Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "bsp/board.h"
#include "tusb.h"
#include "pico/stdlib.h"
#include "pico/binary_info.h"
#include "pico/multicore.h"
#include "hardware/gpio.h"
#include "hardware/i2c.h"
#include "hardware/irq.h"
#include "usb_descriptors.h"
#define KBD_VARIANT_QWERTY_US
#define KBD_COLS 12
#define KBD_ROWS 6
#define KBD_MATRIX_SZ KBD_COLS * KBD_ROWS + 4
#include "matrix.h"
#define PIN_SDA 0
#define PIN_SCL 1
#define PIN_UART_TX 4
#define PIN_UART_RX 5
#define PIN_ROW1 19
#define PIN_ROW2 20
#define PIN_ROW3 23
#define PIN_ROW4 22
#define PIN_ROW5 21
#define PIN_ROW6 18
#define PIN_COL1 6
#define PIN_COL2 7
#define PIN_COL3 8
#define PIN_COL4 9
#define PIN_COL5 10
#define PIN_COL6 11
#define PIN_COL7 12
#define PIN_COL8 13
#define PIN_COL9 14
#define PIN_COL10 15
#define PIN_COL11 16
#define PIN_COL12 17
#define PIN_LEDS 24
#define ADDR_SENSOR (0x79)
#define MAX_SCANCODES 6
static uint8_t pressed_scancodes[MAX_SCANCODES] = {0,0,0,0,0,0};
static int pressed_keys = 0;
void hid_task(void);
int process_keyboard(uint8_t* resulting_scancodes);
#define UART_ID uart1
#define BAUD_RATE 115200
#define DATA_BITS 8
#define STOP_BITS 1
#define PARITY UART_PARITY_NONE
static char uart_rx_line[128];
static int uart_rx_i=0;
void on_uart_rx() {
while (uart_is_readable(UART_ID)) {
char c = uart_getc(UART_ID);
if (uart_rx_i<127) {
uart_rx_line[uart_rx_i++] = c;
uart_rx_line[uart_rx_i] = 0;
}
if (c == '\n') {
// TODO hack
if (uart_rx_i>4) {
// cut off after 4 digits
uart_rx_line[4] = 0;
float percentage = ((float)atoi(uart_rx_line))/(float)10.0;
float bar_sz = (percentage/(float)100.0)*12;
led_task(0x008800, (int)bar_sz);
/*------------- MAIN -------------*/
int main(void)
{
board_init();
tusb_init();
uart_init(UART_ID, BAUD_RATE);
uart_set_format(UART_ID, DATA_BITS, STOP_BITS, PARITY);
uart_set_hw_flow(UART_ID, false, false);
uart_set_fifo_enabled(UART_ID, true);
gpio_set_function(PIN_UART_TX, GPIO_FUNC_UART);
gpio_set_function(PIN_UART_RX, GPIO_FUNC_UART);
unsigned int UART_IRQ = UART_ID == uart0 ? UART0_IRQ : UART1_IRQ;
irq_set_exclusive_handler(UART_IRQ, on_uart_rx);
irq_set_enabled(UART_IRQ, true);
uart_set_irq_enables(UART_ID, true, false); // bool rx_has_data, bool tx_needs_data
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
gpio_pull_up(PIN_COL1);
gpio_init(PIN_LEDS);
gpio_set_dir(PIN_LEDS, true); // output
gpio_init(PIN_COL1);
gpio_set_dir(PIN_COL1, false);
gpio_pull_up(PIN_COL1);
gpio_init(PIN_COL2);
gpio_set_dir(PIN_COL2, false);
gpio_pull_up(PIN_COL2);
gpio_init(PIN_COL3);
gpio_set_dir(PIN_COL3, false);
gpio_pull_up(PIN_COL3);
gpio_init(PIN_COL4);
gpio_set_dir(PIN_COL4, false);
gpio_pull_up(PIN_COL4);
gpio_init(PIN_COL5);
gpio_set_dir(PIN_COL5, false);
gpio_pull_up(PIN_COL5);
gpio_init(PIN_COL6);
gpio_set_dir(PIN_COL6, false);
gpio_pull_up(PIN_COL6);
gpio_init(PIN_COL7);
gpio_set_dir(PIN_COL7, false);
gpio_pull_up(PIN_COL7);
gpio_init(PIN_COL8);
gpio_set_dir(PIN_COL8, false);
gpio_pull_up(PIN_COL8);
gpio_init(PIN_COL9);
gpio_set_dir(PIN_COL9, false);
