Skip to content
Snippets Groups Projects
efi_memory.c 12.3 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     *  EFI application memory management
     *
     *  Copyright (c) 2016 Alexander Graf
     *
     *  SPDX-License-Identifier:     GPL-2.0+
     */
    
    #include <common.h>
    #include <efi_loader.h>
    #include <malloc.h>
    #include <asm/global_data.h>
    #include <libfdt_env.h>
    
    #include <linux/list_sort.h>
    
    #include <inttypes.h>
    #include <watchdog.h>
    
    DECLARE_GLOBAL_DATA_PTR;
    
    struct efi_mem_list {
    	struct list_head link;
    	struct efi_mem_desc desc;
    };
    
    
    #define EFI_CARVE_NO_OVERLAP		-1
    #define EFI_CARVE_LOOP_AGAIN		-2
    #define EFI_CARVE_OVERLAPS_NONRAM	-3
    
    
    /* This list contains all memory map items */
    LIST_HEAD(efi_mem);
    
    
    #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
    void *efi_bounce_buffer;
    #endif
    
    
    /*
     * U-Boot services each EFI AllocatePool request as a separate
     * (multiple) page allocation.  We have to track the number of pages
     * to be able to free the correct amount later.
     * EFI requires 8 byte alignment for pool allocations, so we can
     * prepend each allocation with an 64 bit header tracking the
     * allocation size, and hand out the remainder to the caller.
     */
    struct efi_pool_allocation {
    	u64 num_pages;
    	char data[];
    };
    
    
    /*
     * Sorts the memory list from highest address to lowest address
     *
     * When allocating memory we should always start from the highest
     * address chunk, so sort the memory list such that the first list
     * iterator gets the highest address and goes lower from there.
     */
    static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b)
    {
    	struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link);
    	struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link);
    
    	if (mema->desc.physical_start == memb->desc.physical_start)
    		return 0;
    	else if (mema->desc.physical_start < memb->desc.physical_start)
    		return 1;
    	else
    		return -1;
    }
    
    static void efi_mem_sort(void)
    {
    	list_sort(NULL, &efi_mem, efi_mem_cmp);
    }
    
    
    /*
     * Unmaps all memory occupied by the carve_desc region from the
     * list entry pointed to by map.
     *
    
     * Returns EFI_CARVE_NO_OVERLAP if the regions don't overlap.
     * Returns EFI_CARVE_OVERLAPS_NONRAM if the carve and map overlap,
     *    and the map contains anything but free ram.
     *    (only when overlap_only_ram is true)
     * Returns EFI_CARVE_LOOP_AGAIN if the mapping list should be traversed
     *    again, as it has been altered
     * Returns the number of overlapping pages. The pages are removed from
     *     the mapping list.
     *
     * In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility
     * to readd the already carved out pages to the mapping.
    
     */
    static int efi_mem_carve_out(struct efi_mem_list *map,
    			     struct efi_mem_desc *carve_desc,
    			     bool overlap_only_ram)
    {
    	struct efi_mem_list *newmap;
    	struct efi_mem_desc *map_desc = &map->desc;
    	uint64_t map_start = map_desc->physical_start;
    	uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT);
    	uint64_t carve_start = carve_desc->physical_start;
    	uint64_t carve_end = carve_start +
    			     (carve_desc->num_pages << EFI_PAGE_SHIFT);
    
    	/* check whether we're overlapping */
    	if ((carve_end <= map_start) || (carve_start >= map_end))
    
    		return EFI_CARVE_NO_OVERLAP;
    
    
    	/* We're overlapping with non-RAM, warn the caller if desired */
    	if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY))
    
    		return EFI_CARVE_OVERLAPS_NONRAM;
    
    
    	/* Sanitize carve_start and carve_end to lie within our bounds */
    	carve_start = max(carve_start, map_start);
    	carve_end = min(carve_end, map_end);
    
