Skip to content
Snippets Groups Projects
Select Git revision
  • c002e39ae669403baf21a7e04473447387f6302d
  • master default protected
  • early-display
  • variant-emmc-nvme-boot
  • 2023-01-25
  • v3
  • variant-emmc-nvme-boot
  • 2020-06-01
8 results

scsi.c

Blame
  • Forked from Reform / reform-boundary-uboot
    Source project has a limited visibility.
    fdt_support.c 40.27 KiB
    /*
     * (C) Copyright 2007
     * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com
     *
     * Copyright 2010-2011 Freescale Semiconductor, Inc.
     *
     * SPDX-License-Identifier:	GPL-2.0+
     */
    
    #include <common.h>
    #include <inttypes.h>
    #include <stdio_dev.h>
    #include <linux/ctype.h>
    #include <linux/types.h>
    #include <asm/global_data.h>
    #include <libfdt.h>
    #include <fdt_support.h>
    #include <exports.h>
    #include <fdtdec.h>
    
    /**
     * fdt_getprop_u32_default_node - Return a node's property or a default
     *
     * @fdt: ptr to device tree
     * @off: offset of node
     * @cell: cell offset in property
     * @prop: property name
     * @dflt: default value if the property isn't found
     *
     * Convenience function to return a node's property or a default value if
     * the property doesn't exist.
     */
    u32 fdt_getprop_u32_default_node(const void *fdt, int off, int cell,
    				const char *prop, const u32 dflt)
    {
    	const fdt32_t *val;
    	int len;
    
    	val = fdt_getprop(fdt, off, prop, &len);
    
    	/* Check if property exists */
    	if (!val)
    		return dflt;
    
    	/* Check if property is long enough */
    	if (len < ((cell + 1) * sizeof(uint32_t)))
    		return dflt;
    
    	return fdt32_to_cpu(*val);
    }
    
    /**
     * fdt_getprop_u32_default - Find a node and return it's property or a default
     *
     * @fdt: ptr to device tree
     * @path: path of node
     * @prop: property name
     * @dflt: default value if the property isn't found
     *
     * Convenience function to find a node and return it's property or a
     * default value if it doesn't exist.
     */
    u32 fdt_getprop_u32_default(const void *fdt, const char *path,
    				const char *prop, const u32 dflt)
    {
    	int off;
    
    	off = fdt_path_offset(fdt, path);
    	if (off < 0)
    		return dflt;
    
    	return fdt_getprop_u32_default_node(fdt, off, 0, prop, dflt);
    }
    
    /**
     * fdt_find_and_setprop: Find a node and set it's property
     *
     * @fdt: ptr to device tree
     * @node: path of node
     * @prop: property name
     * @val: ptr to new value
     * @len: length of new property value
     * @create: flag to create the property if it doesn't exist
     *
     * Convenience function to directly set a property given the path to the node.
     */
    int fdt_find_and_setprop(void *fdt, const char *node, const char *prop,
    			 const void *val, int len, int create)
    {
    	int nodeoff = fdt_path_offset(fdt, node);
    
    	if (nodeoff < 0)
    		return nodeoff;
    
    	if ((!create) && (fdt_get_property(fdt, nodeoff, prop, NULL) == NULL))
    		return 0; /* create flag not set; so exit quietly */
    
    	return fdt_setprop(fdt, nodeoff, prop, val, len);
    }
    
    /**
     * fdt_find_or_add_subnode() - find or possibly add a subnode of a given node
     *
     * @fdt: pointer to the device tree blob
     * @parentoffset: structure block offset of a node
     * @name: name of the subnode to locate
     *
     * fdt_subnode_offset() finds a subnode of the node with a given name.
     * If the subnode does not exist, it will be created.
     */
    int fdt_find_or_add_subnode(void *fdt, int parentoffset, const char *name)
    {
    	int offset;
    
    	offset = fdt_subnode_offset(fdt, parentoffset, name);
    
    	if (offset == -FDT_ERR_NOTFOUND)
    		offset = fdt_add_subnode(fdt, parentoffset, name);
    
    	if (offset < 0)
    		printf("%s: %s: %s\n", __func__, name, fdt_strerror(offset));
    
    	return offset;
    }
    
    /* rename to CONFIG_OF_STDOUT_PATH ? */
    #if defined(OF_STDOUT_PATH)
    static int fdt_fixup_stdout(void *fdt, int chosenoff)
    {
    	return fdt_setprop(fdt, chosenoff, "linux,stdout-path",
    			      OF_STDOUT_PATH, strlen(OF_STDOUT_PATH) + 1);
    }
    #elif defined(CONFIG_OF_STDOUT_VIA_ALIAS) && defined(CONFIG_CONS_INDEX)
    static int fdt_fixup_stdout(void *fdt, int chosenoff)
    {
    	int err;
    	int aliasoff;
    	char sername[9] = { 0 };
    	const void *path;
    	int len;
    	char tmp[256]; /* long enough */
    
    	sprintf(sername, "serial%d", CONFIG_CONS_INDEX - 1);
    
    	aliasoff = fdt_path_offset(fdt, "/aliases");
    	if (aliasoff < 0) {
    		err = aliasoff;
    		goto noalias;
    	}
    
    	path = fdt_getprop(fdt, aliasoff, sername, &len);
    	if (!path) {
    		err = len;
    		goto noalias;
    	}
    
    	/* fdt_setprop may break "path" so we copy it to tmp buffer */
    	memcpy(tmp, path, len);
    
    	err = fdt_setprop(fdt, chosenoff, "linux,stdout-path", tmp, len);
    	if (err < 0)
    		printf("WARNING: could not set linux,stdout-path %s.\n",
    		       fdt_strerror(err));
    
    	return err;
    
    noalias:
    	printf("WARNING: %s: could not read %s alias: %s\n",
    	       __func__, sername, fdt_strerror(err));
    
    	return 0;
    }
    #else
    static int fdt_fixup_stdout(void *fdt, int chosenoff)
    {
    	return 0;
    }
    #endif
    
    static inline int fdt_setprop_uxx(void *fdt, int nodeoffset, const char *name,
    				  uint64_t val, int is_u64)
    {
    	if (is_u64)
    		return fdt_setprop_u64(fdt, nodeoffset, name, val);
    	else
    		return fdt_setprop_u32(fdt, nodeoffset, name, (uint32_t)val);
    }
    
    int fdt_root(void *fdt)
    {
    	char *serial;
    	int err;
    
    	err = fdt_check_header(fdt);
    	if (err < 0) {
    		printf("fdt_root: %s\n", fdt_strerror(err));
    		return err;
    	}
    
    	serial = env_get("serial#");
    	if (serial) {
    		err = fdt_setprop(fdt, 0, "serial-number", serial,
    				  strlen(serial) + 1);
    
    		if (err < 0) {
    			printf("WARNING: could not set serial-number %s.\n",
    			       fdt_strerror(err));
    			return err;
    		}
    	}
    
    	return 0;
    }
    
    int fdt_initrd(void *fdt, ulong initrd_start, ulong initrd_end)
    {
    	int   nodeoffset;
    	int   err, j, total;
    	int is_u64;
    	uint64_t addr, size;
    
