	EFI_ENTRY("%p", event);
    
    	for (i = 0; i < ARRAY_SIZE(efi_events); ++i) {
    		if (event != &efi_events[i])
    			continue;
    		efi_signal_event(event);
    		break;
    	}
    
    	return EFI_EXIT(EFI_SUCCESS);
    }
    
    
    static efi_status_t EFIAPI efi_close_event(struct efi_event *event)
    
    	EFI_ENTRY("%p", event);
    
    	for (i = 0; i < ARRAY_SIZE(efi_events); ++i) {
    		if (event == &efi_events[i]) {
    			event->type = 0;
    			event->trigger_next = -1ULL;
    			event->signaled = 0;
    			return EFI_EXIT(EFI_SUCCESS);
    		}
    	}
    	return EFI_EXIT(EFI_INVALID_PARAMETER);
    
    static efi_status_t EFIAPI efi_check_event(struct efi_event *event)
    
    	EFI_ENTRY("%p", event);
    
    	efi_timer_check();
    	for (i = 0; i < ARRAY_SIZE(efi_events); ++i) {
    		if (event != &efi_events[i])
    			continue;
    		if (!event->type || event->type & EVT_NOTIFY_SIGNAL)
    			break;
    		if (event->signaled)
    			return EFI_EXIT(EFI_SUCCESS);
    		return EFI_EXIT(EFI_NOT_READY);
    	}
    	return EFI_EXIT(EFI_INVALID_PARAMETER);
    
    }
    
    static efi_status_t EFIAPI efi_install_protocol_interface(void **handle,
    			efi_guid_t *protocol, int protocol_interface_type,
    			void *protocol_interface)
    {
    
    	struct list_head *lhandle;
    	int i;
    	efi_status_t r;
    
    	if (!handle || !protocol ||
    	    protocol_interface_type != EFI_NATIVE_INTERFACE) {
    		r = EFI_INVALID_PARAMETER;
    		goto out;
    	}
    
    	/* Create new handle if requested. */
    	if (!*handle) {
    		r = EFI_OUT_OF_RESOURCES;
    		goto out;
    	}
    	/* Find object. */
    	list_for_each(lhandle, &efi_obj_list) {
    		struct efi_object *efiobj;
    		efiobj = list_entry(lhandle, struct efi_object, link);
    
    		if (efiobj->handle != *handle)
    			continue;
    		/* Check if protocol is already installed on the handle. */
    		for (i = 0; i < ARRAY_SIZE(efiobj->protocols); i++) {
    			struct efi_handler *handler = &efiobj->protocols[i];
    
    			if (!handler->guid)
    				continue;
    			if (!guidcmp(handler->guid, protocol)) {
    				r = EFI_INVALID_PARAMETER;
    				goto out;
    			}
    		}
    		/* Install protocol in first empty slot. */
    		for (i = 0; i < ARRAY_SIZE(efiobj->protocols); i++) {
    			struct efi_handler *handler = &efiobj->protocols[i];
    
    			if (handler->guid)
    				continue;
    
    			handler->guid = protocol;
    			handler->protocol_interface = protocol_interface;
    			r = EFI_SUCCESS;
    			goto out;
    		}
    		r = EFI_OUT_OF_RESOURCES;
    		goto out;
    	}
    	r = EFI_INVALID_PARAMETER;
    out:
    
    	return r;
    }
    
    static efi_status_t EFIAPI efi_install_protocol_interface_ext(void **handle,
    			efi_guid_t *protocol, int protocol_interface_type,
    			void *protocol_interface)
    {
    	EFI_ENTRY("%p, %p, %d, %p", handle, protocol, protocol_interface_type,
    		  protocol_interface);
    
    	return EFI_EXIT(efi_install_protocol_interface(handle, protocol,
    						       protocol_interface_type,
    						       protocol_interface));
    
    static efi_status_t EFIAPI efi_reinstall_protocol_interface(void *handle,
    			efi_guid_t *protocol, void *old_interface,
    			void *new_interface)
    {
    	EFI_ENTRY("%p, %p, %p, %p", handle, protocol, old_interface,
    		  new_interface);
    	return EFI_EXIT(EFI_ACCESS_DENIED);
    }
    
