Skip to content
Snippets Groups Projects
Commit 26fde50b authored by Nano's avatar Nano
Browse files

add spi handler to firmware

parent 1a9c21f6
No related branches found
No related tags found
No related merge requests found
......@@ -39,6 +39,9 @@
// don't forget to set this to the correct rev for your motherboard!
#define REFORM_MOTHERBOARD_REV REFORM_MBREV_R3
//#define REF2_DEBUG 1
#define FW_STRING1 "MREF2LPC"
#define FW_STRING2 "R3"
#define FW_STRING3 "20210925"
#define FW_REV "MREF2LPC R3 20210925"
#define POWERSAVE_SLEEP_SECONDS 1
......@@ -55,6 +58,7 @@
#define ST_EXPECT_CMD 4
#define ST_SYNTAX_ERROR 5
#define ST_EXPECT_RETURN 6
#define ST_EXPECT_MAGIC 7
extern volatile uint8_t i2c_write_buf[I2C_BUFSIZE];
extern volatile uint8_t i2c_read_buf[I2C_BUFSIZE];
......@@ -781,6 +785,213 @@ void handle_commands() {
}
}
unsigned char spi_cmd_state = ST_EXPECT_MAGIC;
unsigned char spi_command = '\0';
uint8_t spi_arg1 = 0;
/**
* @brief SPI command from imx poll function
* Attempts to handle spi communication asynchronously and in a non-blocking way.
*
*/
void handle_spi_commands() {
uint8_t spiBuf[8];
uint8_t len = 8;
// non blocking read
// read until requested buffer full or receive buffer empty
for (uint8_t i = 0; i < len; i++ )
{
// No more data in receive buffer
if ((LPC_SSP0->SR & SSP0_SR_RNE_MASK) == SSP0_SR_RNE_EMPTY)
{
len = i;
break;
}
spiBuf[i] = LPC_SSP0->DR;
}
if (len > 0) {
sprintf(uartBuffer, "spi:%d,%d,%d,%d\r\n", spiBuf[0], spiBuf[1], spiBuf[2], spiBuf[3]);
uartSend((uint8_t*)uartBuffer, strlen(uartBuffer));
}
// states:
// 0 arg1 byte expected
// 4 command byte expected
// 6 execute command
// 7 magic byte expected
for(uint8_t s = 0; s < len; s++)
{
if (spi_cmd_state == ST_EXPECT_MAGIC)
{
// magic byte found, prevents garbage data
// in the bus from triggering a command
if(spiBuf[s] == 0xB5)
{
spi_cmd_state = ST_EXPECT_CMD;
}
}
else if (spi_cmd_state == ST_EXPECT_CMD) {
// read command
spi_command = spiBuf[s];
spi_cmd_state = ST_EXPECT_DIGIT_0;
}
else if (spi_cmd_state == ST_EXPECT_DIGIT_0) {
// read arg1 byte
spi_arg1 = spiBuf[s];
spi_cmd_state = ST_EXPECT_RETURN;
}
}
if (spi_cmd_state != ST_EXPECT_RETURN) {
// waiting for more data
return;
}
sprintf(uartBuffer, "spi:exec:%d,%d\r\n", spi_command, spi_arg1);
uartSend((uint8_t*)uartBuffer, strlen(uartBuffer));
// clear recieve buffer, reuse as send buffer
memset(spiBuf, 0, 8);
// execute power state command
if (spi_command == 'p') {
// toggle system power and/or reset imx
if (spi_arg1 == 1) {
turn_som_power_off();
}
if (spi_arg1 == 2) {
turn_som_power_on();
}
if (spi_arg1 == 3) {
reset_som();
}
if (spi_arg1 == 4) {
turn_aux_power_off();
}
if (spi_arg1 == 5) {
turn_aux_power_on();
}
sprintf(uartBuffer,"spi:power: %d\r\n", spi_arg1);
uartSend((uint8_t*)uartBuffer, strlen(uartBuffer));
spiBuf[0] = (som_is_powered > 0);
}
// execute test command
else if (spi_command == 'x') {
// test sleep
force_sleep = spi_arg1;
sprintf(uartBuffer,"spi:sleep: %d\r\n", force_sleep);
uartSend((uint8_t*)uartBuffer, strlen(uartBuffer));
}
// return firmware version and api info
else if (spi_command == 'f')
{
if(spi_arg1 == 1) {
memcpy(spiBuf, FW_STRING2, 8);
}
else if (spi_arg1 == 2) {
memcpy(spiBuf, FW_STRING3, 8);
}
else {
memcpy(spiBuf, FW_STRING1, 8);
}
sprintf(uartBuffer,"spi:firm:\r\n");
uartSend((uint8_t*)uartBuffer, strlen(uartBuffer));
}
// execute status query command
else if (spi_command == 'q') {
uint8_t percentage = (uint8_t)capacity_percentage;
if (!reached_full_charge) {
