Skip to content
Snippets Groups Projects
fit_image.c 20.1 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * (C) Copyright 2008 Semihalf
     *
     * (C) Copyright 2000-2004
     * DENX Software Engineering
     * Wolfgang Denk, wd@denx.de
     *
     * Updated-by: Prafulla Wadaskar <prafulla@marvell.com>
     *		FIT image specific code abstracted from mkimage.c
     *		some functions added to address abstraction
     *
     * All rights reserved.
     *
    
     * SPDX-License-Identifier:	GPL-2.0+
    
    #include "fit_common.h"
    
    #include "mkimage.h"
    #include <image.h>
    
    #include <stdarg.h>
    #include <version.h>
    
    #include <u-boot/crc.h>
    
    static image_header_t header;
    
    
    static int fit_add_file_data(struct image_tool_params *params, size_t size_inc,
    			     const char *tmpfile)
    {
    	int tfd, destfd = 0;
    	void *dest_blob = NULL;
    	off_t destfd_size = 0;
    	struct stat sbuf;
    	void *ptr;
    	int ret = 0;
    
    	tfd = mmap_fdt(params->cmdname, tmpfile, size_inc, &ptr, &sbuf, true);
    	if (tfd < 0)
    		return -EIO;
    
    	if (params->keydest) {
    		struct stat dest_sbuf;
    
    		destfd = mmap_fdt(params->cmdname, params->keydest, size_inc,
    				  &dest_blob, &dest_sbuf, false);
    		if (destfd < 0) {
    			ret = -EIO;
    			goto err_keydest;
    		}
    		destfd_size = dest_sbuf.st_size;
    	}
    
    	/* for first image creation, add a timestamp at offset 0 i.e., root  */
    
    	if (params->datafile) {
    		time_t time = imagetool_get_source_date(params, sbuf.st_mtime);
    		ret = fit_set_timestamp(ptr, 0, time);
    	}
    
    
    	if (!ret) {
    		ret = fit_add_verification_data(params->keydir, dest_blob, ptr,
    						params->comment,
    
    						params->require_keys,
    						params->engine_id);
    
    	}
    
    	if (dest_blob) {
    		munmap(dest_blob, destfd_size);
    		close(destfd);
    	}
    
    err_keydest:
    	munmap(ptr, sbuf.st_size);
    	close(tfd);
    
    	return ret;
    }
    
    
    /**
     * fit_calc_size() - Calculate the approximate size of the FIT we will generate
     */
    static int fit_calc_size(struct image_tool_params *params)
    {
    
    	struct content_info *cont;
    
    	int size, total_size;
    
    	size = imagetool_get_filesize(params, params->datafile);
    	if (size < 0)
    		return -1;
    	total_size = size;
    
    
    	if (params->fit_ramdisk) {
    		size = imagetool_get_filesize(params, params->fit_ramdisk);
    		if (size < 0)
    			return -1;
    		total_size += size;
    	}
    
    
    	for (cont = params->content_head; cont; cont = cont->next) {
    		size = imagetool_get_filesize(params, cont->fname);
    		if (size < 0)
    			return -1;
    
    		/* Add space for properties */
    		total_size += size + 300;
    	}
    
    
    	/* Add plenty of space for headers, properties, nodes, etc. */
    	total_size += 4096;
    
    	return total_size;
    }
    
    static int fdt_property_file(struct image_tool_params *params,
    			     void *fdt, const char *name, const char *fname)
    {
    	struct stat sbuf;
    	void *ptr;
    	int ret;
    	int fd;
    
    	fd = open(fname, O_RDWR | O_BINARY);
    	if (fd < 0) {
    		fprintf(stderr, "%s: Can't open %s: %s\n",
    			params->cmdname, fname, strerror(errno));
    		return -1;
    	}
    