    	/* just return if the size of initrd is zero */
    	if (initrd_start == initrd_end)
    		return 0;
    
    	/* find or create "/chosen" node. */
    	nodeoffset = fdt_find_or_add_subnode(fdt, 0, "chosen");
    	if (nodeoffset < 0)
    		return nodeoffset;
    
    	total = fdt_num_mem_rsv(fdt);
    
    	/*
    	 * Look for an existing entry and update it.  If we don't find
    	 * the entry, we will j be the next available slot.
    	 */
    	for (j = 0; j < total; j++) {
    		err = fdt_get_mem_rsv(fdt, j, &addr, &size);
    		if (addr == initrd_start) {
    			fdt_del_mem_rsv(fdt, j);
    			break;
    		}
    	}
    
    	err = fdt_add_mem_rsv(fdt, initrd_start, initrd_end - initrd_start);
    	if (err < 0) {
    		printf("fdt_initrd: %s\n", fdt_strerror(err));
    		return err;
    	}
    
    	is_u64 = (fdt_address_cells(fdt, 0) == 2);
    
    	err = fdt_setprop_uxx(fdt, nodeoffset, "linux,initrd-start",
    			      (uint64_t)initrd_start, is_u64);
    
    	if (err < 0) {
    		printf("WARNING: could not set linux,initrd-start %s.\n",
    		       fdt_strerror(err));
    		return err;
    	}
    
    	err = fdt_setprop_uxx(fdt, nodeoffset, "linux,initrd-end",
    			      (uint64_t)initrd_end, is_u64);
    
    	if (err < 0) {
    		printf("WARNING: could not set linux,initrd-end %s.\n",
    		       fdt_strerror(err));
    
    		return err;
    	}
    
    	return 0;
    }
    
    int fdt_chosen(void *fdt)
    {
    	int   nodeoffset;
    	int   err;
    	char  *str;		/* used to set string properties */
    
    	err = fdt_check_header(fdt);
    	if (err < 0) {
    		printf("fdt_chosen: %s\n", fdt_strerror(err));
    		return err;
    	}
    
    	/* find or create "/chosen" node. */
    	nodeoffset = fdt_find_or_add_subnode(fdt, 0, "chosen");
    	if (nodeoffset < 0)
    		return nodeoffset;
    
    	str = env_get("bootargs");
    	if (str) {
    		err = fdt_setprop(fdt, nodeoffset, "bootargs", str,
    				  strlen(str) + 1);
    		if (err < 0) {
    			printf("WARNING: could not set bootargs %s.\n",
    			       fdt_strerror(err));
    			return err;
    		}
    	}
    
    	return fdt_fixup_stdout(fdt, nodeoffset);
    }
    
    void do_fixup_by_path(void *fdt, const char *path, const char *prop,
    		      const void *val, int len, int create)
    {
    #if defined(DEBUG)
    	int i;
    	debug("Updating property '%s/%s' = ", path, prop);
    	for (i = 0; i < len; i++)
    		debug(" %.2x", *(u8*)(val+i));
    	debug("\n");
    #endif
    	int rc = fdt_find_and_setprop(fdt, path, prop, val, len, create);
    	if (rc)
    		printf("Unable to update property %s:%s, err=%s\n",
    			path, prop, fdt_strerror(rc));
    }
    
    void do_fixup_by_path_u32(void *fdt, const char *path, const char *prop,
    			  u32 val, int create)
    {
    	fdt32_t tmp = cpu_to_fdt32(val);
    	do_fixup_by_path(fdt, path, prop, &tmp, sizeof(tmp), create);
    }
    
    void do_fixup_by_prop(void *fdt,
    		      const char *pname, const void *pval, int plen,
    		      const char *prop, const void *val, int len,
    		      int create)
    {
    	int off;
    #if defined(DEBUG)
    	int i;
    	debug("Updating property '%s' = ", prop);
    	for (i = 0; i < len; i++)
    		debug(" %.2x", *(u8*)(val+i));
    	debug("\n");
    #endif
    	off = fdt_node_offset_by_prop_value(fdt, -1, pname, pval, plen);
    	while (off != -FDT_ERR_NOTFOUND) {
    		if (create || (fdt_get_property(fdt, off, prop, NULL) != NULL))
    			fdt_setprop(fdt, off, prop, val, len);
    		off = fdt_node_offset_by_prop_value(fdt, off, pname, pval, plen);
    	}
    }
    
    void do_fixup_by_prop_u32(void *fdt,
    			  const char *pname, const void *pval, int plen,
    			  const char *prop, u32 val, int create)
    {
    	fdt32_t tmp = cpu_to_fdt32(val);
    	do_fixup_by_prop(fdt, pname, pval, plen, prop, &tmp, 4, create);
    }
    
    void do_fixup_by_compat(void *fdt, const char *compat,
    			const char *prop, const void *val, int len, int create)
    {
    	int off = -1;
    #if defined(DEBUG)
    	int i;
    	debug("Updating property '%s' = ", prop);
    	for (i = 0; i < len; i++)
    		debug(" %.2x", *(u8*)(val+i));
    	debug("\n");
    #endif
    	off = fdt_node_offset_by_compatible(fdt, -1, compat);
    	while (off != -FDT_ERR_NOTFOUND) {
    		if (create || (fdt_get_property(fdt, off, prop, NULL) != NULL))
    			fdt_setprop(fdt, off, prop, val, len);
    		off = fdt_node_offset_by_compatible(fdt, off, compat);
    	}
    }
    
    void do_fixup_by_compat_u32(void *fdt, const char *compat,
    			    const char *prop, u32 val, int create)
    {
    	fdt32_t tmp = cpu_to_fdt32(val);
    	do_fixup_by_compat(fdt, compat, prop, &tmp, 4, create);
    }
    
    #ifdef CONFIG_ARCH_FIXUP_FDT_MEMORY
    /*
     * fdt_pack_reg - pack address and size array into the "reg"-suitable stream
     */
    static int fdt_pack_reg(const void *fdt, void *buf, u64 *address, u64 *size,
    			int n)
    {
    	int i;
    	int address_cells = fdt_address_cells(fdt, 0);
    	int size_cells = fdt_size_cells(fdt, 0);
    	char *p = buf;
    
    	for (i = 0; i < n; i++) {
    		if (address_cells == 2)
    			*(fdt64_t *)p = cpu_to_fdt64(address[i]);
    		else
    			*(fdt32_t *)p = cpu_to_fdt32(address[i]);
    		p += 4 * address_cells;
    
    		if (size_cells == 2)
    			*(fdt64_t *)p = cpu_to_fdt64(size[i]);
    		else
    			*(fdt32_t *)p = cpu_to_fdt32(size[i]);
    		p += 4 * size_cells;
    	}
    
    	return p - (char *)buf;
    }
    
    #ifdef CONFIG_NR_DRAM_BANKS
    #define MEMORY_BANKS_MAX CONFIG_NR_DRAM_BANKS
    #else
    #define MEMORY_BANKS_MAX 4
    #endif
    int fdt_fixup_memory_banks(void *blob, u64 start[], u64 size[], int banks)
    {
    	int err, nodeoffset;
    	int len;
    	u8 tmp[MEMORY_BANKS_MAX * 16]; /* Up to 64-bit address + 64-bit size */
    
    	if (banks > MEMORY_BANKS_MAX) {
    		printf("%s: num banks %d exceeds hardcoded limit %d."
    		       " Recompile with higher MEMORY_BANKS_MAX?\n",
    		       __FUNCTION__, banks, MEMORY_BANKS_MAX);
    		return -1;
    	}
    
    	err = fdt_check_header(blob);
    	if (err < 0) {
    		printf("%s: %s\n", __FUNCTION__, fdt_strerror(err));
    		return err;
    	}
    