    	/* Carving at the beginning of our map? Just move it! */
    	if (carve_start == map_start) {
    		if (map_end == carve_end) {
    			/* Full overlap, just remove map */
    			list_del(&map->link);
    
    			free(map);
    		} else {
    			map->desc.physical_start = carve_end;
    			map->desc.num_pages = (map_end - carve_end)
    					      >> EFI_PAGE_SHIFT;
    
    		return (carve_end - carve_start) >> EFI_PAGE_SHIFT;
    
    	}
    
    	/*
    	 * Overlapping maps, just split the list map at carve_start,
    	 * it will get moved or removed in the next iteration.
    	 *
    	 * [ map_desc |__carve_start__| newmap ]
    	 */
    
    	/* Create a new map from [ carve_start ... map_end ] */
    	newmap = calloc(1, sizeof(*newmap));
    	newmap->desc = map->desc;
    	newmap->desc.physical_start = carve_start;
    	newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT;
    
    	/* Insert before current entry (descending address order) */
    	list_add_tail(&newmap->link, &map->link);
    
    
    	/* Shrink the map to [ map_start ... carve_start ] */
    	map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT;
    
    
    	return EFI_CARVE_LOOP_AGAIN;
    
    }
    
    uint64_t efi_add_memory_map(uint64_t start, uint64_t pages, int memory_type,
    			    bool overlap_only_ram)
    {
    	struct list_head *lhandle;
    	struct efi_mem_list *newlist;
    
    	bool carve_again;
    	uint64_t carved_pages = 0;
    
    	debug("%s: 0x%" PRIx64 " 0x%" PRIx64 " %d %s\n", __func__,
    	      start, pages, memory_type, overlap_only_ram ? "yes" : "no");
    
    
    	if (!pages)
    		return start;
    
    	newlist = calloc(1, sizeof(*newlist));
    	newlist->desc.type = memory_type;
    	newlist->desc.physical_start = start;
    	newlist->desc.virtual_start = start;
    	newlist->desc.num_pages = pages;
    
    	switch (memory_type) {
    	case EFI_RUNTIME_SERVICES_CODE:
    	case EFI_RUNTIME_SERVICES_DATA:
    		newlist->desc.attribute = (1 << EFI_MEMORY_WB_SHIFT) |
    					  (1ULL << EFI_MEMORY_RUNTIME_SHIFT);
    		break;
    	case EFI_MMAP_IO:
    		newlist->desc.attribute = 1ULL << EFI_MEMORY_RUNTIME_SHIFT;
    		break;
    	default:
    		newlist->desc.attribute = 1 << EFI_MEMORY_WB_SHIFT;
    		break;
    	}
    
    	/* Add our new map */
    	do {
    
    		carve_again = false;
    
    		list_for_each(lhandle, &efi_mem) {
    			struct efi_mem_list *lmem;
    			int r;
    
    			lmem = list_entry(lhandle, struct efi_mem_list, link);
    			r = efi_mem_carve_out(lmem, &newlist->desc,
    					      overlap_only_ram);
    
    			switch (r) {
    			case EFI_CARVE_OVERLAPS_NONRAM:
    				/*
    				 * The user requested to only have RAM overlaps,
    				 * but we hit a non-RAM region. Error out.
    				 */
    
    			case EFI_CARVE_NO_OVERLAP:
    				/* Just ignore this list entry */
    				break;
    			case EFI_CARVE_LOOP_AGAIN:
    				/*
    				 * We split an entry, but need to loop through
    				 * the list again to actually carve it.
    				 */
    				carve_again = true;
    				break;
    			default:
    				/* We carved a number of pages */
    				carved_pages += r;
    				carve_again = true;
    				break;
    			}
    
    			if (carve_again) {
    				/* The list changed, we need to start over */
    
    	} while (carve_again);
    
    	if (overlap_only_ram && (carved_pages != pages)) {
    		/*
    		 * The payload wanted to have RAM overlaps, but we overlapped
    		 * with an unallocated region. Error out.
    		 */
    		return 0;
    	}
    