    	if (fstat(fd, &sbuf) < 0) {
    		fprintf(stderr, "%s: Can't stat %s: %s\n",
    			params->cmdname, fname, strerror(errno));
    		goto err;
    	}
    
    	ret = fdt_property_placeholder(fdt, "data", sbuf.st_size, &ptr);
    	if (ret)
    
    	ret = read(fd, ptr, sbuf.st_size);
    	if (ret != sbuf.st_size) {
    		fprintf(stderr, "%s: Can't read %s: %s\n",
    			params->cmdname, fname, strerror(errno));
    		goto err;
    	}
    
    
    	return 0;
    err:
    	close(fd);
    	return -1;
    }
    
    static int fdt_property_strf(void *fdt, const char *name, const char *fmt, ...)
    {
    	char str[100];
    	va_list ptr;
    
    	va_start(ptr, fmt);
    	vsnprintf(str, sizeof(str), fmt, ptr);
    	va_end(ptr);
    	return fdt_property_string(fdt, name, str);
    }
    
    
    static void get_basename(char *str, int size, const char *fname)
    {
    	const char *p, *start, *end;
    	int len;
    
    	/*
    	 * Use the base name as the 'name' field. So for example:
    	 *
    	 * "arch/arm/dts/sun7i-a20-bananapro.dtb"
    	 * becomes "sun7i-a20-bananapro"
    	 */
    	p = strrchr(fname, '/');
    	start = p ? p + 1 : fname;
    	p = strrchr(fname, '.');
    	end = p ? p : fname + strlen(fname);
    	len = end - start;
    	if (len >= size)
    		len = size - 1;
    	memcpy(str, start, len);
    	str[len] = '\0';
    }
    
    
    /**
     * fit_write_images() - Write out a list of images to the FIT
     *
    
     * We always include the main image (params->datafile). If there are device
     * tree files, we include an fdt@ node for each of those too.
    
     */
    static int fit_write_images(struct image_tool_params *params, char *fdt)
    {
    
    	struct content_info *cont;
    
    	const char *typename;
    	char str[100];
    
    	int ret;
    
    	fdt_begin_node(fdt, "images");
    
    	/* First the main image */
    	typename = genimg_get_type_short_name(params->fit_image_type);
    	snprintf(str, sizeof(str), "%s@1", typename);
    	fdt_begin_node(fdt, str);
    	fdt_property_string(fdt, "description", params->imagename);
    	fdt_property_string(fdt, "type", typename);
    
    	fdt_property_string(fdt, "arch",
    			    genimg_get_arch_short_name(params->arch));
    
    	fdt_property_string(fdt, "os", genimg_get_os_short_name(params->os));
    	fdt_property_string(fdt, "compression",
    			    genimg_get_comp_short_name(params->comp));
    	fdt_property_u32(fdt, "load", params->addr);
    	fdt_property_u32(fdt, "entry", params->ep);
    
    	/*
    	 * Put data last since it is large. SPL may only load the first part
    	 * of the DT, so this way it can access all the above fields.
    	 */
    	ret = fdt_property_file(params, fdt, "data", params->datafile);
    	if (ret)
    		return ret;
    	fdt_end_node(fdt);
    
    
    	/* Now the device tree files if available */
    	upto = 0;
    	for (cont = params->content_head; cont; cont = cont->next) {
    		if (cont->type != IH_TYPE_FLATDT)
    			continue;
    		snprintf(str, sizeof(str), "%s@%d", FIT_FDT_PROP, ++upto);
    		fdt_begin_node(fdt, str);
    
    		get_basename(str, sizeof(str), cont->fname);
    		fdt_property_string(fdt, "description", str);
    		ret = fdt_property_file(params, fdt, "data", cont->fname);
    		if (ret)
    			return ret;
    		fdt_property_string(fdt, "type", typename);
    		fdt_property_string(fdt, "arch",
    				    genimg_get_arch_short_name(params->arch));
    		fdt_property_string(fdt, "compression",
    				    genimg_get_comp_short_name(IH_COMP_NONE));
    		fdt_end_node(fdt);
    	}
    