percentage = 255;
}
uint16_t voltsInt = (uint16_t)(volts*1000.0);
uint16_t currentInt = (uint16_t)(current*1000.0);
spiBuf[0] = (uint8_t)voltsInt;
spiBuf[1] = (uint8_t)(voltsInt >> 8);
spiBuf[2] = (uint8_t)currentInt;
spiBuf[3] = (uint8_t)(currentInt >> 8);
spiBuf[4] = (uint8_t)percentage;
spiBuf[5] = (uint8_t)state;
sprintf(uartBuffer,"spi:status:%d,%d,%d,%d\r\n", voltsInt,
currentInt, percentage, state);
uartSend((uint8_t*)uartBuffer, strlen(uartBuffer));
}
else if (spi_command == 'v' && spi_arg1>=0 && spi_arg1<=7) {
// get cell voltage
uint16_t volts = cells_v[spi_arg1]*1000.0;
spiBuf[0] = (uint8_t)volts;
spiBuf[1] = (uint8_t)(volts >> 8);
sprintf(uartBuffer,"spi:volt:%d-%d\r\n", spi_arg1, volts);
uartSend((uint8_t*)uartBuffer, strlen(uartBuffer));
}
else if (spi_command == 'u') {
// turn reporting to i.MX on or off
if (spi_arg1 > 0) {
// turn i.MX UART output on
LPC_IOCON->PIO1_13 |= 0x3;
} else {
// turn i.MX UART output off
LPC_IOCON->PIO1_13 &= ~0x07;
}
}
else if (spi_command == 'c') {
uint16_t cap_accu = (uint16_t) capacity_accu_ampsecs / 3.6;
uint16_t cap_min = (uint16_t) capacity_min_ampsecs / 3.6;
uint16_t cap_max = (uint16_t) capacity_max_ampsecs / 3.6;
spiBuf[0] = (uint8_t) cap_accu;
spiBuf[1] = (uint8_t) (cap_accu >> 8);
spiBuf[2] = (uint8_t) cap_min;
spiBuf[3] = (uint8_t) (cap_min >> 8);
spiBuf[4] = (uint8_t) cap_max;
spiBuf[5] = (uint8_t) (cap_max >> 8);
// get battery capacity (mAh)
sprintf(uartBuffer,"spi:cap:%d/%d/%d\r\n",
cap_accu, cap_min, cap_max);
uartSend((uint8_t*)uartBuffer, strlen(uartBuffer));
}
else if (spi_command == 'e') {
// toggle serial echo
cmd_echo = cmd_number?1:0;
}
else {
sprintf(uartBuffer, "spi:error:command\r\n");
uartSend((uint8_t*)uartBuffer, strlen(uartBuffer));
}
// Host must wait while the LPC prepares response buffer
// If host does not read 8 bytes the previous response buffer will be stuck in here.
uint8_t Dummy = Dummy;
for (uint8_t i = 0; i < 8; i++)
{
/* Move on only if TX FIFO not full. */
// while ((LPC_SSP0->SR & SSP0_SR_TNF_MASK) == SSP0_SR_TNF_FULL);
LPC_SSP0->DR = spiBuf[i];
// while ( (LPC_SSP0->SR & SSP0_SR_RNE_MASK) == SSP0_SR_RNE_EMPTY );
/* Whenever a byte is written, MISO FIFO counter increments, Clear FIFO
on MISO. Otherwise, when sspReceive is called, previous data byte
is left in the FIFO. */
Dummy = LPC_SSP0->DR;
}
spi_cmd_state = ST_EXPECT_MAGIC;
spi_command = 0;
spi_arg1 = 0;
return;
}
void calculate_capacity_percentage()
{
if (capacity_accu_ampsecs <= capacity_min_ampsecs) {
......@@ -792,21 +1003,6 @@ void calculate_capacity_percentage()
}
}
#define REPORT_MAX 63
void report_to_spi(void)
{
char report[REPORT_MAX+1];
int percentage = capacity_percentage;
if (!reached_full_charge) {
percentage = -1;
}
snprintf(report, REPORT_MAX, "(%dmV %dmA %d%%)\n", (int)(volts*1000.0), (int)(current*1000.0), percentage);
report[63] = 0;
ssp0Send((uint8_t*)report, strlen(report));
}
void WDT_IRQHandler(void)
{
// Disable WDT interrupt
......@@ -1027,6 +1223,9 @@ int main(void)
// this also resets powersave holdoff counter
handle_commands();
//TODO: if chip select high
handle_spi_commands();
if (state == ST_POWERSAVE || state == ST_UNDERVOLTED) {
cur_second += POWERSAVE_SLEEP_SECONDS;
} else {
......@@ -1038,9 +1237,6 @@ int main(void)
// prevent rollovers
cycles_in_state += cur_second-last_second;
// report to SPI0 controller
// TODO: not yet functional
// report_to_spi();
}
last_second = cur_second;
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment