Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
/*
* EFI application boot time services
*
* Copyright (c) 2016 Alexander Graf
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <efi_loader.h>
#include <malloc.h>
#include <asm/global_data.h>
#include <libfdt_env.h>
#include <u-boot/crc.h>
#include <bootm.h>
#include <inttypes.h>
#include <watchdog.h>
DECLARE_GLOBAL_DATA_PTR;
/* This list contains all the EFI objects our payload has access to */
LIST_HEAD(efi_obj_list);
/*
* If we're running on nasty systems (32bit ARM booting into non-EFI Linux)
* we need to do trickery with caches. Since we don't want to break the EFI
* aware boot path, only apply hacks when loading exiting directly (breaking
* direct Linux EFI booting along the way - oh well).
*/
static bool efi_is_direct_boot = true;
/*
* EFI can pass arbitrary additional "tables" containing vendor specific
* information to the payload. One such table is the FDT table which contains
* a pointer to a flattened device tree blob.
*
* In most cases we want to pass an FDT to the payload, so reserve one slot of
* config table space for it. The pointer gets populated by do_bootefi_exec().
*/
static struct efi_configuration_table __efi_runtime_data efi_conf_table[2];
/*
* The "gd" pointer lives in a register on ARM and AArch64 that we declare
* fixed when compiling U-Boot. However, the payload does not know about that
* restriction so we need to manually swap its and our view of that register on
* EFI callback entry/exit.
*/
static volatile void *efi_gd, *app_gd;
static int entry_count;
static int nesting_level;
/* Called on every callback entry */
int __efi_entry_check(void)
{
int ret = entry_count++ == 0;
#ifdef CONFIG_ARM
assert(efi_gd);
app_gd = gd;
gd = efi_gd;
#endif
return ret;
}
/* Called on every callback exit */
int __efi_exit_check(void)
{
int ret = --entry_count == 0;
#ifdef CONFIG_ARM
gd = app_gd;
#endif
return ret;
}
/* Called from do_bootefi_exec() */
void efi_save_gd(void)
{
/*
* Special case handler for error/abort that just forces things back
* to u-boot world so we can dump out an abort msg, without any care
* about returning back to UEFI world.
*/
/* Only restore if we're already in EFI context */
if (!efi_gd)
return;
gd = efi_gd;
/*
* Two spaces per indent level, maxing out at 10.. which ought to be
* enough for anyone ;-)
*/
static const char *indent_string(int level)
{
const char *indent = " ";
const int max = strlen(indent);
level = min(max, level * 2);
return &indent[max - level];
}
const char *__efi_nesting(void)
{
return indent_string(nesting_level);
}
const char *__efi_nesting_inc(void)
{
return indent_string(nesting_level++);
}
const char *__efi_nesting_dec(void)
{
return indent_string(--nesting_level);
}
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/* Low 32 bit */
#define EFI_LOW32(a) (a & 0xFFFFFFFFULL)
/* High 32 bit */
#define EFI_HIGH32(a) (a >> 32)
/*
* 64bit division by 10 implemented as multiplication by 1 / 10
*
* Decimals of one tenth: 0x1 / 0xA = 0x0.19999...