    
    	/* And a ramdisk file if available */
    	if (params->fit_ramdisk) {
    		fdt_begin_node(fdt, FIT_RAMDISK_PROP "@1");
    
    		fdt_property_string(fdt, "type", FIT_RAMDISK_PROP);
    		fdt_property_string(fdt, "os", genimg_get_os_short_name(params->os));
    
    		ret = fdt_property_file(params, fdt, "data", params->fit_ramdisk);
    		if (ret)
    			return ret;
    
    		fdt_end_node(fdt);
    	}
    
    
    	fdt_end_node(fdt);
    
    	return 0;
    }
    
    /**
     * fit_write_configs() - Write out a list of configurations to the FIT
     *
    
     * If there are device tree files, we include a configuration for each, which
     * selects the main image (params->datafile) and its corresponding device
     * tree file.
     *
     * Otherwise we just create a configuration with the main image in it.
    
     */
    static void fit_write_configs(struct image_tool_params *params, char *fdt)
    {
    
    	struct content_info *cont;
    
    	const char *typename;
    	char str[100];
    
    
    	fdt_begin_node(fdt, "configurations");
    	fdt_property_string(fdt, "default", "conf@1");
    
    
    	upto = 0;
    	for (cont = params->content_head; cont; cont = cont->next) {
    		if (cont->type != IH_TYPE_FLATDT)
    			continue;
    		typename = genimg_get_type_short_name(cont->type);
    		snprintf(str, sizeof(str), "conf@%d", ++upto);
    		fdt_begin_node(fdt, str);
    
    		get_basename(str, sizeof(str), cont->fname);
    		fdt_property_string(fdt, "description", str);
    
    		typename = genimg_get_type_short_name(params->fit_image_type);
    		snprintf(str, sizeof(str), "%s@1", typename);
    		fdt_property_string(fdt, typename, str);
    
    
    		if (params->fit_ramdisk)
    			fdt_property_string(fdt, FIT_RAMDISK_PROP,
    					    FIT_RAMDISK_PROP "@1");
    
    
    		snprintf(str, sizeof(str), FIT_FDT_PROP "@%d", upto);
    		fdt_property_string(fdt, FIT_FDT_PROP, str);
    		fdt_end_node(fdt);
    	}
    
    	if (!upto) {
    		fdt_begin_node(fdt, "conf@1");
    		typename = genimg_get_type_short_name(params->fit_image_type);
    		snprintf(str, sizeof(str), "%s@1", typename);
    		fdt_property_string(fdt, typename, str);
    
    
    		if (params->fit_ramdisk)
    			fdt_property_string(fdt, FIT_RAMDISK_PROP,
    					    FIT_RAMDISK_PROP "@1");
    
    
    
    	fdt_end_node(fdt);
    }
    
    static int fit_build_fdt(struct image_tool_params *params, char *fdt, int size)
    {
    	int ret;
    
    	ret = fdt_create(fdt, size);
    	if (ret)
    		return ret;
    	fdt_finish_reservemap(fdt);
    	fdt_begin_node(fdt, "");
    	fdt_property_strf(fdt, "description",
    			  "%s image with one or more FDT blobs",
    			  genimg_get_type_name(params->fit_image_type));
    	fdt_property_strf(fdt, "creator", "U-Boot mkimage %s", PLAIN_VERSION);
    	fdt_property_u32(fdt, "#address-cells", 1);
    	ret = fit_write_images(params, fdt);
    	if (ret)
    		return ret;
    	fit_write_configs(params, fdt);
    	fdt_end_node(fdt);
    	ret = fdt_finish(fdt);
    	if (ret)
    		return ret;
    
    	return fdt_totalsize(fdt);
    }
    
    static int fit_build(struct image_tool_params *params, const char *fname)
    {
    	char *buf;
    	int size;
    	int ret;
    	int fd;
    
    	size = fit_calc_size(params);
    	if (size < 0)
    		return -1;
    	buf = malloc(size);
    	if (!buf) {
    		fprintf(stderr, "%s: Out of memory (%d bytes)\n",
    			params->cmdname, size);
    		return -1;
    	}
    	ret = fit_build_fdt(params, buf, size);
    	if (ret < 0) {
    		fprintf(stderr, "%s: Failed to build FIT image\n",
    			params->cmdname);
    