    	/* find or create "/memory" node. */
    	nodeoffset = fdt_find_or_add_subnode(blob, 0, "memory");
    	if (nodeoffset < 0)
    			return nodeoffset;
    
    	err = fdt_setprop(blob, nodeoffset, "device_type", "memory",
    			sizeof("memory"));
    	if (err < 0) {
    		printf("WARNING: could not set %s %s.\n", "device_type",
    				fdt_strerror(err));
    		return err;
    	}
    
    	if (!banks)
    		return 0;
    
    	len = fdt_pack_reg(blob, tmp, start, size, banks);
    
    	err = fdt_setprop(blob, nodeoffset, "reg", tmp, len);
    	if (err < 0) {
    		printf("WARNING: could not set %s %s.\n",
    				"reg", fdt_strerror(err));
    		return err;
    	}
    	return 0;
    }
    #endif
    
    int fdt_fixup_memory(void *blob, u64 start, u64 size)
    {
    	return fdt_fixup_memory_banks(blob, &start, &size, 1);
    }
    
    void fdt_fixup_ethernet(void *fdt)
    {
    	int i, j, prop;
    	char *tmp, *end;
    	char mac[16];
    	const char *path;
    	unsigned char mac_addr[ARP_HLEN];
    	int offset;
    
    	if (fdt_path_offset(fdt, "/aliases") < 0)
    		return;
    
    	/* Cycle through all aliases */
    	for (prop = 0; ; prop++) {
    		const char *name;
    
    		/* FDT might have been edited, recompute the offset */
    		offset = fdt_first_property_offset(fdt,
    			fdt_path_offset(fdt, "/aliases"));
    		/* Select property number 'prop' */
    		for (i = 0; i < prop; i++)
    			offset = fdt_next_property_offset(fdt, offset);
    
    		if (offset < 0)
    			break;
    
    		path = fdt_getprop_by_offset(fdt, offset, &name, NULL);
    		if (!strncmp(name, "ethernet", 8)) {
    			/* Treat plain "ethernet" same as "ethernet0". */
    			if (!strcmp(name, "ethernet"))
    				i = 0;
    			else
    				i = trailing_strtol(name);
    
    			if (i != -1) {
    				if (i == 0)
    					strcpy(mac, "ethaddr");
    				else
    					sprintf(mac, "eth%daddr", i);
    			} else {
    				continue;
    			}
    			tmp = env_get(mac);
    			if (!tmp)
    				continue;
    
    			for (j = 0; j < 6; j++) {
    				mac_addr[j] = tmp ?
    					      simple_strtoul(tmp, &end, 16) : 0;
    				if (tmp)
    					tmp = (*end) ? end + 1 : end;
    			}
    
    			do_fixup_by_path(fdt, path, "mac-address",
    					 &mac_addr, 6, 0);
    			do_fixup_by_path(fdt, path, "local-mac-address",
    					 &mac_addr, 6, 1);
    		}
    	}
    }
    
    /* Resize the fdt to its actual size + a bit of padding */
    int fdt_shrink_to_minimum(void *blob, uint extrasize)
    {
    	int i;
    	uint64_t addr, size;
    	int total, ret;
    	uint actualsize;
    
    	if (!blob)
    		return 0;
    
    	total = fdt_num_mem_rsv(blob);
    	for (i = 0; i < total; i++) {
    		fdt_get_mem_rsv(blob, i, &addr, &size);
    		if (addr == (uintptr_t)blob) {
    			fdt_del_mem_rsv(blob, i);
    			break;
    		}
    	}
    
    	/*
    	 * Calculate the actual size of the fdt
    	 * plus the size needed for 5 fdt_add_mem_rsv, one
    	 * for the fdt itself and 4 for a possible initrd
    	 * ((initrd-start + initrd-end) * 2 (name & value))
    	 */
    	actualsize = fdt_off_dt_strings(blob) +
    		fdt_size_dt_strings(blob) + 5 * sizeof(struct fdt_reserve_entry);
    
    	actualsize += extrasize;
    	/* Make it so the fdt ends on a page boundary */
    	actualsize = ALIGN(actualsize + ((uintptr_t)blob & 0xfff), 0x1000);
    	actualsize = actualsize - ((uintptr_t)blob & 0xfff);
    
    	/* Change the fdt header to reflect the correct size */
    	fdt_set_totalsize(blob, actualsize);
    
    	/* Add the new reservation */
    	ret = fdt_add_mem_rsv(blob, (uintptr_t)blob, actualsize);
    	if (ret < 0)
    		return ret;
    
    	return actualsize;
    }
    
    #ifdef CONFIG_PCI
    #define CONFIG_SYS_PCI_NR_INBOUND_WIN 4
    
    #define FDT_PCI_PREFETCH	(0x40000000)
    #define FDT_PCI_MEM32		(0x02000000)
    #define FDT_PCI_IO		(0x01000000)
    #define FDT_PCI_MEM64		(0x03000000)
    
    int fdt_pci_dma_ranges(void *blob, int phb_off, struct pci_controller *hose) {
    
    	int addrcell, sizecell, len, r;
    	u32 *dma_range;
    	/* sized based on pci addr cells, size-cells, & address-cells */
    	u32 dma_ranges[(3 + 2 + 2) * CONFIG_SYS_PCI_NR_INBOUND_WIN];
    
    	addrcell = fdt_getprop_u32_default(blob, "/", "#address-cells", 1);
    	sizecell = fdt_getprop_u32_default(blob, "/", "#size-cells", 1);
    
    	dma_range = &dma_ranges[0];
    	for (r = 0; r < hose->region_count; r++) {
    		u64 bus_start, phys_start, size;
    
