Skip to content
Snippets Groups Projects
util.c 6.49 KiB
Newer Older
  • Learn to ignore specific revisions
  •  * Copyright 2008-2012 Freescale Semiconductor, Inc.
    
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public License
     * Version 2 as published by the Free Software Foundation.
     */
    
    #include <common.h>
    
    #ifdef CONFIG_PPC
    
    #include <asm/fsl_law.h>
    
    #include <fsl_immap.h>
    
    /* To avoid 64-bit full-divides, we factor this here */
    
    #define ULL_2E12 2000000000000ULL
    #define UL_5POW12 244140625UL
    #define UL_2POW13 (1UL << 13)
    
    #define ULL_8FS 0xFFFFFFFFULL
    
     * Round up mclk_ps to nearest 1 ps in memory controller code
     * if the error is 0.5ps or more.
    
     *
     * If an imprecise data rate is too high due to rounding error
     * propagation, compute a suitably rounded mclk_ps to compute
     * a working memory controller configuration.
     */
    unsigned int get_memory_clk_period_ps(void)
    {
    
    	unsigned int data_rate = get_ddr_freq(0);
    	unsigned int result;
    
    	/* Round to nearest 10ps, being careful about 64-bit multiply/divide */
    
    	unsigned long long rem, mclk_ps = ULL_2E12;
    
    
    	/* Now perform the big divide, the result fits in 32-bits */
    
    	rem = do_div(mclk_ps, data_rate);
    	result = (rem >= (data_rate >> 1)) ? mclk_ps + 1 : mclk_ps;
    
    }
    
    /* Convert picoseconds into DRAM clock cycles (rounding up if needed). */
    unsigned int picos_to_mclk(unsigned int picos)
    {
    
    	unsigned long long clks, clks_rem;
    
    	unsigned long data_rate = get_ddr_freq(0);
    
    	/* Short circuit for zero picos */
    
    	/* First multiply the time by the data rate (32x32 => 64) */
    
    	clks = picos * (unsigned long long)data_rate;
    
    	/*
    	 * Now divide by 5^12 and track the 32-bit remainder, then divide
    	 * by 2*(2^12) using shifts (and updating the remainder).
    	 */
    
    	clks_rem = do_div(clks, UL_5POW12);
    
    	clks_rem += (clks & (UL_2POW13-1)) * UL_5POW12;
    
    	/* If we had a remainder greater than the 1ps error, then round up */
    	if (clks_rem > data_rate)
    
    	/* Clamp to the maximum representable value */
    
    	if (clks > ULL_8FS)
    		clks = ULL_8FS;
    
    	return (unsigned int) clks;
    }
    
    unsigned int mclk_to_picos(unsigned int mclk)
    {
    	return get_memory_clk_period_ps() * mclk;
    }
    
    
    #ifdef CONFIG_PPC
    
    void
    __fsl_ddr_set_lawbar(const common_timing_params_t *memctl_common_params,
    
    			   unsigned int law_memctl,
    
    	unsigned long long base = memctl_common_params->base_address;
    	unsigned long long size = memctl_common_params->total_mem;
    
    
    	/*
    	 * If no DIMMs on this controller, do not proceed any further.
    	 */
    	if (!memctl_common_params->ndimms_present) {
    		return;
    	}
    
    
    #if !defined(CONFIG_PHYS_64BIT)
    	if (base >= CONFIG_MAX_MEM_MAPPED)
    		return;
    	if ((base + size) >= CONFIG_MAX_MEM_MAPPED)
    		size = CONFIG_MAX_MEM_MAPPED - base;
    #endif
    
    	if (set_ddr_laws(base, size, law_memctl) < 0) {
    		printf("%s: ERROR (ctrl #%d, TRGT ID=%x)\n", __func__, ctrl_num,
    			law_memctl);
    		return ;
    
    	debug("setup ddr law base = 0x%llx, size 0x%llx, TRGT_ID 0x%x\n",
    		base, size, law_memctl);
    
    }
    
    __attribute__((weak, alias("__fsl_ddr_set_lawbar"))) void
    fsl_ddr_set_lawbar(const common_timing_params_t *memctl_common_params,
    			 unsigned int memctl_interleaved,
    			 unsigned int ctrl_num);
    
    void fsl_ddr_set_intl3r(const unsigned int granule_size)
    {
    #ifdef CONFIG_E6500
    	u32 *mcintl3r = (void *) (CONFIG_SYS_IMMR + 0x18004);
    	*mcintl3r = 0x80000000 | (granule_size & 0x1f);
    	debug("Enable MCINTL3R with granule size 0x%x\n", granule_size);
    #endif
    }
    
    
    u32 fsl_ddr_get_intl3r(void)
    {
    	u32 val = 0;
    #ifdef CONFIG_E6500
    	u32 *mcintl3r = (void *) (CONFIG_SYS_IMMR + 0x18004);
    	val = *mcintl3r;
    #endif
    	return val;
    }
    
    
    void board_add_ram_info(int use_default)
    {
    
    	struct ccsr_ddr __iomem *ddr =
    		(struct ccsr_ddr __iomem *)(CONFIG_SYS_FSL_DDR_ADDR);
    