    static efi_status_t EFIAPI efi_uninstall_protocol_interface(void *handle,
    			efi_guid_t *protocol, void *protocol_interface)
    {
    
    	struct list_head *lhandle;
    	int i;
    	efi_status_t r = EFI_NOT_FOUND;
    
    	if (!handle || !protocol) {
    		r = EFI_INVALID_PARAMETER;
    		goto out;
    	}
    
    	list_for_each(lhandle, &efi_obj_list) {
    		struct efi_object *efiobj;
    		efiobj = list_entry(lhandle, struct efi_object, link);
    
    		if (efiobj->handle != handle)
    			continue;
    
    		for (i = 0; i < ARRAY_SIZE(efiobj->protocols); i++) {
    			struct efi_handler *handler = &efiobj->protocols[i];
    			const efi_guid_t *hprotocol = handler->guid;
    
    			if (!hprotocol)
    				continue;
    			if (!guidcmp(hprotocol, protocol)) {
    				if (handler->protocol_interface) {
    					r = EFI_ACCESS_DENIED;
    				} else {
    					handler->guid = 0;
    					r = EFI_SUCCESS;
    				}
    				goto out;
    			}
    		}
    	}
    
    out:
    
    	return r;
    }
    
    static efi_status_t EFIAPI efi_uninstall_protocol_interface_ext(void *handle,
    			efi_guid_t *protocol, void *protocol_interface)
    {
    	EFI_ENTRY("%p, %p, %p", handle, protocol, protocol_interface);
    
    	return EFI_EXIT(efi_uninstall_protocol_interface(handle, protocol,
    							 protocol_interface));
    
    }
    
    static efi_status_t EFIAPI efi_register_protocol_notify(efi_guid_t *protocol,
    
    							void **registration)
    {
    	EFI_ENTRY("%p, %p, %p", protocol, event, registration);
    	return EFI_EXIT(EFI_OUT_OF_RESOURCES);
    }
    
    static int efi_search(enum efi_locate_search_type search_type,
    		      efi_guid_t *protocol, void *search_key,
    		      struct efi_object *efiobj)
    {
    	int i;
    
    	switch (search_type) {
    	case all_handles:
    		return 0;
    	case by_register_notify:
    		return -1;
    	case by_protocol:
    		for (i = 0; i < ARRAY_SIZE(efiobj->protocols); i++) {
    			const efi_guid_t *guid = efiobj->protocols[i].guid;
    			if (guid && !guidcmp(guid, protocol))
    				return 0;
    		}
    		return -1;
    	}
    
    	return -1;
    }
    
    
    static efi_status_t efi_locate_handle(
    
    			enum efi_locate_search_type search_type,
    			efi_guid_t *protocol, void *search_key,
    			unsigned long *buffer_size, efi_handle_t *buffer)
    {
    	struct list_head *lhandle;
    	unsigned long size = 0;
    
    	/* Count how much space we need */
    	list_for_each(lhandle, &efi_obj_list) {
    		struct efi_object *efiobj;
    		efiobj = list_entry(lhandle, struct efi_object, link);
    		if (!efi_search(search_type, protocol, search_key, efiobj)) {
    			size += sizeof(void*);
    		}
    	}
    
    	if (*buffer_size < size) {
    		*buffer_size = size;
    
    		return EFI_BUFFER_TOO_SMALL;
    
    	*buffer_size = size;
    	if (size == 0)
    		return EFI_NOT_FOUND;
    
    
    	/* Then fill the array */
    	list_for_each(lhandle, &efi_obj_list) {
    		struct efi_object *efiobj;
    		efiobj = list_entry(lhandle, struct efi_object, link);
    		if (!efi_search(search_type, protocol, search_key, efiobj)) {
    			*(buffer++) = efiobj->handle;
    		}
    	}
    
    
    	return EFI_SUCCESS;
    }
    
    static efi_status_t EFIAPI efi_locate_handle_ext(
    			enum efi_locate_search_type search_type,
    			efi_guid_t *protocol, void *search_key,
    			unsigned long *buffer_size, efi_handle_t *buffer)
    {
    	EFI_ENTRY("%d, %p, %p, %p, %p", search_type, protocol, search_key,
    		  buffer_size, buffer);
    
    	return EFI_EXIT(efi_locate_handle(search_type, protocol, search_key,
    			buffer_size, buffer));
    