    	}
    	size = ret;
    	fd = open(fname, O_RDWR | O_CREAT | O_TRUNC | O_BINARY, 0666);
    	if (fd < 0) {
    		fprintf(stderr, "%s: Can't open %s: %s\n",
    			params->cmdname, fname, strerror(errno));
    		goto err;
    	}
    	ret = write(fd, buf, size);
    	if (ret != size) {
    		fprintf(stderr, "%s: Can't write %s: %s\n",
    			params->cmdname, fname, strerror(errno));
    		goto err;
    	}
    	close(fd);
    
    /**
     * fit_extract_data() - Move all data outside the FIT
     *
     * This takes a normal FIT file and removes all the 'data' properties from it.
     * The data is placed in an area after the FIT so that it can be accessed
     * using an offset into that area. The 'data' properties turn into
     * 'data-offset' properties.
     *
     * This function cannot cope with FITs with 'data-offset' properties. All
     * data must be in 'data' properties on entry.
     */
    static int fit_extract_data(struct image_tool_params *params, const char *fname)
    {
    	void *buf;
    	int buf_ptr;
    	int fit_size, new_size;
    	int fd;
    	struct stat sbuf;
    	void *fdt;
    	int ret;
    	int images;
    	int node;
    
    	fd = mmap_fdt(params->cmdname, fname, 0, &fdt, &sbuf, false);
    	if (fd < 0)
    		return -EIO;
    	fit_size = fdt_totalsize(fdt);
    
    	/* Allocate space to hold the image data we will extract */
    	buf = malloc(fit_size);
    	if (!buf) {
    		ret = -ENOMEM;
    
    		goto err_munmap;
    
    	}
    	buf_ptr = 0;
    
    	images = fdt_path_offset(fdt, FIT_IMAGES_PATH);
    	if (images < 0) {
    		debug("%s: Cannot find /images node: %d\n", __func__, images);
    		ret = -EINVAL;
    
    		goto err_munmap;
    
    	}
    
    	for (node = fdt_first_subnode(fdt, images);
    	     node >= 0;
    	     node = fdt_next_subnode(fdt, node)) {
    		const char *data;
    		int len;
    
    		data = fdt_getprop(fdt, node, "data", &len);
    		if (!data)
    			continue;
    		memcpy(buf + buf_ptr, data, len);
    		debug("Extracting data size %x\n", len);
    
    		ret = fdt_delprop(fdt, node, "data");
    		if (ret) {
    			ret = -EPERM;
    
    			goto err_munmap;
    
    		if (params->external_offset > 0) {
    			/* An external offset positions the data absolutely. */
    			fdt_setprop_u32(fdt, node, "data-position",
    					params->external_offset + buf_ptr);
    		} else {
    			fdt_setprop_u32(fdt, node, "data-offset", buf_ptr);
    		}
    
    		fdt_setprop_u32(fdt, node, "data-size", len);
    
    		buf_ptr += (len + 3) & ~3;
    	}
    
    	/* Pack the FDT and place the data after it */
    	fdt_pack(fdt);
    
    	debug("Size reduced from %x to %x\n", fit_size, fdt_totalsize(fdt));
    	debug("External data size %x\n", buf_ptr);
    	new_size = fdt_totalsize(fdt);
    	new_size = (new_size + 3) & ~3;
    	munmap(fdt, sbuf.st_size);
    
    	if (ftruncate(fd, new_size)) {
    		debug("%s: Failed to truncate file: %s\n", __func__,
    		      strerror(errno));
    		ret = -EIO;
    		goto err;
    	}
    