*/
#define EFI_TENTH 0x199999999999999A
static u64 efi_div10(u64 a)
{
u64 prod;
u64 rem;
u64 ret;
ret = EFI_HIGH32(a) * EFI_HIGH32(EFI_TENTH);
prod = EFI_HIGH32(a) * EFI_LOW32(EFI_TENTH);
rem = EFI_LOW32(prod);
ret += EFI_HIGH32(prod);
prod = EFI_LOW32(a) * EFI_HIGH32(EFI_TENTH);
rem += EFI_LOW32(prod);
ret += EFI_HIGH32(prod);
prod = EFI_LOW32(a) * EFI_LOW32(EFI_TENTH);
rem += EFI_HIGH32(prod);
ret += EFI_HIGH32(rem);
/* Round to nearest integer */
if (rem >= (1 << 31))
++ret;
return ret;
}
void efi_signal_event(struct efi_event *event)
if (event->notify_function) {
event->queued = 1;
/* Put missing TPL check here */
EFI_CALL_VOID(event->notify_function(event,
event->notify_context));
event->queued = 0;
static efi_status_t efi_unsupported(const char *funcname)
{
debug("EFI: App called into unimplemented function %s\n", funcname);
return EFI_EXIT(EFI_UNSUPPORTED);
}
static unsigned long EFIAPI efi_raise_tpl(UINTN new_tpl)
EFI_ENTRY("0x%zx", new_tpl);
static void EFIAPI efi_restore_tpl(UINTN old_tpl)
EFI_ENTRY("0x%zx", old_tpl);
efi_unsupported(__func__);
static efi_status_t EFIAPI efi_allocate_pages_ext(int type, int memory_type,
unsigned long pages,
uint64_t *memory)
{
efi_status_t r;
EFI_ENTRY("%d, %d, 0x%lx, %p", type, memory_type, pages, memory);
r = efi_allocate_pages(type, memory_type, pages, memory);
return EFI_EXIT(r);
}
static efi_status_t EFIAPI efi_free_pages_ext(uint64_t memory,
unsigned long pages)
{
efi_status_t r;
EFI_ENTRY("%"PRIx64", 0x%lx", memory, pages);
r = efi_free_pages(memory, pages);
return EFI_EXIT(r);
}
static efi_status_t EFIAPI efi_get_memory_map_ext(
unsigned long *memory_map_size,
struct efi_mem_desc *memory_map,
unsigned long *map_key,
unsigned long *descriptor_size,
uint32_t *descriptor_version)
{
efi_status_t r;
EFI_ENTRY("%p, %p, %p, %p, %p", memory_map_size, memory_map,
map_key, descriptor_size, descriptor_version);
r = efi_get_memory_map(memory_map_size, memory_map, map_key,
descriptor_size, descriptor_version);
return EFI_EXIT(r);
}
static efi_status_t EFIAPI efi_allocate_pool_ext(int pool_type,
unsigned long size,
void **buffer)
efi_status_t r;
EFI_ENTRY("%d, %ld, %p", pool_type, size, buffer);
r = efi_allocate_pool(pool_type, size, buffer);
static efi_status_t EFIAPI efi_free_pool_ext(void *buffer)
efi_status_t r;
EFI_ENTRY("%p", buffer);
r = efi_free_pool(buffer);
* Our event capabilities are very limited. Only a small limited
* number of events is allowed to coexist.
static struct efi_event efi_events[16];
efi_status_t efi_create_event(uint32_t type, UINTN notify_tpl,
void (EFIAPI *notify_function) (
struct efi_event *event,
void *context),
void *notify_context, struct efi_event **event)
return EFI_INVALID_PARAMETER;
if ((type & EVT_NOTIFY_SIGNAL) && (type & EVT_NOTIFY_WAIT))
return EFI_INVALID_PARAMETER;
if ((type & (EVT_NOTIFY_SIGNAL|EVT_NOTIFY_WAIT)) &&
notify_function == NULL)
return EFI_INVALID_PARAMETER;
for (i = 0; i < ARRAY_SIZE(efi_events); ++i) {
if (efi_events[i].type)
continue;
efi_events[i].type = type;
efi_events[i].notify_tpl = notify_tpl;
efi_events[i].notify_function = notify_function;
efi_events[i].notify_context = notify_context;
/* Disable timers on bootup */
efi_events[i].trigger_next = -1ULL;
efi_events[i].queued = 0;
efi_events[i].signaled = 0;
*event = &efi_events[i];
static efi_status_t EFIAPI efi_create_event_ext(
uint32_t type, UINTN notify_tpl,
void (EFIAPI *notify_function) (
struct efi_event *event,
void *context),
void *notify_context, struct efi_event **event)
{
EFI_ENTRY("%d, 0x%zx, %p, %p", type, notify_tpl, notify_function,
notify_context);
return EFI_EXIT(efi_create_event(type, notify_tpl, notify_function,
notify_context, event));
}
/*
* Our timers have to work without interrupts, so we check whenever keyboard
* input or disk accesses happen if enough time elapsed for it to fire.