    }
    
    static efi_status_t EFIAPI efi_locate_device_path(efi_guid_t *protocol,
    			struct efi_device_path **device_path,
    			efi_handle_t *device)
    {
    	EFI_ENTRY("%p, %p, %p", protocol, device_path, device);
    	return EFI_EXIT(EFI_NOT_FOUND);
    }
    
    
    /* Collapses configuration table entries, removing index i */
    static void efi_remove_configuration_table(int i)
    {
    	struct efi_configuration_table *this = &efi_conf_table[i];
    	struct efi_configuration_table *next = &efi_conf_table[i+1];
    	struct efi_configuration_table *end = &efi_conf_table[systab.nr_tables];
    
    	memmove(this, next, (ulong)end - (ulong)next);
    	systab.nr_tables--;
    }
    
    
    efi_status_t efi_install_configuration_table(const efi_guid_t *guid, void *table)
    
    {
    	int i;
    
    	/* Check for guid override */
    	for (i = 0; i < systab.nr_tables; i++) {
    		if (!guidcmp(guid, &efi_conf_table[i].guid)) {
    
    			if (table)
    				efi_conf_table[i].table = table;
    			else
    				efi_remove_configuration_table(i);
    
    	if (!table)
    		return EFI_NOT_FOUND;
    
    
    	/* No override, check for overflow */
    	if (i >= ARRAY_SIZE(efi_conf_table))
    
    		return EFI_OUT_OF_RESOURCES;
    
    
    	/* Add a new entry */
    	memcpy(&efi_conf_table[i].guid, guid, sizeof(*guid));
    	efi_conf_table[i].table = table;
    
    	systab.nr_tables = i + 1;
    
    	return EFI_SUCCESS;
    }
    
    static efi_status_t EFIAPI efi_install_configuration_table_ext(efi_guid_t *guid,
    							       void *table)
    {
    	EFI_ENTRY("%p, %p", guid, table);
    	return EFI_EXIT(efi_install_configuration_table(guid, table));
    
    }
    
    static efi_status_t EFIAPI efi_load_image(bool boot_policy,
    					  efi_handle_t parent_image,
    					  struct efi_device_path *file_path,
    					  void *source_buffer,
    					  unsigned long source_size,
    					  efi_handle_t *image_handle)
    {
    	static struct efi_object loaded_image_info_obj = {
    		.protocols = {
    			{
    				.guid = &efi_guid_loaded_image,
    			},
    		},
    	};
    	struct efi_loaded_image *info;
    	struct efi_object *obj;
    
    	EFI_ENTRY("%d, %p, %p, %p, %ld, %p", boot_policy, parent_image,
    		  file_path, source_buffer, source_size, image_handle);
    	info = malloc(sizeof(*info));
    
    	loaded_image_info_obj.protocols[0].protocol_interface = info;
    
    	obj = malloc(sizeof(loaded_image_info_obj));
    	memset(info, 0, sizeof(*info));
    	memcpy(obj, &loaded_image_info_obj, sizeof(loaded_image_info_obj));
    	obj->handle = info;
    	info->file_path = file_path;
    	info->reserved = efi_load_pe(source_buffer, info);
    	if (!info->reserved) {
    		free(info);
    		free(obj);
    		return EFI_EXIT(EFI_UNSUPPORTED);
    	}
    
    	*image_handle = info;
    	list_add_tail(&obj->link, &efi_obj_list);
    
    	return EFI_EXIT(EFI_SUCCESS);
    }
    
    static efi_status_t EFIAPI efi_start_image(efi_handle_t image_handle,
    					   unsigned long *exit_data_size,
    					   s16 **exit_data)
    {
    	ulong (*entry)(void *image_handle, struct efi_system_table *st);
    	struct efi_loaded_image *info = image_handle;
    