    
    	/* Check if an offset for the external data was set. */
    	if (params->external_offset > 0) {
    		if (params->external_offset < new_size) {
    			debug("External offset %x overlaps FIT length %x",
    			      params->external_offset, new_size);
    			ret = -EINVAL;
    			goto err;
    		}
    		new_size = params->external_offset;
    	}
    
    	if (lseek(fd, new_size, SEEK_SET) < 0) {
    		debug("%s: Failed to seek to end of file: %s\n", __func__,
    		      strerror(errno));
    		ret = -EIO;
    		goto err;
    	}
    	if (write(fd, buf, buf_ptr) != buf_ptr) {
    		debug("%s: Failed to write external data to file %s\n",
    		      __func__, strerror(errno));
    		ret = -EIO;
    		goto err;
    	}
    
    err_munmap:
    	munmap(fdt, sbuf.st_size);
    
    static int fit_import_data(struct image_tool_params *params, const char *fname)
    {
    	void *fdt, *old_fdt;
    	int fit_size, new_size, size, data_base;
    	int fd;
    	struct stat sbuf;
    	int ret;
    	int images;
    	int node;
    
    	fd = mmap_fdt(params->cmdname, fname, 0, &old_fdt, &sbuf, false);
    	if (fd < 0)
    		return -EIO;
    	fit_size = fdt_totalsize(old_fdt);
    	data_base = (fit_size + 3) & ~3;
    
    	/* Allocate space to hold the new FIT */
    	size = sbuf.st_size + 16384;
    	fdt = malloc(size);
    	if (!fdt) {
    		fprintf(stderr, "%s: Failed to allocate memory (%d bytes)\n",
    			__func__, size);
    		ret = -ENOMEM;
    		goto err;
    	}
    	ret = fdt_open_into(old_fdt, fdt, size);
    	if (ret) {
    		debug("%s: Failed to expand FIT: %s\n", __func__,
    		      fdt_strerror(errno));
    		ret = -EINVAL;
    		goto err;
    	}
    
    	images = fdt_path_offset(fdt, FIT_IMAGES_PATH);
    	if (images < 0) {
    		debug("%s: Cannot find /images node: %d\n", __func__, images);
    		ret = -EINVAL;
    		goto err;
    	}
    
    	for (node = fdt_first_subnode(fdt, images);
    	     node >= 0;
    	     node = fdt_next_subnode(fdt, node)) {
    		int buf_ptr;
    		int len;
    
    		buf_ptr = fdtdec_get_int(fdt, node, "data-offset", -1);
    		len = fdtdec_get_int(fdt, node, "data-size", -1);
    		if (buf_ptr == -1 || len == -1)
    			continue;
    		debug("Importing data size %x\n", len);
    
    		ret = fdt_setprop(fdt, node, "data", fdt + data_base + buf_ptr,
    				  len);
    		if (ret) {
    			debug("%s: Failed to write property: %s\n", __func__,
    			      fdt_strerror(ret));
    			ret = -EINVAL;
    			goto err;
    		}
    	}
    
    
    	munmap(old_fdt, sbuf.st_size);
    
    	close(fd);
    
    	/* Pack the FDT and place the data after it */
    	fdt_pack(fdt);
    
    	new_size = fdt_totalsize(fdt);
    	debug("Size expanded from %x to %x\n", fit_size, new_size);
    
    	fd = open(fname, O_RDWR | O_CREAT | O_TRUNC | O_BINARY, 0666);
    	if (fd < 0) {
    		fprintf(stderr, "%s: Can't open %s: %s\n",
    			params->cmdname, fname, strerror(errno));
    
    		free(fdt);
    		return -EIO;
    