    
    	/* Add our new map */
            list_add_tail(&newlist->link, &efi_mem);
    
    
    	/* And make sure memory is listed in descending order */
    	efi_mem_sort();
    
    
    	return start;
    }
    
    static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr)
    {
    	struct list_head *lhandle;
    
    	list_for_each(lhandle, &efi_mem) {
    		struct efi_mem_list *lmem = list_entry(lhandle,
    			struct efi_mem_list, link);
    		struct efi_mem_desc *desc = &lmem->desc;
    		uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT;
    		uint64_t desc_end = desc->physical_start + desc_len;
    		uint64_t curmax = min(max_addr, desc_end);
    		uint64_t ret = curmax - len;
    
    		/* We only take memory from free RAM */
    		if (desc->type != EFI_CONVENTIONAL_MEMORY)
    			continue;
    
    		/* Out of bounds for max_addr */
    		if ((ret + len) > max_addr)
    			continue;
    
    		/* Out of bounds for upper map limit */
    		if ((ret + len) > desc_end)
    			continue;
    
    		/* Out of bounds for lower map limit */
    		if (ret < desc->physical_start)
    			continue;
    
    		/* Return the highest address in this map within bounds */
    		return ret;
    	}
    
    	return 0;
    }
    
    efi_status_t efi_allocate_pages(int type, int memory_type,
    				unsigned long pages, uint64_t *memory)
    {
    	u64 len = pages << EFI_PAGE_SHIFT;
    	efi_status_t r = EFI_SUCCESS;
    	uint64_t addr;
    
    	switch (type) {
    	case 0:
    		/* Any page */
    
    		addr = efi_find_free_memory(len, gd->start_addr_sp);
    
    		if (!addr) {
    			r = EFI_NOT_FOUND;
    			break;
    		}
    		break;
    	case 1:
    		/* Max address */
    		addr = efi_find_free_memory(len, *memory);
    		if (!addr) {
    			r = EFI_NOT_FOUND;
    			break;
    		}
    		break;
    	case 2:
    		/* Exact address, reserve it. The addr is already in *memory. */
    		addr = *memory;
    		break;
    	default:
    		/* UEFI doesn't specify other allocation types */
    		r = EFI_INVALID_PARAMETER;
    		break;
    	}
    
    	if (r == EFI_SUCCESS) {
    		uint64_t ret;
    
    		/* Reserve that map in our memory maps */
    		ret = efi_add_memory_map(addr, pages, memory_type, true);
    		if (ret == addr) {
    			*memory = addr;
    		} else {
    			/* Map would overlap, bail out */
    			r = EFI_OUT_OF_RESOURCES;
    		}
    	}
    
    	return r;
    }
    
    void *efi_alloc(uint64_t len, int memory_type)
    {
    	uint64_t ret = 0;
    	uint64_t pages = (len + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
    	efi_status_t r;
    
    	r = efi_allocate_pages(0, memory_type, pages, &ret);
    	if (r == EFI_SUCCESS)
    		return (void*)(uintptr_t)ret;
    
    	return NULL;
    }
    
    efi_status_t efi_free_pages(uint64_t memory, unsigned long pages)
    {
    
    	uint64_t r = 0;
    
    	r = efi_add_memory_map(memory, pages, EFI_CONVENTIONAL_MEMORY, false);
    	/* Merging of adjacent free regions is missing */
    
    	if (r == memory)
    		return EFI_SUCCESS;
    
    	return EFI_NOT_FOUND;
    
    efi_status_t efi_allocate_pool(int pool_type, unsigned long size,
    			       void **buffer)
    {
    	efi_status_t r;
    	efi_physical_addr_t t;
    
    	u64 num_pages = (size + sizeof(u64) + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
    
    	if (size == 0) {
    		*buffer = NULL;
    		return EFI_SUCCESS;
    	}
    
    
    	r = efi_allocate_pages(0, pool_type, num_pages, &t);
    