*/
void efi_timer_check(void)
{
for (i = 0; i < ARRAY_SIZE(efi_events); ++i) {
if (!efi_events[i].type)
continue;
if (efi_events[i].queued)
efi_signal_event(&efi_events[i]);
if (!(efi_events[i].type & EVT_TIMER) ||
now < efi_events[i].trigger_next)
continue;
switch (efi_events[i].trigger_type) {
case EFI_TIMER_RELATIVE:
efi_events[i].trigger_type = EFI_TIMER_STOP;
break;
case EFI_TIMER_PERIODIC:
efi_events[i].trigger_next +=
efi_events[i].trigger_time;
break;
default:
continue;
efi_events[i].signaled = 1;
efi_signal_event(&efi_events[i]);
efi_status_t efi_set_timer(struct efi_event *event, enum efi_timer_delay type,
/*
* The parameter defines a multiple of 100ns.
* We use multiples of 1000ns. So divide by 10.
*/
trigger_time = efi_div10(trigger_time);
for (i = 0; i < ARRAY_SIZE(efi_events); ++i) {
if (event != &efi_events[i])
continue;
if (!(event->type & EVT_TIMER))
break;
switch (type) {
case EFI_TIMER_STOP:
event->trigger_next = -1ULL;
break;
case EFI_TIMER_PERIODIC:
case EFI_TIMER_RELATIVE:
event->trigger_next =
timer_get_us() + trigger_time;
}
event->trigger_type = type;
event->trigger_time = trigger_time;
return EFI_INVALID_PARAMETER;
}
static efi_status_t EFIAPI efi_set_timer_ext(struct efi_event *event,
enum efi_timer_delay type,
uint64_t trigger_time)
{
EFI_ENTRY("%p, %d, %"PRIx64, event, type, trigger_time);
return EFI_EXIT(efi_set_timer(event, type, trigger_time));
}
static efi_status_t EFIAPI efi_wait_for_event(unsigned long num_events,
struct efi_event **event,
unsigned long *index)
EFI_ENTRY("%ld, %p, %p", num_events, event, index);
/* Check parameters */
if (!num_events || !event)
return EFI_EXIT(EFI_INVALID_PARAMETER);
/* Put missing TPL check here */
for (i = 0; i < num_events; ++i) {
for (j = 0; j < ARRAY_SIZE(efi_events); ++j) {
if (event[i] == &efi_events[j])
goto known_event;
}
return EFI_EXIT(EFI_INVALID_PARAMETER);
known_event:
if (!event[i]->type || event[i]->type & EVT_NOTIFY_SIGNAL)
return EFI_EXIT(EFI_INVALID_PARAMETER);
if (!event[i]->signaled)
efi_signal_event(event[i]);
}
/* Wait for signal */
for (;;) {
for (i = 0; i < num_events; ++i) {
if (event[i]->signaled)
goto out;
}
/* Allow events to occur. */
efi_timer_check();
}
out:
/*
* Reset the signal which is passed to the caller to allow periodic
* events to occur.