gpio_pull_up(PIN_COL9);
gpio_init(PIN_COL10);
gpio_set_dir(PIN_COL10, false);
gpio_pull_up(PIN_COL10);
gpio_init(PIN_COL11);
gpio_set_dir(PIN_COL11, false);
gpio_pull_up(PIN_COL11);
gpio_init(PIN_COL12);
gpio_set_dir(PIN_COL12, false);
gpio_pull_up(PIN_COL12);
gpio_init(PIN_ROW1);
gpio_set_dir(PIN_ROW1, true);
gpio_init(PIN_ROW2);
gpio_set_dir(PIN_ROW2, true);
gpio_init(PIN_ROW3);
gpio_set_dir(PIN_ROW3, true);
gpio_init(PIN_ROW4);
gpio_set_dir(PIN_ROW4, true);
gpio_init(PIN_ROW5);
gpio_set_dir(PIN_ROW5, true);
gpio_init(PIN_ROW6);
gpio_set_dir(PIN_ROW6, true);
i2c_init(i2c0, 100 * 1000);
gpio_set_function(PIN_SDA, GPIO_FUNC_I2C);
gpio_set_function(PIN_SCL, GPIO_FUNC_I2C);
bi_decl(bi_2pins_with_func(PIN_SDA, PIN_SCL, GPIO_FUNC_I2C));
unsigned char buf[] = {0x7f, 0x00, 0x00, 0x00};
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
i2c_write_blocking(i2c0, ADDR_SENSOR, buf, 2, false);
buf[0] = 0x05;
buf[1] = 0x01;
i2c_write_blocking(i2c0, ADDR_SENSOR, buf, 2, false);
//multicore_launch_core1(led_core);
/*for (int i=0; i<10; i++) {
led_task(0x000000);
}*/
while (1) {
pressed_keys = process_keyboard(pressed_scancodes);
tud_task(); // tinyusb device task
hid_task();
}
return 0;
}
//--------------------------------------------------------------------+
// Device callbacks
//--------------------------------------------------------------------+
// Invoked when device is mounted
void tud_mount_cb(void)
{
}
// Invoked when device is unmounted
void tud_umount_cb(void)
{
}
// Invoked when usb bus is suspended
// remote_wakeup_en : if host allow us to perform remote wakeup
// Within 7ms, device must draw an average of current less than 2.5 mA from bus
void tud_suspend_cb(bool remote_wakeup_en)
{
(void) remote_wakeup_en;
}
// Invoked when usb bus is resumed
void tud_resume_cb(void)
{
}
// RGB LEDS
int __attribute__((optimize("Os"))) delay300ns() {
// ~300ns
asm volatile(
"mov r0, #6\n" // 1 cycle (was 10)
"loop1: sub r0, r0, #1\n" // 1 cycle
"bne loop1\n" // 2 cycles if loop taken, 1 if not
);
return 0;
}
//--------------------------------------------------------------------+
// USB HID
//--------------------------------------------------------------------+
typedef struct TU_ATTR_PACKED
{
uint8_t buttons; /**< buttons mask for currently pressed buttons in the mouse. */
int8_t x; /**< Current delta x movement of the mouse. */
int8_t y; /**< Current delta y movement on the mouse. */
int8_t wheel; /**< Current delta wheel movement on the mouse. */
int8_t pan; // using AC Pan
} hid_trackball_report_t;
bool tud_hid_trackball_report(uint8_t report_id,
uint8_t buttons, int8_t x, int8_t y, int8_t vertical, int8_t horizontal)
{
hid_trackball_report_t report =
{
.buttons = buttons,
.x = x,
.y = y,
.wheel = vertical,
.pan = horizontal
};
return tud_hid_report(report_id, &report, sizeof(report));
}
uint8_t matrix_debounce[KBD_COLS*KBD_ROWS];
uint8_t matrix_state[KBD_COLS*KBD_ROWS];
int active_meta_mode = 0;
uint8_t last_meta_key = 0;
uint8_t* active_matrix = matrix;
bool media_toggle = 0;
bool fn_key = 0; // Am I holding FN?
bool circle = 0; // Am I holding circle?
int command_sent = 0;
int process_keyboard(uint8_t* resulting_scancodes) {
// how many keys are pressed this round
uint8_t total_pressed = 0;
uint8_t used_key_codes = 0;
for (int i=0; i<MAX_SCANCODES; i++) {
pressed_scancodes[i] = 0;
}
// pull ROWs low one after the other
for (int y = 0; y < KBD_ROWS; y++) {
switch (y) {
case 0: gpio_put(PIN_ROW1, 0); break;
case 1: gpio_put(PIN_ROW2, 0); break;
case 2: gpio_put(PIN_ROW3, 0); break;
case 3: gpio_put(PIN_ROW4, 0); break;
case 4: gpio_put(PIN_ROW5, 0); break;
case 5: gpio_put(PIN_ROW6, 0); break;
}
// wait for signal to stabilize
// TODO maybe not necessary
//_delay_us(10);
// check input COLs
for (int x = 0; x < KBD_COLS; x++) {
uint8_t keycode;
int loc = y*KBD_COLS+x;
keycode = active_matrix[loc];
uint8_t pressed = 0;
uint8_t debounced_pressed = 0;
switch (x) {
case 0: pressed = !gpio_get(PIN_COL1); break;
case 1: pressed = !gpio_get(PIN_COL2); break;
case 2: pressed = !gpio_get(PIN_COL3); break;
case 3: pressed = !gpio_get(PIN_COL4); break;
case 4: pressed = !gpio_get(PIN_COL5); break;
case 5: pressed = !gpio_get(PIN_COL6); break;
case 6: pressed = !gpio_get(PIN_COL7); break;
case 7: pressed = !gpio_get(PIN_COL8); break;
case 8: pressed = !gpio_get(PIN_COL9); break;
case 9: pressed = !gpio_get(PIN_COL10); break;
case 10: pressed = !gpio_get(PIN_COL11); break;
case 11: pressed = !gpio_get(PIN_COL12); break;
}
// shift new state as bit into debounce "register"
matrix_debounce[loc] = (uint8_t)(matrix_debounce[loc]<<1)|pressed;
// if unclear state, we need to keep the last state of the key
if (matrix_debounce[loc] == 0x00) {
matrix_state[loc] = 0;
} else if (matrix_debounce[loc] == 0x01) {
matrix_state[loc] = 1;
}
debounced_pressed = matrix_state[loc];
if (debounced_pressed) {
total_pressed++;
// Is circle key pressed?
// FIXME HACK
if (keycode == KEY_COMPOSE && (matrix_state[0] || matrix_state[11]) && !command_sent) {
if (matrix_state[0]) {
// ESC
//remote_turn_som_power_on();
uart_puts(UART_ID, "1p\r\n");
command_sent = 1;
} else if (matrix_state[11]) {
//remote_turn_som_power_off();
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
uart_puts(UART_ID, "0p\r\n");
command_sent = 1;
}
} else if (keycode == HID_KEY_EXECUTE) {
fn_key = 1;
//active_matrix = matrix_fn;
} else {
if (active_meta_mode) {
// not holding the same key?
if (last_meta_key != keycode) {
// hyper/circle/menu functions
int stay_meta = 0; //execute_meta_function(keycode);
// don't repeat action while key is held down
last_meta_key = keycode;
// exit meta mode
if (!stay_meta) {
active_meta_mode = 0;
}
// after wake-up from sleep mode, skip further keymap processing
if (stay_meta == 2) {
//reset_keyboard_state();
//enter_meta_mode();
return 0;
}
}
} else if (!last_meta_key) {
// not meta mode, regular key: report keypress via USB
// 6 keys is the limit in the HID descriptor
if (used_key_codes < MAX_SCANCODES && resulting_scancodes && y < 5) {
resulting_scancodes[used_key_codes++] = keycode;
}
}
}
} else {
// key not pressed
if (keycode == KEY_COMPOSE) {
command_sent = 0;
}
else if (keycode == HID_KEY_EXECUTE) {
fn_key = 0;
if (media_toggle) {
//active_matrix = matrix_fn_toggled;
} else {
//active_matrix = matrix;
}
} else if (keycode == KEY_SYSRQ) {
if (fn_key && circle) {
if (!media_toggle) {
media_toggle = 1;
//active_matrix = matrix_fn_toggled;
} else {
media_toggle = 0;
//active_matrix = matrix_fn;
}
}
circle = 0;
}
}
}
switch (y) {
case 0: gpio_put(PIN_ROW1, 1); break;
case 1: gpio_put(PIN_ROW2, 1); break;
case 2: gpio_put(PIN_ROW3, 1); break;
case 3: gpio_put(PIN_ROW4, 1); break;
case 4: gpio_put(PIN_ROW5, 1); break;
case 5: gpio_put(PIN_ROW6, 1); break;
}
}
// if no more keys are held down, allow a new meta command
if (total_pressed<1) last_meta_key = 0;
return used_key_codes;
}
int prev_buttons = 0;
int scroll_toggle = 0;
int prev_num_keys = 0;
static void send_hid_report(uint8_t report_id)
{
// skip if hid is not ready yet
if ( !tud_hid_ready() ) return;
switch (report_id) {
case REPORT_ID_KEYBOARD:
{
//int num_keys = process_keyboard(pressed_scancodes);
//if (num_keys > 0) {
tud_hid_keyboard_report(REPORT_ID_KEYBOARD, 0, pressed_scancodes);
//} else {
// send empty key report if previously has key pressed
//if (prev_num_keys) tud_hid_keyboard_report(REPORT_ID_KEYBOARD, 0, NULL);
//}
prev_num_keys = pressed_keys;
}
break;
case REPORT_ID_MOUSE:
{
uint8_t buf[] = {0x7f, 0x00, 0x00, 0x00};
buf[0] = 0x02;
i2c_write_blocking(i2c0, ADDR_SENSOR, buf, 1, true);
i2c_read_blocking(i2c0, ADDR_SENSOR, buf, 1, false);
int btn3 = matrix_state[KBD_COLS*5+3]>0;
int btn1 = matrix_state[KBD_COLS*5+4]>0;
int btn2 = matrix_state[KBD_COLS*5+7]>0;
int btn4 = matrix_state[KBD_COLS*5+8]>0;
int buttons = btn1 | (btn2<<1) | (btn4<<2);
if (buf[0] & 0xf0) {
buf[0] = 0x03;
i2c_write_blocking(i2c0, ADDR_SENSOR, buf, 1, true);
i2c_read_blocking(i2c0, ADDR_SENSOR, buf, 2, false);
int8_t nx = (int8_t)buf[0];
int8_t ny = (int8_t)buf[1];
// no button, right + down, no scroll pan
if (btn3 || scroll_toggle) {
tud_hid_mouse_report(REPORT_ID_MOUSE, (uint8_t)buttons, 0, 0, 2*ny, -2*nx);
tud_hid_mouse_report(REPORT_ID_MOUSE, (uint8_t)buttons, -2*nx, -2*ny, 0, 0);
}
} else {
//if (buttons != prev_buttons) {
tud_hid_mouse_report(REPORT_ID_MOUSE, (uint8_t)buttons, 0, 0, 0, 0);
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
//}
}
prev_buttons = buttons;
}
break;
case REPORT_ID_CONSUMER_CONTROL:
{
// use to avoid send multiple consecutive zero report
/*static bool has_consumer_key = false;
if ( btn )
{
// volume down
uint16_t volume_down = HID_USAGE_CONSUMER_VOLUME_DECREMENT;
tud_hid_report(REPORT_ID_CONSUMER_CONTROL, &volume_down, 2);
has_consumer_key = true;
}else
{
// send empty key report (release key) if previously has key pressed
uint16_t empty_key = 0;
if (has_consumer_key) tud_hid_report(REPORT_ID_CONSUMER_CONTROL, &empty_key, 2);
has_consumer_key = false;
}*/
}
break;
case REPORT_ID_GAMEPAD:
{
// use to avoid send multiple consecutive zero report for keyboard
/*static bool has_gamepad_key = false;
hid_gamepad_report_t report =
{
.x = 0, .y = 0, .z = 0, .rz = 0, .rx = 0, .ry = 0,
.hat = 0, .buttons = 0
};
if ( btn )
{
report.hat = GAMEPAD_HAT_UP;
report.buttons = GAMEPAD_BUTTON_A;
tud_hid_report(REPORT_ID_GAMEPAD, &report, sizeof(report));
has_gamepad_key = true;
}else
{
report.hat = GAMEPAD_HAT_CENTERED;
report.buttons = 0;
if (has_gamepad_key) tud_hid_report(REPORT_ID_GAMEPAD, &report, sizeof(report));
has_gamepad_key = false;
}*/
}
break;
default: break;
}
}
int led_counter = 0;
int rgb_channel = 0;
int rgb_val = 0;
uint32_t color = rgb;
for (int y=0; y<6; y++) {
int w = 12;
if (y==5) w = 4;
for (int x=0; x<w; x++) {
uint32_t bits = color;
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
for (int i=23; i>=0; i--) {
if (bits & (1<<23)) {
// one
gpio_put(PIN_LEDS, 1);
delay300ns();
delay300ns();
delay300ns();
gpio_put(PIN_LEDS, 0);
// ~600ms delay
delay300ns();
delay300ns();
} else {
// zero
gpio_put(PIN_LEDS, 1);
delay300ns();
gpio_put(PIN_LEDS, 0);
// ~1.2ms delay
delay300ns();
delay300ns();
delay300ns();
delay300ns();
//delay300ns();
}
bits <<= 1;
}
}
}
}
// Every 10ms, we will sent 1 report for each HID profile (keyboard, mouse etc ..)
// tud_hid_report_complete_cb() is used to send the next report after previous one is complete
void hid_task(void)
{
// Poll every 10ms
const uint32_t interval_ms = 10;
static uint32_t start_ms = 0;
if ( board_millis() - start_ms < interval_ms) return; // not enough time
start_ms += interval_ms;
uint32_t const btn = 0; //board_button_read();
// Remote wakeup
if ( tud_suspended() && btn )
{
// Wake up host if we are in suspend mode
// and REMOTE_WAKEUP feature is enabled by host
tud_remote_wakeup();
} else {
// Send the 1st of report chain, the rest will be sent by tud_hid_report_complete_cb()
send_hid_report(REPORT_ID_KEYBOARD);
}
}
void led_core() {
}
// Invoked when sent REPORT successfully to host
// Application can use this to send the next report
// Note: For composite reports, report[0] is report ID
void tud_hid_report_complete_cb(uint8_t instance, uint8_t const* report, uint8_t len)
{
(void) instance;
(void) len;
uint8_t next_report_id = report[0] + 1;
if (next_report_id < REPORT_ID_COUNT)
{
send_hid_report(next_report_id);
}
}
// Invoked when received GET_REPORT control request
// Application must fill buffer report's content and return its length.
// Return zero will cause the stack to STALL request
uint16_t tud_hid_get_report_cb(uint8_t instance, uint8_t report_id, hid_report_type_t report_type, uint8_t* buffer, uint16_t reqlen)
{
// TODO not Implemented
(void) instance;
(void) report_id;
(void) report_type;
(void) buffer;
(void) reqlen;
return 0;
}
// Invoked when received SET_REPORT control request or
// received data on OUT endpoint ( Report ID = 0, Type = 0 )
void tud_hid_set_report_cb(uint8_t instance, uint8_t report_id, hid_report_type_t report_type, uint8_t const* buffer, uint16_t bufsize)
{
(void) instance;
if (report_type == HID_REPORT_TYPE_OUTPUT)
{
// Set keyboard LED e.g Capslock, Numlock etc...
if (report_id == REPORT_ID_KEYBOARD)
{
// bufsize should be (at least) 1
if ( bufsize < 1 ) return;
//uint8_t const kbd_leds = buffer[0];
}
}
}