    
    	if (r == EFI_SUCCESS) {
    		struct efi_pool_allocation *alloc = (void *)(uintptr_t)t;
    		alloc->num_pages = num_pages;
    		*buffer = alloc->data;
    	}
    
    	return r;
    }
    
    efi_status_t efi_free_pool(void *buffer)
    {
    	efi_status_t r;
    	struct efi_pool_allocation *alloc;
    
    	alloc = container_of(buffer, struct efi_pool_allocation, data);
    	/* Sanity check, was the supplied address returned by allocate_pool */
    	assert(((uintptr_t)alloc & EFI_PAGE_MASK) == 0);
    
    	r = efi_free_pages((uintptr_t)alloc, alloc->num_pages);
    
    efi_status_t efi_get_memory_map(unsigned long *memory_map_size,
    			       struct efi_mem_desc *memory_map,
    			       unsigned long *map_key,
    			       unsigned long *descriptor_size,
    			       uint32_t *descriptor_version)
    {
    	ulong map_size = 0;
    
    	int map_entries = 0;
    
    	struct list_head *lhandle;
    
    	unsigned long provided_map_size = *memory_map_size;
    
    
    	list_for_each(lhandle, &efi_mem)
    
    		map_entries++;
    
    	map_size = map_entries * sizeof(struct efi_mem_desc);
    
    
    	*memory_map_size = map_size;
    
    	if (descriptor_size)
    		*descriptor_size = sizeof(struct efi_mem_desc);
    
    
    	if (descriptor_version)
    		*descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION;
    
    
    	if (provided_map_size < map_size)
    
    		return EFI_BUFFER_TOO_SMALL;
    
    	/* Copy list into array */
    	if (memory_map) {
    
    		/* Return the list in ascending order */
    		memory_map = &memory_map[map_entries - 1];
    
    		list_for_each(lhandle, &efi_mem) {
    			struct efi_mem_list *lmem;
    
    			lmem = list_entry(lhandle, struct efi_mem_list, link);
    			*memory_map = lmem->desc;
    
    __weak void efi_add_known_memory(void)
    
    {
    	int i;
    
    	/* Add RAM */
    	for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
    		u64 ram_start = gd->bd->bi_dram[i].start;
    		u64 ram_size = gd->bd->bi_dram[i].size;
    		u64 start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
    		u64 pages = (ram_size + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
    
    		efi_add_memory_map(start, pages, EFI_CONVENTIONAL_MEMORY,
    				   false);
    	}
    
    }
    
    int efi_memory_init(void)
    {
    	unsigned long runtime_start, runtime_end, runtime_pages;
    	unsigned long uboot_start, uboot_pages;
    	unsigned long uboot_stack_size = 16 * 1024 * 1024;
    
    	efi_add_known_memory();
    
    
    	/* Add U-Boot */
    	uboot_start = (gd->start_addr_sp - uboot_stack_size) & ~EFI_PAGE_MASK;
    	uboot_pages = (gd->ram_top - uboot_start) >> EFI_PAGE_SHIFT;
    	efi_add_memory_map(uboot_start, uboot_pages, EFI_LOADER_DATA, false);
    
    	/* Add Runtime Services */
    	runtime_start = (ulong)&__efi_runtime_start & ~EFI_PAGE_MASK;
    	runtime_end = (ulong)&__efi_runtime_stop;
    	runtime_end = (runtime_end + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
    	runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT;
    	efi_add_memory_map(runtime_start, runtime_pages,
    			   EFI_RUNTIME_SERVICES_CODE, false);
    
    
    #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
    	/* Request a 32bit 64MB bounce buffer region */
    	uint64_t efi_bounce_buffer_addr = 0xffffffff;
    
    	if (efi_allocate_pages(1, EFI_LOADER_DATA,
    			       (64 * 1024 * 1024) >> EFI_PAGE_SHIFT,
    			       &efi_bounce_buffer_addr) != EFI_SUCCESS)
    		return -1;
    
    	efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr;
    #endif