    		/* skip if !PCI_REGION_SYS_MEMORY */
    		if (!(hose->regions[r].flags & PCI_REGION_SYS_MEMORY))
    			continue;
    
    		bus_start = (u64)hose->regions[r].bus_start;
    		phys_start = (u64)hose->regions[r].phys_start;
    		size = (u64)hose->regions[r].size;
    
    		dma_range[0] = 0;
    		if (size >= 0x100000000ull)
    			dma_range[0] |= FDT_PCI_MEM64;
    		else
    			dma_range[0] |= FDT_PCI_MEM32;
    		if (hose->regions[r].flags & PCI_REGION_PREFETCH)
    			dma_range[0] |= FDT_PCI_PREFETCH;
    #ifdef CONFIG_SYS_PCI_64BIT
    		dma_range[1] = bus_start >> 32;
    #else
    		dma_range[1] = 0;
    #endif
    		dma_range[2] = bus_start & 0xffffffff;
    
    		if (addrcell == 2) {
    			dma_range[3] = phys_start >> 32;
    			dma_range[4] = phys_start & 0xffffffff;
    		} else {
    			dma_range[3] = phys_start & 0xffffffff;
    		}
    
    		if (sizecell == 2) {
    			dma_range[3 + addrcell + 0] = size >> 32;
    			dma_range[3 + addrcell + 1] = size & 0xffffffff;
    		} else {
    			dma_range[3 + addrcell + 0] = size & 0xffffffff;
    		}
    
    		dma_range += (3 + addrcell + sizecell);
    	}
    
    	len = dma_range - &dma_ranges[0];
    	if (len)
    		fdt_setprop(blob, phb_off, "dma-ranges", &dma_ranges[0], len*4);
    
    	return 0;
    }
    #endif
    
    int fdt_increase_size(void *fdt, int add_len)
    {
    	int newlen;
    
    	newlen = fdt_totalsize(fdt) + add_len;
    
    	/* Open in place with a new len */
    	return fdt_open_into(fdt, fdt, newlen);
    }
    
    #ifdef CONFIG_FDT_FIXUP_PARTITIONS
    #include <jffs2/load_kernel.h>
    #include <mtd_node.h>
    
    struct reg_cell {
    	unsigned int r0;
    	unsigned int r1;
    };
    
    int fdt_del_subnodes(const void *blob, int parent_offset)
    {
    	int off, ndepth;
    	int ret;
    
    	for (ndepth = 0, off = fdt_next_node(blob, parent_offset, &ndepth);
    	     (off >= 0) && (ndepth > 0);
    	     off = fdt_next_node(blob, off, &ndepth)) {
    		if (ndepth == 1) {
    			debug("delete %s: offset: %x\n",
    				fdt_get_name(blob, off, 0), off);
    			ret = fdt_del_node((void *)blob, off);
    			if (ret < 0) {
    				printf("Can't delete node: %s\n",
    					fdt_strerror(ret));
    				return ret;
    			} else {
    				ndepth = 0;
    				off = parent_offset;
    			}
    		}
    	}
    	return 0;
    }
    
    int fdt_del_partitions(void *blob, int parent_offset)
    {
    	const void *prop;
    	int ndepth = 0;
    	int off;
    	int ret;
    
    	off = fdt_next_node(blob, parent_offset, &ndepth);
    	if (off > 0 && ndepth == 1) {
    		prop = fdt_getprop(blob, off, "label", NULL);
    		if (prop == NULL) {
    			/*
    			 * Could not find label property, nand {}; node?
    			 * Check subnode, delete partitions there if any.
    			 */
    			return fdt_del_partitions(blob, off);
    		} else {
    			ret = fdt_del_subnodes(blob, parent_offset);
    			if (ret < 0) {
    				printf("Can't remove subnodes: %s\n",
    					fdt_strerror(ret));
    				return ret;
    			}
    		}
    	}
    	return 0;
    }
    
    int fdt_node_set_part_info(void *blob, int parent_offset,
    			   struct mtd_device *dev)
    {
    	struct list_head *pentry;
    	struct part_info *part;
    	struct reg_cell cell;
    	int off, ndepth = 0;
    	int part_num, ret;
    	char buf[64];
    
    	ret = fdt_del_partitions(blob, parent_offset);
    	if (ret < 0)
    		return ret;
    
    	/*
    	 * Check if it is nand {}; subnode, adjust
    	 * the offset in this case
    	 */
    	off = fdt_next_node(blob, parent_offset, &ndepth);
    	if (off > 0 && ndepth == 1)
    		parent_offset = off;
    
    	part_num = 0;
    	list_for_each_prev(pentry, &dev->parts) {
    		int newoff;
    
    		part = list_entry(pentry, struct part_info, link);
    
    		debug("%2d: %-20s0x%08llx\t0x%08llx\t%d\n",
    			part_num, part->name, part->size,
    			part->offset, part->mask_flags);
    
    		sprintf(buf, "partition@%llx", part->offset);
    add_sub:
    		ret = fdt_add_subnode(blob, parent_offset, buf);
    		if (ret == -FDT_ERR_NOSPACE) {
    			ret = fdt_increase_size(blob, 512);
    			if (!ret)
    				goto add_sub;
    			else
    				goto err_size;
    		} else if (ret < 0) {
    			printf("Can't add partition node: %s\n",
    				fdt_strerror(ret));
    			return ret;
    		}
    		newoff = ret;
    
    		/* Check MTD_WRITEABLE_CMD flag */
    		if (part->mask_flags & 1) {
    add_ro:
    			ret = fdt_setprop(blob, newoff, "read_only", NULL, 0);
    			if (ret == -FDT_ERR_NOSPACE) {
    				ret = fdt_increase_size(blob, 512);
    				if (!ret)
    					goto add_ro;
    				else
    					goto err_size;
    			} else if (ret < 0)
    				goto err_prop;
    		}
    
    		cell.r0 = cpu_to_fdt32(part->offset);
    		cell.r1 = cpu_to_fdt32(part->size);
    add_reg:
    		ret = fdt_setprop(blob, newoff, "reg", &cell, sizeof(cell));
    		if (ret == -FDT_ERR_NOSPACE) {
    			ret = fdt_increase_size(blob, 512);
    			if (!ret)
    				goto add_reg;
    			else
    				goto err_size;
    		} else if (ret < 0)
    			goto err_prop;
    
    add_label:
    		ret = fdt_setprop_string(blob, newoff, "label", part->name);
    		if (ret == -FDT_ERR_NOSPACE) {
    			ret = fdt_increase_size(blob, 512);
    			if (!ret)
    				goto add_label;
    			else
    				goto err_size;
    		} else if (ret < 0)
    			goto err_prop;
    
    		part_num++;
    	}
    	return 0;
    err_size:
    	printf("Can't increase blob size: %s\n", fdt_strerror(ret));
    	return ret;
    err_prop:
    	printf("Can't add property: %s\n", fdt_strerror(ret));
    	return ret;
    }
    
    /*
     * Update partitions in nor/nand nodes using info from
     * mtdparts environment variable. The nodes to update are
     * specified by node_info structure which contains mtd device
     * type and compatible string: E. g. the board code in
     * ft_board_setup() could use:
     *
     *	struct node_info nodes[] = {
     *		{ "fsl,mpc5121-nfc",    MTD_DEV_TYPE_NAND, },
     *		{ "cfi-flash",          MTD_DEV_TYPE_NOR,  },
     *	};
     *
     *	fdt_fixup_mtdparts(blob, nodes, ARRAY_SIZE(nodes));
     */
    void fdt_fixup_mtdparts(void *blob, void *node_info, int node_info_size)
    {
    	struct node_info *ni = node_info;
    	struct mtd_device *dev;
    	int i, idx;
    	int noff;
    
    	if (mtdparts_init() != 0)
    		return;
    
    	for (i = 0; i < node_info_size; i++) {
    		idx = 0;
    		noff = fdt_node_offset_by_compatible(blob, -1, ni[i].compat);
    		while (noff != -FDT_ERR_NOTFOUND) {
    			debug("%s: %s, mtd dev type %d\n",
    				fdt_get_name(blob, noff, 0),
    				ni[i].compat, ni[i].type);
    			dev = device_find(ni[i].type, idx++);
    			if (dev) {
    				if (fdt_node_set_part_info(blob, noff, dev))
    					return; /* return on error */
    			}
    
    			/* Jump to next flash node */
    			noff = fdt_node_offset_by_compatible(blob, noff,
    							     ni[i].compat);
    		}
    	}
    }
    #endif
    
    void fdt_del_node_and_alias(void *blob, const char *alias)
    {
    	int off = fdt_path_offset(blob, alias);
    
    	if (off < 0)
    		return;
    
    	fdt_del_node(blob, off);
    
    	off = fdt_path_offset(blob, "/aliases");
    	fdt_delprop(blob, off, alias);
    }
    
    /* Max address size we deal with */
    #define OF_MAX_ADDR_CELLS	4
    #define OF_BAD_ADDR	FDT_ADDR_T_NONE
    #define OF_CHECK_COUNTS(na, ns)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS && \
    			(ns) > 0)
    
    /* Debug utility */
    #ifdef DEBUG
    static void of_dump_addr(const char *s, const fdt32_t *addr, int na)
    {
    	printf("%s", s);
    	while(na--)
    		printf(" %08x", *(addr++));
    	printf("\n");
    }
    #else
    static void of_dump_addr(const char *s, const fdt32_t *addr, int na) { }
    #endif
    
    /**
     * struct of_bus - Callbacks for bus specific translators
     * @name:	A string used to identify this bus in debug output.
     * @addresses:	The name of the DT property from which addresses are
     *		to be read, typically "reg".
     * @match:	Return non-zero if the node whose parent is at
     *		parentoffset in the FDT blob corresponds to a bus
     *		of this type, otherwise return zero. If NULL a match
     *		is assumed.
     * @count_cells:Count how many cells (be32 values) a node whose parent
     *		is at parentoffset in the FDT blob will require to
     *		represent its address (written to *addrc) & size
     *		(written to *sizec).
     * @map:	Map the address addr from the address space of this
     *		bus to that of its parent, making use of the ranges
     *		read from DT to an array at range. na and ns are the
     *		number of cells (be32 values) used to hold and address
     *		or size, respectively, for this bus. pna is the number
     *		of cells used to hold an address for the parent bus.
     *		Returns the address in the address space of the parent
     *		bus.
     * @translate:	Update the value of the address cells at addr within an
     *		FDT by adding offset to it. na specifies the number of
     *		cells used to hold the address being translated. Returns
     *		zero on success, non-zero on error.
     *
     * Each bus type will include a struct of_bus in the of_busses array,
     * providing implementations of some or all of the functions used to
     * match the bus & handle address translation for its children.
     */
    struct of_bus {
    	const char	*name;
    	const char	*addresses;
    	int		(*match)(const void *blob, int parentoffset);
    	void		(*count_cells)(const void *blob, int parentoffset,
    				int *addrc, int *sizec);
    	u64		(*map)(fdt32_t *addr, const fdt32_t *range,
    				int na, int ns, int pna);
    	int		(*translate)(fdt32_t *addr, u64 offset, int na);
    };
    
    /* Default translator (generic bus) */
    void fdt_support_default_count_cells(const void *blob, int parentoffset,
    					int *addrc, int *sizec)
    {
    	const fdt32_t *prop;
    
    	if (addrc)
    		*addrc = fdt_address_cells(blob, parentoffset);
    
    	if (sizec) {
    		prop = fdt_getprop(blob, parentoffset, "#size-cells", NULL);
    		if (prop)
    			*sizec = be32_to_cpup(prop);
    		else
    			*sizec = 1;
    	}
    }
    
    static u64 of_bus_default_map(fdt32_t *addr, const fdt32_t *range,
    		int na, int ns, int pna)
    {
    	u64 cp, s, da;
    
    	cp = fdt_read_number(range, na);
    	s  = fdt_read_number(range + na + pna, ns);
    	da = fdt_read_number(addr, na);
    
    	debug("OF: default map, cp=%" PRIu64 ", s=%" PRIu64
    	      ", da=%" PRIu64 "\n", cp, s, da);
    
    	if (da < cp || da >= (cp + s))
    		return OF_BAD_ADDR;
    	return da - cp;
    }
    
    static int of_bus_default_translate(fdt32_t *addr, u64 offset, int na)
    {
    	u64 a = fdt_read_number(addr, na);
    	memset(addr, 0, na * 4);
    	a += offset;
    	if (na > 1)
    		addr[na - 2] = cpu_to_fdt32(a >> 32);
    	addr[na - 1] = cpu_to_fdt32(a & 0xffffffffu);
    
    	return 0;
    }
    
    #ifdef CONFIG_OF_ISA_BUS
    
    /* ISA bus translator */
    static int of_bus_isa_match(const void *blob, int parentoffset)
    {
    	const char *name;
    
    	name = fdt_get_name(blob, parentoffset, NULL);
    	if (!name)
    		return 0;
    
    	return !strcmp(name, "isa");
    }
    
    static void of_bus_isa_count_cells(const void *blob, int parentoffset,
    				   int *addrc, int *sizec)
    {
    	if (addrc)
    		*addrc = 2;
    	if (sizec)
    		*sizec = 1;
    }
    
    static u64 of_bus_isa_map(fdt32_t *addr, const fdt32_t *range,
    			  int na, int ns, int pna)
    {
    	u64 cp, s, da;
    
    	/* Check address type match */
    	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
    		return OF_BAD_ADDR;
    
    	cp = fdt_read_number(range + 1, na - 1);
    	s  = fdt_read_number(range + na + pna, ns);
    	da = fdt_read_number(addr + 1, na - 1);
    
    	debug("OF: ISA map, cp=%" PRIu64 ", s=%" PRIu64
    	      ", da=%" PRIu64 "\n", cp, s, da);
    
    	if (da < cp || da >= (cp + s))
    		return OF_BAD_ADDR;
    	return da - cp;
    }
    
    static int of_bus_isa_translate(fdt32_t *addr, u64 offset, int na)
    {
    	return of_bus_default_translate(addr + 1, offset, na - 1);
    }
    
    #endif /* CONFIG_OF_ISA_BUS */
    
    /* Array of bus specific translators */
    static struct of_bus of_busses[] = {
    #ifdef CONFIG_OF_ISA_BUS
    	/* ISA */
    	{
    		.name = "isa",
    		.addresses = "reg",
    		.match = of_bus_isa_match,
    		.count_cells = of_bus_isa_count_cells,
    		.map = of_bus_isa_map,
    		.translate = of_bus_isa_translate,
    	},
    #endif /* CONFIG_OF_ISA_BUS */
    	/* Default */
    	{
    		.name = "default",
    		.addresses = "reg",
    		.count_cells = fdt_support_default_count_cells,
    		.map = of_bus_default_map,
    		.translate = of_bus_default_translate,
    	},
    };
    
    static struct of_bus *of_match_bus(const void *blob, int parentoffset)
    {
    	struct of_bus *bus;
    
    	if (ARRAY_SIZE(of_busses) == 1)
    		return of_busses;
    
    	for (bus = of_busses; bus; bus++) {
    		if (!bus->match || bus->match(blob, parentoffset))
    			return bus;
    	}
    
    	/*
    	 * We should always have matched the default bus at least, since
    	 * it has a NULL match field. If we didn't then it somehow isn't
    	 * in the of_busses array or something equally catastrophic has
    	 * gone wrong.
    	 */
    	assert(0);
    	return NULL;
    }
    
    static int of_translate_one(const void *blob, int parent, struct of_bus *bus,
    			    struct of_bus *pbus, fdt32_t *addr,
    			    int na, int ns, int pna, const char *rprop)
    {
    	const fdt32_t *ranges;
    	int rlen;
    	int rone;
    	u64 offset = OF_BAD_ADDR;
    
    	/* Normally, an absence of a "ranges" property means we are
    	 * crossing a non-translatable boundary, and thus the addresses
    	 * below the current not cannot be converted to CPU physical ones.
    	 * Unfortunately, while this is very clear in the spec, it's not
    	 * what Apple understood, and they do have things like /uni-n or
    	 * /ht nodes with no "ranges" property and a lot of perfectly
    	 * useable mapped devices below them. Thus we treat the absence of
    	 * "ranges" as equivalent to an empty "ranges" property which means
    	 * a 1:1 translation at that level. It's up to the caller not to try
    	 * to translate addresses that aren't supposed to be translated in
    	 * the first place. --BenH.
    	 */
    	ranges = fdt_getprop(blob, parent, rprop, &rlen);
    	if (ranges == NULL || rlen == 0) {
    		offset = fdt_read_number(addr, na);
    		memset(addr, 0, pna * 4);
    		debug("OF: no ranges, 1:1 translation\n");
    		goto finish;
    	}
    
    	debug("OF: walking ranges...\n");
    
    	/* Now walk through the ranges */
    	rlen /= 4;
    	rone = na + pna + ns;
    	for (; rlen >= rone; rlen -= rone, ranges += rone) {
    		offset = bus->map(addr, ranges, na, ns, pna);
    		if (offset != OF_BAD_ADDR)
    			break;
    	}
    	if (offset == OF_BAD_ADDR) {
    		debug("OF: not found !\n");
    		return 1;
    	}
    	memcpy(addr, ranges + na, 4 * pna);
    
     finish:
    	of_dump_addr("OF: parent translation for:", addr, pna);
    	debug("OF: with offset: %" PRIu64 "\n", offset);
    
    	/* Translate it into parent bus space */
    	return pbus->translate(addr, offset, pna);
    }
    
    /*
     * Translate an address from the device-tree into a CPU physical address,
     * this walks up the tree and applies the various bus mappings on the
     * way.
     *
     * Note: We consider that crossing any level with #size-cells == 0 to mean
     * that translation is impossible (that is we are not dealing with a value
     * that can be mapped to a cpu physical address). This is not really specified
     * that way, but this is traditionally the way IBM at least do things
     */
    static u64 __of_translate_address(const void *blob, int node_offset,
    				  const fdt32_t *in_addr, const char *rprop)
    {
    	int parent;
    	struct of_bus *bus, *pbus;
    	fdt32_t addr[OF_MAX_ADDR_CELLS];
    	int na, ns, pna, pns;
    	u64 result = OF_BAD_ADDR;
    
    	debug("OF: ** translation for device %s **\n",
    		fdt_get_name(blob, node_offset, NULL));
    
    	/* Get parent & match bus type */
    	parent = fdt_parent_offset(blob, node_offset);
    	if (parent < 0)
    		goto bail;
    	bus = of_match_bus(blob, parent);
    
    	/* Cound address cells & copy address locally */
    	bus->count_cells(blob, parent, &na, &ns);
    	if (!OF_CHECK_COUNTS(na, ns)) {
    		printf("%s: Bad cell count for %s\n", __FUNCTION__,
    		       fdt_get_name(blob, node_offset, NULL));
    		goto bail;
    	}
    	memcpy(addr, in_addr, na * 4);
    
    	debug("OF: bus is %s (na=%d, ns=%d) on %s\n",
    	    bus->name, na, ns, fdt_get_name(blob, parent, NULL));
    	of_dump_addr("OF: translating address:", addr, na);
    
    	/* Translate */
    	for (;;) {
    		/* Switch to parent bus */
    		node_offset = parent;
    		parent = fdt_parent_offset(blob, node_offset);
    
    		/* If root, we have finished */
    		if (parent < 0) {
    			debug("OF: reached root node\n");
    			result = fdt_read_number(addr, na);
    			break;
    		}
    
    		/* Get new parent bus and counts */
    		pbus = of_match_bus(blob, parent);
    		pbus->count_cells(blob, parent, &pna, &pns);
    		if (!OF_CHECK_COUNTS(pna, pns)) {
    			printf("%s: Bad cell count for %s\n", __FUNCTION__,
    				fdt_get_name(blob, node_offset, NULL));
    			break;
    		}
    
    		debug("OF: parent bus is %s (na=%d, ns=%d) on %s\n",
    		    pbus->name, pna, pns, fdt_get_name(blob, parent, NULL));
    
    		/* Apply bus translation */
    		if (of_translate_one(blob, node_offset, bus, pbus,
    					addr, na, ns, pna, rprop))
    			break;
    
    		/* Complete the move up one level */
    		na = pna;
    		ns = pns;
    		bus = pbus;
    
    		of_dump_addr("OF: one level translation:", addr, na);
    	}
     bail:
    
    	return result;
    }
    
    u64 fdt_translate_address(const void *blob, int node_offset,
    			  const fdt32_t *in_addr)
    {
    	return __of_translate_address(blob, node_offset, in_addr, "ranges");
    }
    