    	EFI_ENTRY("%p, %p, %p", image_handle, exit_data_size, exit_data);
    	entry = info->reserved;
    
    	efi_is_direct_boot = false;
    
    	/* call the image! */
    
    	if (setjmp(&info->exit_jmp)) {
    		/* We returned from the child image */
    		return EFI_EXIT(info->exit_status);
    	}
    
    
    	entry(image_handle, &systab);
    
    
    	/* Should usually never get here */
    	return EFI_EXIT(EFI_SUCCESS);
    }
    
    
    static efi_status_t EFIAPI efi_exit(efi_handle_t image_handle,
    			efi_status_t exit_status, unsigned long exit_data_size,
    			int16_t *exit_data)
    
    	struct efi_loaded_image *loaded_image_info = (void*)image_handle;
    
    
    	EFI_ENTRY("%p, %ld, %ld, %p", image_handle, exit_status,
    		  exit_data_size, exit_data);
    
    	/* Make sure entry/exit counts for EFI world cross-overs match */
    
    	/*
    	 * But longjmp out with the U-Boot gd, not the application's, as
    	 * the other end is a setjmp call inside EFI context.
    	 */
    	efi_restore_gd();
    
    
    	loaded_image_info->exit_status = exit_status;
    
    	longjmp(&loaded_image_info->exit_jmp, 1);
    
    
    	panic("EFI application exited");
    
    }
    
    static struct efi_object *efi_search_obj(void *handle)
    {
    	struct list_head *lhandle;
    
    	list_for_each(lhandle, &efi_obj_list) {
    		struct efi_object *efiobj;
    		efiobj = list_entry(lhandle, struct efi_object, link);
    		if (efiobj->handle == handle)
    			return efiobj;
    	}
    
    	return NULL;
    }
    
    static efi_status_t EFIAPI efi_unload_image(void *image_handle)
    {
    	struct efi_object *efiobj;
    
    	EFI_ENTRY("%p", image_handle);
    	efiobj = efi_search_obj(image_handle);
    	if (efiobj)
    		list_del(&efiobj->link);
    
    	return EFI_EXIT(EFI_SUCCESS);
    }
    
    static void efi_exit_caches(void)
    {
    #if defined(CONFIG_ARM) && !defined(CONFIG_ARM64)
    	/*
    	 * Grub on 32bit ARM needs to have caches disabled before jumping into
    	 * a zImage, but does not know of all cache layers. Give it a hand.
    	 */
    	if (efi_is_direct_boot)
    		cleanup_before_linux();
    #endif
    }
    
    static efi_status_t EFIAPI efi_exit_boot_services(void *image_handle,
    						  unsigned long map_key)
    {
    	EFI_ENTRY("%p, %ld", image_handle, map_key);
    
    
    	/* Fix up caches for EFI payloads if necessary */
    	efi_exit_caches();
    
    	/* This stops all lingering devices */
    	bootm_disable_interrupts();
    
    	/* Give the payload some time to boot */
    	WATCHDOG_RESET();
    
    	return EFI_EXIT(EFI_SUCCESS);
    }
    
    static efi_status_t EFIAPI efi_get_next_monotonic_count(uint64_t *count)
    {
    	static uint64_t mono = 0;
    	EFI_ENTRY("%p", count);
    	*count = mono++;
    	return EFI_EXIT(EFI_SUCCESS);
    }
    
    static efi_status_t EFIAPI efi_stall(unsigned long microseconds)
    {
    	EFI_ENTRY("%ld", microseconds);
    	udelay(microseconds);
    	return EFI_EXIT(EFI_SUCCESS);
    }
    
    static efi_status_t EFIAPI efi_set_watchdog_timer(unsigned long timeout,
    						  uint64_t watchdog_code,
    						  unsigned long data_size,
    						  uint16_t *watchdog_data)
    {
    	EFI_ENTRY("%ld, 0x%"PRIx64", %ld, %p", timeout, watchdog_code,
    		  data_size, watchdog_data);
    
    	return efi_unsupported(__func__);
    
    }
    
    static efi_status_t EFIAPI efi_connect_controller(
    			efi_handle_t controller_handle,
    			efi_handle_t *driver_image_handle,
    			struct efi_device_path *remain_device_path,
    			bool recursive)
    {
    	EFI_ENTRY("%p, %p, %p, %d", controller_handle, driver_image_handle,
    		  remain_device_path, recursive);
    	return EFI_EXIT(EFI_NOT_FOUND);
    }
    
    static efi_status_t EFIAPI efi_disconnect_controller(void *controller_handle,
    						     void *driver_image_handle,
    						     void *child_handle)
    {
    	EFI_ENTRY("%p, %p, %p", controller_handle, driver_image_handle,
    		  child_handle);
    	return EFI_EXIT(EFI_INVALID_PARAMETER);
    }
    
    static efi_status_t EFIAPI efi_close_protocol(void *handle,
    					      efi_guid_t *protocol,
    					      void *agent_handle,
    					      void *controller_handle)
    {
    	EFI_ENTRY("%p, %p, %p, %p", handle, protocol, agent_handle,
    		  controller_handle);
    	return EFI_EXIT(EFI_NOT_FOUND);
    }
    
    static efi_status_t EFIAPI efi_open_protocol_information(efi_handle_t handle,
    			efi_guid_t *protocol,
    			struct efi_open_protocol_info_entry **entry_buffer,
    			unsigned long *entry_count)
    {
    	EFI_ENTRY("%p, %p, %p, %p", handle, protocol, entry_buffer,
    		  entry_count);
    	return EFI_EXIT(EFI_NOT_FOUND);
    }
    
    static efi_status_t EFIAPI efi_protocols_per_handle(void *handle,
    			efi_guid_t ***protocol_buffer,
    			unsigned long *protocol_buffer_count)
    {
    
    	unsigned long buffer_size;
    	struct efi_object *efiobj;
    	unsigned long i, j;
    	struct list_head *lhandle;
    	efi_status_t r;
    
    
    	EFI_ENTRY("%p, %p, %p", handle, protocol_buffer,
    		  protocol_buffer_count);
    
    
    	if (!handle || !protocol_buffer || !protocol_buffer_count)
    		return EFI_EXIT(EFI_INVALID_PARAMETER);
    
    	*protocol_buffer = NULL;
    
    	*protocol_buffer_count = 0;
    
    	list_for_each(lhandle, &efi_obj_list) {
    		efiobj = list_entry(lhandle, struct efi_object, link);
    
    		if (efiobj->handle != handle)
    			continue;
    
    		/* Count protocols */
    		for (i = 0; i < ARRAY_SIZE(efiobj->protocols); i++) {
    			if (efiobj->protocols[i].guid)
    				++*protocol_buffer_count;
    		}
    		/* Copy guids */
    		if (*protocol_buffer_count) {
    			buffer_size = sizeof(efi_guid_t *) *
    					*protocol_buffer_count;
    			r = efi_allocate_pool(EFI_ALLOCATE_ANY_PAGES,
    					      buffer_size,
    					      (void **)protocol_buffer);
    			if (r != EFI_SUCCESS)
    				return EFI_EXIT(r);
    			j = 0;
    			for (i = 0; i < ARRAY_SIZE(efiobj->protocols); ++i) {
    				if (efiobj->protocols[i].guid) {
    					(*protocol_buffer)[j] = (void *)
    						efiobj->protocols[i].guid;
    					++j;
    				}
    			}
    		}
    		break;
    	}
    
    	return EFI_EXIT(EFI_SUCCESS);
    
    }
    
    static efi_status_t EFIAPI efi_locate_handle_buffer(
    			enum efi_locate_search_type search_type,
    			efi_guid_t *protocol, void *search_key,
    			unsigned long *no_handles, efi_handle_t **buffer)
    {
    
    	efi_status_t r;
    	unsigned long buffer_size = 0;
    
    
    	EFI_ENTRY("%d, %p, %p, %p, %p", search_type, protocol, search_key,