*/
event[i]->signaled = 0;
if (index)
*index = i;
return EFI_EXIT(EFI_SUCCESS);
}
static efi_status_t EFIAPI efi_signal_event_ext(struct efi_event *event)
for (i = 0; i < ARRAY_SIZE(efi_events); ++i) {
if (event != &efi_events[i])
continue;
if (event->signaled)
break;
event->signaled = 1;
if (event->type & EVT_NOTIFY_SIGNAL)
efi_signal_event(event);
return EFI_EXIT(EFI_SUCCESS);
}
static efi_status_t EFIAPI efi_close_event(struct efi_event *event)
for (i = 0; i < ARRAY_SIZE(efi_events); ++i) {
if (event == &efi_events[i]) {
event->type = 0;
event->trigger_next = -1ULL;
event->queued = 0;
event->signaled = 0;
return EFI_EXIT(EFI_SUCCESS);
}
}
return EFI_EXIT(EFI_INVALID_PARAMETER);
static efi_status_t EFIAPI efi_check_event(struct efi_event *event)
efi_timer_check();
for (i = 0; i < ARRAY_SIZE(efi_events); ++i) {
if (event != &efi_events[i])
continue;
if (!event->type || event->type & EVT_NOTIFY_SIGNAL)
break;
if (!event->signaled)
efi_signal_event(event);
if (event->signaled)
return EFI_EXIT(EFI_SUCCESS);
return EFI_EXIT(EFI_NOT_READY);
}
return EFI_EXIT(EFI_INVALID_PARAMETER);
}
static efi_status_t EFIAPI efi_install_protocol_interface(void **handle,
efi_guid_t *protocol, int protocol_interface_type,
void *protocol_interface)
{
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
struct list_head *lhandle;
int i;
efi_status_t r;
if (!handle || !protocol ||
protocol_interface_type != EFI_NATIVE_INTERFACE) {
r = EFI_INVALID_PARAMETER;
goto out;
}
/* Create new handle if requested. */
if (!*handle) {
r = EFI_OUT_OF_RESOURCES;
goto out;
}
/* Find object. */
list_for_each(lhandle, &efi_obj_list) {
struct efi_object *efiobj;
efiobj = list_entry(lhandle, struct efi_object, link);
if (efiobj->handle != *handle)
continue;
/* Check if protocol is already installed on the handle. */
for (i = 0; i < ARRAY_SIZE(efiobj->protocols); i++) {
struct efi_handler *handler = &efiobj->protocols[i];
if (!handler->guid)
continue;
if (!guidcmp(handler->guid, protocol)) {
r = EFI_INVALID_PARAMETER;
goto out;
}
}
/* Install protocol in first empty slot. */
for (i = 0; i < ARRAY_SIZE(efiobj->protocols); i++) {
struct efi_handler *handler = &efiobj->protocols[i];
if (handler->guid)
continue;
handler->guid = protocol;
handler->protocol_interface = protocol_interface;
r = EFI_SUCCESS;
goto out;
}
r = EFI_OUT_OF_RESOURCES;
goto out;
}
r = EFI_INVALID_PARAMETER;
out:
return r;
}
static efi_status_t EFIAPI efi_install_protocol_interface_ext(void **handle,
efi_guid_t *protocol, int protocol_interface_type,
void *protocol_interface)
{
EFI_ENTRY("%p, %p, %d, %p", handle, protocol, protocol_interface_type,
protocol_interface);
return EFI_EXIT(efi_install_protocol_interface(handle, protocol,
protocol_interface_type,
protocol_interface));
static efi_status_t EFIAPI efi_reinstall_protocol_interface(void *handle,
efi_guid_t *protocol, void *old_interface,
void *new_interface)
{
EFI_ENTRY("%p, %p, %p, %p", handle, protocol, old_interface,
new_interface);
return EFI_EXIT(EFI_ACCESS_DENIED);
}
static efi_status_t EFIAPI efi_uninstall_protocol_interface(void *handle,
efi_guid_t *protocol, void *protocol_interface)
{
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
struct list_head *lhandle;
int i;
efi_status_t r = EFI_NOT_FOUND;
if (!handle || !protocol) {
r = EFI_INVALID_PARAMETER;
goto out;
}
list_for_each(lhandle, &efi_obj_list) {
struct efi_object *efiobj;
efiobj = list_entry(lhandle, struct efi_object, link);
if (efiobj->handle != handle)
continue;