    #if	defined(CONFIG_E6500) && (CONFIG_NUM_DDR_CONTROLLERS == 3)
    	u32 *mcintl3r = (void *) (CONFIG_SYS_IMMR + 0x18004);
    #endif
    
    #if (CONFIG_NUM_DDR_CONTROLLERS > 1)
    
    	uint32_t cs0_config = ddr_in32(&ddr->cs0_config);
    
    	uint32_t sdram_cfg = ddr_in32(&ddr->sdram_cfg);
    
    #if CONFIG_NUM_DDR_CONTROLLERS >= 2
    	if (!(sdram_cfg & SDRAM_CFG_MEM_EN)) {
    
    		ddr = (void __iomem *)CONFIG_SYS_FSL_DDR2_ADDR;
    
    		sdram_cfg = ddr_in32(&ddr->sdram_cfg);
    
    	}
    #endif
    #if CONFIG_NUM_DDR_CONTROLLERS >= 3
    	if (!(sdram_cfg & SDRAM_CFG_MEM_EN)) {
    
    		ddr = (void __iomem *)CONFIG_SYS_FSL_DDR3_ADDR;
    
    		sdram_cfg = ddr_in32(&ddr->sdram_cfg);
    
    	puts(" (DDR");
    	switch ((sdram_cfg & SDRAM_CFG_SDRAM_TYPE_MASK) >>
    		SDRAM_CFG_SDRAM_TYPE_SHIFT) {
    	case SDRAM_TYPE_DDR1:
    		puts("1");
    		break;
    	case SDRAM_TYPE_DDR2:
    		puts("2");
    		break;
    	case SDRAM_TYPE_DDR3:
    		puts("3");
    		break;
    	default:
    		puts("?");
    		break;
    	}
    
    	if (sdram_cfg & SDRAM_CFG_32_BE)
    		puts(", 32-bit");
    
    	else if (sdram_cfg & SDRAM_CFG_16_BE)
    		puts(", 16-bit");
    
    	else
    		puts(", 64-bit");
    
    	/* Calculate CAS latency based on timing cfg values */
    
    	cas_lat = ((ddr_in32(&ddr->timing_cfg_1) >> 16) & 0xf) + 1;
    	if ((ddr_in32(&ddr->timing_cfg_3) >> 12) & 1)
    
    		cas_lat += (8 << 1);
    	printf(", CL=%d", cas_lat >> 1);
    	if (cas_lat & 0x1)
    		puts(".5");
    
    	if (sdram_cfg & SDRAM_CFG_ECC_EN)
    		puts(", ECC on)");
    	else
    		puts(", ECC off)");
    
    
    #if (CONFIG_NUM_DDR_CONTROLLERS == 3)
    #ifdef CONFIG_E6500
    	if (*mcintl3r & 0x80000000) {
    		puts("\n");
    		puts("       DDR Controller Interleaving Mode: ");
    		switch (*mcintl3r & 0x1f) {
    		case FSL_DDR_3WAY_1KB_INTERLEAVING:
    			puts("3-way 1KB");
    			break;
    		case FSL_DDR_3WAY_4KB_INTERLEAVING:
    			puts("3-way 4KB");
    			break;
    		case FSL_DDR_3WAY_8KB_INTERLEAVING:
    			puts("3-way 8KB");
    			break;
    		default:
    			puts("3-way UNKNOWN");
    			break;
    		}
    	}
    #endif
    #endif
    #if (CONFIG_NUM_DDR_CONTROLLERS >= 2)
    
    	if (cs0_config & 0x20000000) {
    		puts("\n");
    		puts("       DDR Controller Interleaving Mode: ");
    
    		switch ((cs0_config >> 24) & 0xf) {
    
    		case FSL_DDR_256B_INTERLEAVING:
    			puts("256B");
    			break;
    
    		case FSL_DDR_CACHE_LINE_INTERLEAVING:
    			puts("cache line");
    			break;
    		case FSL_DDR_PAGE_INTERLEAVING:
    			puts("page");
    			break;
    		case FSL_DDR_BANK_INTERLEAVING:
    			puts("bank");
    			break;
    		case FSL_DDR_SUPERBANK_INTERLEAVING:
    			puts("super-bank");
    			break;
    		default:
    			puts("invalid");
    			break;
    		}
    	}
    #endif
    
    	if ((sdram_cfg >> 8) & 0x7f) {
    		puts("\n");
    		puts("       DDR Chip-Select Interleaving Mode: ");
    		switch(sdram_cfg >> 8 & 0x7f) {
    		case FSL_DDR_CS0_CS1_CS2_CS3:
    			puts("CS0+CS1+CS2+CS3");
    			break;
    		case FSL_DDR_CS0_CS1:
    			puts("CS0+CS1");
    			break;
    		case FSL_DDR_CS2_CS3:
    			puts("CS2+CS3");
    			break;
    		case FSL_DDR_CS0_CS1_AND_CS2_CS3:
    			puts("CS0+CS1 and CS2+CS3");
    			break;
    		default:
    			puts("invalid");
    			break;
    		}
    	}
    }