    /**
     * fdt_node_offset_by_compat_reg: Find a node that matches compatiable and
     * who's reg property matches a physical cpu address
     *
     * @blob: ptr to device tree
     * @compat: compatiable string to match
     * @compat_off: property name
     *
     */
    int fdt_node_offset_by_compat_reg(void *blob, const char *compat,
    					phys_addr_t compat_off)
    {
    	int len, off = fdt_node_offset_by_compatible(blob, -1, compat);
    	while (off != -FDT_ERR_NOTFOUND) {
    		const fdt32_t *reg = fdt_getprop(blob, off, "reg", &len);
    		if (reg) {
    			if (compat_off == fdt_translate_address(blob, off, reg))
    				return off;
    		}
    		off = fdt_node_offset_by_compatible(blob, off, compat);
    	}
    
    	return -FDT_ERR_NOTFOUND;
    }
    
    /**
     * fdt_alloc_phandle: Return next free phandle value
     *
     * @blob: ptr to device tree
     */
    int fdt_alloc_phandle(void *blob)
    {
    	int offset;
    	uint32_t phandle = 0;
    
    	for (offset = fdt_next_node(blob, -1, NULL); offset >= 0;
    	     offset = fdt_next_node(blob, offset, NULL)) {
    		phandle = max(phandle, fdt_get_phandle(blob, offset));
    	}
    
    	return phandle + 1;
    }
    
    /*
     * fdt_set_phandle: Create a phandle property for the given node
     *
     * @fdt: ptr to device tree
     * @nodeoffset: node to update
     * @phandle: phandle value to set (must be unique)
     */
    int fdt_set_phandle(void *fdt, int nodeoffset, uint32_t phandle)
    {
    	int ret;
    
    #ifdef DEBUG
    	int off = fdt_node_offset_by_phandle(fdt, phandle);
    
    	if ((off >= 0) && (off != nodeoffset)) {
    		char buf[64];
    
    		fdt_get_path(fdt, nodeoffset, buf, sizeof(buf));
    		printf("Trying to update node %s with phandle %u ",
    		       buf, phandle);
    
    		fdt_get_path(fdt, off, buf, sizeof(buf));
    		printf("that already exists in node %s.\n", buf);
    		return -FDT_ERR_BADPHANDLE;
    	}
    #endif
    
    	ret = fdt_setprop_cell(fdt, nodeoffset, "phandle", phandle);
    	if (ret < 0)
    		return ret;
    
    	/*
    	 * For now, also set the deprecated "linux,phandle" property, so that we
    	 * don't break older kernels.
    	 */
    	ret = fdt_setprop_cell(fdt, nodeoffset, "linux,phandle", phandle);
    
    	return ret;
    }
    
    /*
     * fdt_create_phandle: Create a phandle property for the given node
     *
     * @fdt: ptr to device tree
     * @nodeoffset: node to update
     */
    unsigned int fdt_create_phandle(void *fdt, int nodeoffset)
    {
    	/* see if there is a phandle already */
    	int phandle = fdt_get_phandle(fdt, nodeoffset);
    
    	/* if we got 0, means no phandle so create one */
    	if (phandle == 0) {
    		int ret;
    
    		phandle = fdt_alloc_phandle(fdt);
    		ret = fdt_set_phandle(fdt, nodeoffset, phandle);
    		if (ret < 0) {
    			printf("Can't set phandle %u: %s\n", phandle,
    			       fdt_strerror(ret));
    			return 0;
    		}
    	}
    
    	return phandle;
    }
    
    /*
     * fdt_set_node_status: Set status for the given node
     *
     * @fdt: ptr to device tree
     * @nodeoffset: node to update
     * @status: FDT_STATUS_OKAY, FDT_STATUS_DISABLED,
     *	    FDT_STATUS_FAIL, FDT_STATUS_FAIL_ERROR_CODE
     * @error_code: optional, only used if status is FDT_STATUS_FAIL_ERROR_CODE
     */
    int fdt_set_node_status(void *fdt, int nodeoffset,
    			enum fdt_status status, unsigned int error_code)
    {
    	char buf[16];
    	int ret = 0;
    
    	if (nodeoffset < 0)
    		return nodeoffset;
    
    	switch (status) {
    	case FDT_STATUS_OKAY:
    		ret = fdt_setprop_string(fdt, nodeoffset, "status", "okay");
    		break;
    	case FDT_STATUS_DISABLED:
    		ret = fdt_setprop_string(fdt, nodeoffset, "status", "disabled");
    		break;
    	case FDT_STATUS_FAIL:
    		ret = fdt_setprop_string(fdt, nodeoffset, "status", "fail");
    		break;
    	case FDT_STATUS_FAIL_ERROR_CODE:
    		sprintf(buf, "fail-%d", error_code);
    		ret = fdt_setprop_string(fdt, nodeoffset, "status", buf);
    		break;
    	default:
    		printf("Invalid fdt status: %x\n", status);
    		ret = -1;
    		break;
    	}
    
    	return ret;
    }
    
    /*
     * fdt_set_status_by_alias: Set status for the given node given an alias
     *
     * @fdt: ptr to device tree
     * @alias: alias of node to update
     * @status: FDT_STATUS_OKAY, FDT_STATUS_DISABLED,
     *	    FDT_STATUS_FAIL, FDT_STATUS_FAIL_ERROR_CODE
     * @error_code: optional, only used if status is FDT_STATUS_FAIL_ERROR_CODE
     */
    int fdt_set_status_by_alias(void *fdt, const char* alias,
    			    enum fdt_status status, unsigned int error_code)
    {
    	int offset = fdt_path_offset(fdt, alias);
    
    	return fdt_set_node_status(fdt, offset, status, error_code);
    }
    
    #if defined(CONFIG_VIDEO) || defined(CONFIG_LCD)
    int fdt_add_edid(void *blob, const char *compat, unsigned char *edid_buf)
    {
    	int noff;
    	int ret;
    
    	noff = fdt_node_offset_by_compatible(blob, -1, compat);
    	if (noff != -FDT_ERR_NOTFOUND) {
    		debug("%s: %s\n", fdt_get_name(blob, noff, 0), compat);
    add_edid:
    		ret = fdt_setprop(blob, noff, "edid", edid_buf, 128);
    		if (ret == -FDT_ERR_NOSPACE) {
    			ret = fdt_increase_size(blob, 512);
    			if (!ret)
    				goto add_edid;
    			else
    				goto err_size;
    		} else if (ret < 0) {
    			printf("Can't add property: %s\n", fdt_strerror(ret));
    			return ret;
    		}
    	}
    	return 0;
    err_size:
    	printf("Can't increase blob size: %s\n", fdt_strerror(ret));
    	return ret;
    }
    #endif
    