for (i = 0; i < ARRAY_SIZE(efiobj->protocols); i++) {
struct efi_handler *handler = &efiobj->protocols[i];
const efi_guid_t *hprotocol = handler->guid;
if (!hprotocol)
continue;
if (!guidcmp(hprotocol, protocol)) {
if (handler->protocol_interface) {
r = EFI_ACCESS_DENIED;
} else {
handler->guid = 0;
r = EFI_SUCCESS;
}
goto out;
}
}
}
out:
return r;
}
static efi_status_t EFIAPI efi_uninstall_protocol_interface_ext(void *handle,
efi_guid_t *protocol, void *protocol_interface)
{
EFI_ENTRY("%p, %p, %p", handle, protocol, protocol_interface);
return EFI_EXIT(efi_uninstall_protocol_interface(handle, protocol,
protocol_interface));
}
static efi_status_t EFIAPI efi_register_protocol_notify(efi_guid_t *protocol,
struct efi_event *event,
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
void **registration)
{
EFI_ENTRY("%p, %p, %p", protocol, event, registration);
return EFI_EXIT(EFI_OUT_OF_RESOURCES);
}
static int efi_search(enum efi_locate_search_type search_type,
efi_guid_t *protocol, void *search_key,
struct efi_object *efiobj)
{
int i;
switch (search_type) {
case all_handles:
return 0;
case by_register_notify:
return -1;
case by_protocol:
for (i = 0; i < ARRAY_SIZE(efiobj->protocols); i++) {
const efi_guid_t *guid = efiobj->protocols[i].guid;
if (guid && !guidcmp(guid, protocol))
return 0;
}
return -1;
}
return -1;
}
static efi_status_t efi_locate_handle(
enum efi_locate_search_type search_type,
efi_guid_t *protocol, void *search_key,
unsigned long *buffer_size, efi_handle_t *buffer)
{
struct list_head *lhandle;
unsigned long size = 0;
/* Count how much space we need */
list_for_each(lhandle, &efi_obj_list) {
struct efi_object *efiobj;
efiobj = list_entry(lhandle, struct efi_object, link);
if (!efi_search(search_type, protocol, search_key, efiobj)) {
size += sizeof(void*);
}
}
if (*buffer_size < size) {
*buffer_size = size;
return EFI_BUFFER_TOO_SMALL;
*buffer_size = size;
if (size == 0)
return EFI_NOT_FOUND;
/* Then fill the array */
list_for_each(lhandle, &efi_obj_list) {
struct efi_object *efiobj;
efiobj = list_entry(lhandle, struct efi_object, link);
if (!efi_search(search_type, protocol, search_key, efiobj)) {
*(buffer++) = efiobj->handle;
}
}
return EFI_SUCCESS;
}
static efi_status_t EFIAPI efi_locate_handle_ext(
enum efi_locate_search_type search_type,
efi_guid_t *protocol, void *search_key,
unsigned long *buffer_size, efi_handle_t *buffer)
{
EFI_ENTRY("%d, %p, %p, %p, %p", search_type, protocol, search_key,
buffer_size, buffer);
return EFI_EXIT(efi_locate_handle(search_type, protocol, search_key,
buffer_size, buffer));
}
static efi_status_t EFIAPI efi_locate_device_path(efi_guid_t *protocol,
struct efi_device_path **device_path,
efi_handle_t *device)
{
EFI_ENTRY("%p, %p, %p", protocol, device_path, device);
return EFI_EXIT(EFI_NOT_FOUND);
}
/* Collapses configuration table entries, removing index i */
static void efi_remove_configuration_table(int i)
{
struct efi_configuration_table *this = &efi_conf_table[i];
struct efi_configuration_table *next = &efi_conf_table[i+1];
struct efi_configuration_table *end = &efi_conf_table[systab.nr_tables];
memmove(this, next, (ulong)end - (ulong)next);
systab.nr_tables--;
}
efi_status_t efi_install_configuration_table(const efi_guid_t *guid, void *table)
{
int i;
/* Check for guid override */
for (i = 0; i < systab.nr_tables; i++) {
if (!guidcmp(guid, &efi_conf_table[i].guid)) {
if (table)
efi_conf_table[i].table = table;
else
efi_remove_configuration_table(i);
if (!table)
return EFI_NOT_FOUND;
/* No override, check for overflow */