    	}
    	if (write(fd, fdt, new_size) != new_size) {
    		debug("%s: Failed to write external data to file %s\n",
    		      __func__, strerror(errno));
    		ret = -EIO;
    		goto err;
    	}
    
    	ret = 0;
    
    err:
    
    /**
     * fit_handle_file - main FIT file processing function
     *
     * fit_handle_file() runs dtc to convert .its to .itb, includes
     * binary data, updates timestamp property and calculates hashes.
     *
     * datafile  - .its file
     * imagefile - .itb file
     *
     * returns:
     *     only on success, otherwise calls exit (EXIT_FAILURE);
     */
    
    static int fit_handle_file(struct image_tool_params *params)
    
    {
    	char tmpfile[MKIMAGE_MAX_TMPFILE_LEN];
    	char cmd[MKIMAGE_MAX_DTC_CMDLINE_LEN];
    
    	size_t size_inc;
    	int ret;
    
    
    	/* Flattened Image Tree (FIT) format  handling */
    	debug ("FIT format handling\n");
    
    	/* call dtc to include binary properties into the tmp file */
    	if (strlen (params->imagefile) +
    		strlen (MKIMAGE_TMPFILE_SUFFIX) + 1 > sizeof (tmpfile)) {
    		fprintf (stderr, "%s: Image file name (%s) too long, "
    				"can't create tmpfile",
    				params->imagefile, params->cmdname);
    		return (EXIT_FAILURE);
    	}
    	sprintf (tmpfile, "%s%s", params->imagefile, MKIMAGE_TMPFILE_SUFFIX);
    
    
    	/* We either compile the source file, or use the existing FIT image */
    
    	if (params->auto_its) {
    		if (fit_build(params, tmpfile)) {
    			fprintf(stderr, "%s: failed to build FIT\n",
    				params->cmdname);
    			return EXIT_FAILURE;
    		}
    		*cmd = '\0';
    	} else if (params->datafile) {
    
    		/* dtc -I dts -O dtb -p 500 datafile > tmpfile */
    		snprintf(cmd, sizeof(cmd), "%s %s %s > %s",
    			 MKIMAGE_DTC, params->dtc, params->datafile, tmpfile);
    		debug("Trying to execute \"%s\"\n", cmd);
    	} else {
    		snprintf(cmd, sizeof(cmd), "cp %s %s",
    			 params->imagefile, tmpfile);
    	}
    
    	if (*cmd && system(cmd) == -1) {
    
    		fprintf (stderr, "%s: system(%s) failed: %s\n",
    				params->cmdname, cmd, strerror(errno));
    
    	/* Move the data so it is internal to the FIT, if needed */
    	ret = fit_import_data(params, tmpfile);
    	if (ret)
    		goto err_system;
    
    
    	/*
    	 * Set hashes for images in the blob. Unfortunately we may need more
    	 * space in either FDT, so keep trying until we succeed.
    	 *
    	 * Note: this is pretty inefficient for signing, since we must
    	 * calculate the signature every time. It would be better to calculate
    	 * all the data and then store it in a separate step. However, this
    	 * would be considerably more complex to implement. Generally a few
    	 * steps of this loop is enough to sign with several keys.
    	 */
    	for (size_inc = 0; size_inc < 64 * 1024; size_inc += 1024) {
    		ret = fit_add_file_data(params, size_inc, tmpfile);
    		if (!ret || ret != -ENOSPC)
    			break;
    
    		fprintf(stderr, "%s Can't add hashes to FIT blob: %d\n",
    			params->cmdname, ret);
    