    /*
     * Verify the physical address of device tree node for a given alias
     *
     * This function locates the device tree node of a given alias, and then
     * verifies that the physical address of that device matches the given
     * parameter.  It displays a message if there is a mismatch.
     *
     * Returns 1 on success, 0 on failure
     */
    int fdt_verify_alias_address(void *fdt, int anode, const char *alias, u64 addr)
    {
    	const char *path;
    	const fdt32_t *reg;
    	int node, len;
    	u64 dt_addr;
    
    	path = fdt_getprop(fdt, anode, alias, NULL);
    	if (!path) {
    		/* If there's no such alias, then it's not a failure */
    		return 1;
    	}
    
    	node = fdt_path_offset(fdt, path);
    	if (node < 0) {
    		printf("Warning: device tree alias '%s' points to invalid "
    		       "node %s.\n", alias, path);
    		return 0;
    	}
    
    	reg = fdt_getprop(fdt, node, "reg", &len);
    	if (!reg) {
    		printf("Warning: device tree node '%s' has no address.\n",
    		       path);
    		return 0;
    	}
    
    	dt_addr = fdt_translate_address(fdt, node, reg);
    	if (addr != dt_addr) {
    		printf("Warning: U-Boot configured device %s at address %"
    		       PRIx64 ",\n but the device tree has it address %"
    		       PRIx64 ".\n", alias, addr, dt_addr);
    		return 0;
    	}
    
    	return 1;
    }
    
    /*
     * Returns the base address of an SOC or PCI node
     */
    u64 fdt_get_base_address(const void *fdt, int node)
    {
    	int size;
    	const fdt32_t *prop;
    
    	prop = fdt_getprop(fdt, node, "reg", &size);
    
    	return prop ? fdt_translate_address(fdt, node, prop) : 0;
    }
    
    /*
     * Read a property of size <prop_len>. Currently only supports 1 or 2 cells.
     */
    static int fdt_read_prop(const fdt32_t *prop, int prop_len, int cell_off,
    			 uint64_t *val, int cells)
    {
    	const fdt32_t *prop32 = &prop[cell_off];
    	const fdt64_t *prop64 = (const fdt64_t *)&prop[cell_off];
    
    	if ((cell_off + cells) > prop_len)
    		return -FDT_ERR_NOSPACE;
    
    	switch (cells) {
    	case 1:
    		*val = fdt32_to_cpu(*prop32);
    		break;
    	case 2:
    		*val = fdt64_to_cpu(*prop64);
    		break;
    	default:
    		return -FDT_ERR_NOSPACE;
    	}
    
    	return 0;
    }
    
    /**
     * fdt_read_range - Read a node's n'th range property
     *
     * @fdt: ptr to device tree
     * @node: offset of node
     * @n: range index
     * @child_addr: pointer to storage for the "child address" field
     * @addr: pointer to storage for the CPU view translated physical start
     * @len: pointer to storage for the range length
     *
     * Convenience function that reads and interprets a specific range out of
     * a number of the "ranges" property array.
     */
    int fdt_read_range(void *fdt, int node, int n, uint64_t *child_addr,
    		   uint64_t *addr, uint64_t *len)
    {
    	int pnode = fdt_parent_offset(fdt, node);
    	const fdt32_t *ranges;
    	int pacells;
    	int acells;
    	int scells;
    	int ranges_len;
    	int cell = 0;
    	int r = 0;
    
    	/*
    	 * The "ranges" property is an array of
    	 * { <child address> <parent address> <size in child address space> }
    	 *
    	 * All 3 elements can span a diffent number of cells. Fetch their size.
    	 */
    	pacells = fdt_getprop_u32_default_node(fdt, pnode, 0, "#address-cells", 1);
    	acells = fdt_getprop_u32_default_node(fdt, node, 0, "#address-cells", 1);
    	scells = fdt_getprop_u32_default_node(fdt, node, 0, "#size-cells", 1);
    
    	/* Now try to get the ranges property */
    	ranges = fdt_getprop(fdt, node, "ranges", &ranges_len);
    	if (!ranges)
    		return -FDT_ERR_NOTFOUND;
    	ranges_len /= sizeof(uint32_t);
    
    	/* Jump to the n'th entry */
    	cell = n * (pacells + acells + scells);
    
    	/* Read <child address> */
    	if (child_addr) {
    		r = fdt_read_prop(ranges, ranges_len, cell, child_addr,
    				  acells);
    		if (r)
    			return r;
    	}
    	cell += acells;
    
    	/* Read <parent address> */
    	if (addr)
    		*addr = fdt_translate_address(fdt, node, ranges + cell);
    	cell += pacells;
    
    	/* Read <size in child address space> */
    	if (len) {
    		r = fdt_read_prop(ranges, ranges_len, cell, len, scells);
    		if (r)
    			return r;
    	}
    
    	return 0;
    }
    
    /**
     * fdt_setup_simplefb_node - Fill and enable a simplefb node
     *
     * @fdt: ptr to device tree
     * @node: offset of the simplefb node
     * @base_address: framebuffer base address
     * @width: width in pixels
     * @height: height in pixels
     * @stride: bytes per line
     * @format: pixel format string
     *
     * Convenience function to fill and enable a simplefb node.
     */
    int fdt_setup_simplefb_node(void *fdt, int node, u64 base_address, u32 width,
    			    u32 height, u32 stride, const char *format)
    {
    	char name[32];
    	fdt32_t cells[4];
    	int i, addrc, sizec, ret;
    
    	fdt_support_default_count_cells(fdt, fdt_parent_offset(fdt, node),
    					&addrc, &sizec);
    	i = 0;
    	if (addrc == 2)
    		cells[i++] = cpu_to_fdt32(base_address >> 32);
    	cells[i++] = cpu_to_fdt32(base_address);
    	if (sizec == 2)
    		cells[i++] = 0;
    	cells[i++] = cpu_to_fdt32(height * stride);
    
    	ret = fdt_setprop(fdt, node, "reg", cells, sizeof(cells[0]) * i);
    	if (ret < 0)
    		return ret;
    
    	snprintf(name, sizeof(name), "framebuffer@%" PRIx64, base_address);
    	ret = fdt_set_name(fdt, node, name);
    	if (ret < 0)
    		return ret;
    
    	ret = fdt_setprop_u32(fdt, node, "width", width);
    	if (ret < 0)
    		return ret;
    
    	ret = fdt_setprop_u32(fdt, node, "height", height);
    	if (ret < 0)
    		return ret;
    
    	ret = fdt_setprop_u32(fdt, node, "stride", stride);
    	if (ret < 0)
    		return ret;
    
    	ret = fdt_setprop_string(fdt, node, "format", format);
    	if (ret < 0)
    		return ret;
    
    	ret = fdt_setprop_string(fdt, node, "status", "okay");
    	if (ret < 0)
    		return ret;
    
    	return 0;
    }
    
    /*
     * Update native-mode in display-timings from display environment variable.
     * The node to update are specified by path.
     */
    int fdt_fixup_display(void *blob, const char *path, const char *display)
    {
    	int off, toff;
    
    	if (!display || !path)
    		return -FDT_ERR_NOTFOUND;
    
    	toff = fdt_path_offset(blob, path);
    	if (toff >= 0)
    		toff = fdt_subnode_offset(blob, toff, "display-timings");
    	if (toff < 0)
    		return toff;
    
    	for (off = fdt_first_subnode(blob, toff);
    	     off >= 0;
    	     off = fdt_next_subnode(blob, off)) {
    		uint32_t h = fdt_get_phandle(blob, off);
    		debug("%s:0x%x\n", fdt_get_name(blob, off, NULL),
    		      fdt32_to_cpu(h));
    		if (strcasecmp(fdt_get_name(blob, off, NULL), display) == 0)
    			return fdt_setprop_u32(blob, toff, "native-mode", h);
    	}
    	return toff;
    }