if (i >= ARRAY_SIZE(efi_conf_table))
return EFI_OUT_OF_RESOURCES;
/* Add a new entry */
memcpy(&efi_conf_table[i].guid, guid, sizeof(*guid));
efi_conf_table[i].table = table;
systab.nr_tables = i + 1;
return EFI_SUCCESS;
}
static efi_status_t EFIAPI efi_install_configuration_table_ext(efi_guid_t *guid,
void *table)
{
EFI_ENTRY("%p, %p", guid, table);
return EFI_EXIT(efi_install_configuration_table(guid, table));
}
static efi_status_t EFIAPI efi_load_image(bool boot_policy,
efi_handle_t parent_image,
struct efi_device_path *file_path,
void *source_buffer,
unsigned long source_size,
efi_handle_t *image_handle)
{
static struct efi_object loaded_image_info_obj = {
.protocols = {
{
.guid = &efi_guid_loaded_image,
},
},
};
struct efi_loaded_image *info;
struct efi_object *obj;
EFI_ENTRY("%d, %p, %p, %p, %ld, %p", boot_policy, parent_image,
file_path, source_buffer, source_size, image_handle);
info = malloc(sizeof(*info));
loaded_image_info_obj.protocols[0].protocol_interface = info;
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
obj = malloc(sizeof(loaded_image_info_obj));
memset(info, 0, sizeof(*info));
memcpy(obj, &loaded_image_info_obj, sizeof(loaded_image_info_obj));
obj->handle = info;
info->file_path = file_path;
info->reserved = efi_load_pe(source_buffer, info);
if (!info->reserved) {
free(info);
free(obj);
return EFI_EXIT(EFI_UNSUPPORTED);
}
*image_handle = info;
list_add_tail(&obj->link, &efi_obj_list);
return EFI_EXIT(EFI_SUCCESS);
}
static efi_status_t EFIAPI efi_start_image(efi_handle_t image_handle,
unsigned long *exit_data_size,
s16 **exit_data)
{
ulong (*entry)(void *image_handle, struct efi_system_table *st);
struct efi_loaded_image *info = image_handle;
EFI_ENTRY("%p, %p, %p", image_handle, exit_data_size, exit_data);
entry = info->reserved;
efi_is_direct_boot = false;
/* call the image! */
if (setjmp(&info->exit_jmp)) {
/* We returned from the child image */
return EFI_EXIT(info->exit_status);
}
__efi_nesting_dec();
__efi_exit_check();
__efi_entry_check();
__efi_nesting_inc();
/* Should usually never get here */
return EFI_EXIT(EFI_SUCCESS);
}
static efi_status_t EFIAPI efi_exit(efi_handle_t image_handle,
efi_status_t exit_status, unsigned long exit_data_size,
int16_t *exit_data)
struct efi_loaded_image *loaded_image_info = (void*)image_handle;
EFI_ENTRY("%p, %ld, %ld, %p", image_handle, exit_status,
exit_data_size, exit_data);
/* Make sure entry/exit counts for EFI world cross-overs match */
__efi_exit_check();
/*
* But longjmp out with the U-Boot gd, not the application's, as
* the other end is a setjmp call inside EFI context.
*/
efi_restore_gd();
loaded_image_info->exit_status = exit_status;
longjmp(&loaded_image_info->exit_jmp, 1);
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
}
static struct efi_object *efi_search_obj(void *handle)
{
struct list_head *lhandle;
list_for_each(lhandle, &efi_obj_list) {
struct efi_object *efiobj;
efiobj = list_entry(lhandle, struct efi_object, link);
if (efiobj->handle == handle)
return efiobj;
}
return NULL;
}
static efi_status_t EFIAPI efi_unload_image(void *image_handle)
{
struct efi_object *efiobj;
EFI_ENTRY("%p", image_handle);
efiobj = efi_search_obj(image_handle);
if (efiobj)
list_del(&efiobj->link);
return EFI_EXIT(EFI_SUCCESS);
}
static void efi_exit_caches(void)
{
#if defined(CONFIG_ARM) && !defined(CONFIG_ARM64)
/*
* Grub on 32bit ARM needs to have caches disabled before jumping into
* a zImage, but does not know of all cache layers. Give it a hand.