    	/* Move the data so it is external to the FIT, if requested */
    	if (params->external_data) {
    		ret = fit_extract_data(params, tmpfile);
    		if (ret)
    			goto err_system;
    	}
    
    
    	if (rename (tmpfile, params->imagefile) == -1) {
    		fprintf (stderr, "%s: Can't rename %s to %s: %s\n",
    				params->cmdname, tmpfile, params->imagefile,
    				strerror (errno));
    		unlink (tmpfile);
    		unlink (params->imagefile);
    
    		return EXIT_FAILURE;
    
    	return EXIT_SUCCESS;
    
    
    err_system:
    	unlink(tmpfile);
    	return -1;
    
    /**
     * fit_image_extract - extract a FIT component image
     * @fit: pointer to the FIT format image header
     * @image_noffset: offset of the component image node
     * @file_name: name of the file to store the FIT sub-image
     *
     * returns:
     *     zero in case of success or a negative value if fail.
     */
    static int fit_image_extract(
    	const void *fit,
    	int image_noffset,
    	const char *file_name)
    {
    	const void *file_data;
    	size_t file_size = 0;
    
    	/* get the "data" property of component at offset "image_noffset" */
    	fit_image_get_data(fit, image_noffset, &file_data, &file_size);
    
    	/* save the "file_data" into the file specified by "file_name" */
    	return imagetool_save_subimage(file_name, (ulong) file_data, file_size);
    }
    
    /**
     * fit_extract_contents - retrieve a sub-image component from the FIT image
     * @ptr: pointer to the FIT format image header
     * @params: command line parameters
     *
     * returns:
     *     zero in case of success or a negative value if fail.
     */
    static int fit_extract_contents(void *ptr, struct image_tool_params *params)
    {
    	int images_noffset;
    	int noffset;
    	int ndepth;
    	const void *fit = ptr;
    	int count = 0;
    	const char *p;
    
    	/* Indent string is defined in header image.h */
    	p = IMAGE_INDENT_STRING;
    
    	if (!fit_check_format(fit)) {
    		printf("Bad FIT image format\n");
    		return -1;
    	}
    
    	/* Find images parent node offset */
    	images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH);
    	if (images_noffset < 0) {
    		printf("Can't find images parent node '%s' (%s)\n",
    		       FIT_IMAGES_PATH, fdt_strerror(images_noffset));
    		return -1;
    	}
    
    	/* Avoid any overrun */
    	count = fit_get_subimage_count(fit, images_noffset);
    	if ((params->pflag < 0) || (count <= params->pflag)) {
    		printf("No such component at '%d'\n", params->pflag);
    		return -1;
    	}
    
    	/* Process its subnodes, extract the desired component from image */
    	for (ndepth = 0, count = 0,
    		noffset = fdt_next_node(fit, images_noffset, &ndepth);
    		(noffset >= 0) && (ndepth > 0);
    		noffset = fdt_next_node(fit, noffset, &ndepth)) {
    		if (ndepth == 1) {
    			/*
    			 * Direct child node of the images parent node,
    			 * i.e. component image node.
    			 */
    			if (params->pflag == count) {
    				printf("Extracted:\n%s Image %u (%s)\n", p,
    				       count, fit_get_name(fit, noffset, NULL));
    
    				fit_image_print(fit, noffset, p);
    
    				return fit_image_extract(fit, noffset,
    						params->outfile);
    			}
    
    			count++;
    		}
    	}
    
    	return 0;
    }
    
    
    static int fit_check_params(struct image_tool_params *params)
    
    	if (params->auto_its)
    		return 0;
    
    	return	((params->dflag && (params->fflag || params->lflag)) ||
    		(params->fflag && (params->dflag || params->lflag)) ||
    		(params->lflag && (params->dflag || params->fflag)));
    }
    
    
    U_BOOT_IMAGE_TYPE(
    	fitimage,
    	"FIT Image support",
    	sizeof(image_header_t),
    	(void *)&header,
    	fit_check_params,
    	fit_verify_header,
    	fit_print_contents,
    	NULL,
    
    	fit_extract_contents,
    
    	fit_check_image_types,
    	fit_handle_file,
    	NULL /* FIT images use DTB header */
    );