*/
if (efi_is_direct_boot)
cleanup_before_linux();
#endif
}
static efi_status_t EFIAPI efi_exit_boot_services(void *image_handle,
unsigned long map_key)
{
EFI_ENTRY("%p, %ld", image_handle, map_key);
board_quiesce_devices();
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
/* Fix up caches for EFI payloads if necessary */
efi_exit_caches();
/* This stops all lingering devices */
bootm_disable_interrupts();
/* Give the payload some time to boot */
WATCHDOG_RESET();
return EFI_EXIT(EFI_SUCCESS);
}
static efi_status_t EFIAPI efi_get_next_monotonic_count(uint64_t *count)
{
static uint64_t mono = 0;
EFI_ENTRY("%p", count);
*count = mono++;
return EFI_EXIT(EFI_SUCCESS);
}
static efi_status_t EFIAPI efi_stall(unsigned long microseconds)
{
EFI_ENTRY("%ld", microseconds);
udelay(microseconds);
return EFI_EXIT(EFI_SUCCESS);
}
static efi_status_t EFIAPI efi_set_watchdog_timer(unsigned long timeout,
uint64_t watchdog_code,
unsigned long data_size,
uint16_t *watchdog_data)
{
EFI_ENTRY("%ld, 0x%"PRIx64", %ld, %p", timeout, watchdog_code,
data_size, watchdog_data);
return efi_unsupported(__func__);
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
}
static efi_status_t EFIAPI efi_connect_controller(
efi_handle_t controller_handle,
efi_handle_t *driver_image_handle,
struct efi_device_path *remain_device_path,
bool recursive)
{
EFI_ENTRY("%p, %p, %p, %d", controller_handle, driver_image_handle,
remain_device_path, recursive);
return EFI_EXIT(EFI_NOT_FOUND);
}
static efi_status_t EFIAPI efi_disconnect_controller(void *controller_handle,
void *driver_image_handle,
void *child_handle)
{
EFI_ENTRY("%p, %p, %p", controller_handle, driver_image_handle,
child_handle);
return EFI_EXIT(EFI_INVALID_PARAMETER);
}
static efi_status_t EFIAPI efi_close_protocol(void *handle,
efi_guid_t *protocol,
void *agent_handle,
void *controller_handle)
{
EFI_ENTRY("%p, %p, %p, %p", handle, protocol, agent_handle,
controller_handle);
return EFI_EXIT(EFI_NOT_FOUND);
}
static efi_status_t EFIAPI efi_open_protocol_information(efi_handle_t handle,
efi_guid_t *protocol,
struct efi_open_protocol_info_entry **entry_buffer,
unsigned long *entry_count)
{
EFI_ENTRY("%p, %p, %p, %p", handle, protocol, entry_buffer,
entry_count);
return EFI_EXIT(EFI_NOT_FOUND);
}
static efi_status_t EFIAPI efi_protocols_per_handle(void *handle,
efi_guid_t ***protocol_buffer,
unsigned long *protocol_buffer_count)
{
unsigned long buffer_size;
struct efi_object *efiobj;
unsigned long i, j;
struct list_head *lhandle;
efi_status_t r;
EFI_ENTRY("%p, %p, %p", handle, protocol_buffer,
protocol_buffer_count);
if (!handle || !protocol_buffer || !protocol_buffer_count)
return EFI_EXIT(EFI_INVALID_PARAMETER);
*protocol_buffer = NULL;
list_for_each(lhandle, &efi_obj_list) {
efiobj = list_entry(lhandle, struct efi_object, link);
if (efiobj->handle != handle)
continue;
/* Count protocols */
for (i = 0; i < ARRAY_SIZE(efiobj->protocols); i++) {
if (efiobj->protocols[i].guid)
++*protocol_buffer_count;
}
/* Copy guids */
if (*protocol_buffer_count) {
buffer_size = sizeof(efi_guid_t *) *
*protocol_buffer_count;
r = efi_allocate_pool(EFI_ALLOCATE_ANY_PAGES,
buffer_size,
(void **)protocol_buffer);
if (r != EFI_SUCCESS)
return EFI_EXIT(r);
j = 0;
for (i = 0; i < ARRAY_SIZE(efiobj->protocols); ++i) {
if (efiobj->protocols[i].guid) {
(*protocol_buffer)[j] = (void *)