Skip to content
Snippets Groups Projects
Select Git revision
  • master default protected
  • early-display
  • variant-emmc-nvme-boot
  • 2023-01-25
  • v3
  • variant-emmc-nvme-boot
  • 2020-06-01
7 results

README.fsl_iim

Blame
  • Forked from Reform / reform-boundary-uboot
    Source project has a limited visibility.
    cmd_bootm.c NaN GiB
    /*
     * (C) Copyright 2000-2009
     * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
     *
     * SPDX-License-Identifier:	GPL-2.0+
     */
    
    
    /*
     * Boot support
     */
    #include <common.h>
    #include <watchdog.h>
    #include <command.h>
    #include <image.h>
    #include <malloc.h>
    #include <u-boot/zlib.h>
    #include <bzlib.h>
    #include <environment.h>
    #include <lmb.h>
    #include <linux/ctype.h>
    #include <asm/byteorder.h>
    #include <asm/io.h>
    #include <linux/compiler.h>
    
    #if defined(CONFIG_BOOTM_VXWORKS) && \
    	(defined(CONFIG_PPC) || defined(CONFIG_ARM))
    #include <vxworks.h>
    #endif
    
    #if defined(CONFIG_CMD_USB)
    #include <usb.h>
    #endif
    
    #if defined(CONFIG_OF_LIBFDT)
    #include <libfdt.h>
    #include <fdt_support.h>
    #endif
    
    #ifdef CONFIG_LZMA
    #include <lzma/LzmaTypes.h>
    #include <lzma/LzmaDec.h>
    #include <lzma/LzmaTools.h>
    #endif /* CONFIG_LZMA */
    
    #ifdef CONFIG_LZO
    #include <linux/lzo.h>
    #endif /* CONFIG_LZO */
    
    DECLARE_GLOBAL_DATA_PTR;
    
    #ifndef CONFIG_SYS_BOOTM_LEN
    #define CONFIG_SYS_BOOTM_LEN	0x800000	/* use 8MByte as default max gunzip size */
    #endif
    
    #ifdef CONFIG_BZIP2
    extern void bz_internal_error(int);
    #endif
    
    #if defined(CONFIG_CMD_IMI)
    static int image_info(unsigned long addr);
    #endif
    
    #if defined(CONFIG_CMD_IMLS)
    #include <flash.h>
    #include <mtd/cfi_flash.h>
    extern flash_info_t flash_info[]; /* info for FLASH chips */
    #endif
    
    #if defined(CONFIG_CMD_IMLS) || defined(CONFIG_CMD_IMLS_NAND)
    static int do_imls(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]);
    #endif
    
    #include <linux/err.h>
    #include <nand.h>
    
    #if defined(CONFIG_SILENT_CONSOLE) && !defined(CONFIG_SILENT_U_BOOT_ONLY)
    static void fixup_silent_linux(void);
    #endif
    
    static int do_bootm_standalone(int flag, int argc, char * const argv[],
    			       bootm_headers_t *images);
    
    static const void *boot_get_kernel(cmd_tbl_t *cmdtp, int flag, int argc,
    				char * const argv[], bootm_headers_t *images,
    				ulong *os_data, ulong *os_len);
    
    /*
     *  Continue booting an OS image; caller already has:
     *  - copied image header to global variable `header'
     *  - checked header magic number, checksums (both header & image),
     *  - verified image architecture (PPC) and type (KERNEL or MULTI),
     *  - loaded (first part of) image to header load address,
     *  - disabled interrupts.
     *
     * @flag: Flags indicating what to do (BOOTM_STATE_...)
     * @argc: Number of arguments. Note that the arguments are shifted down
     *	 so that 0 is the first argument not processed by U-Boot, and
     *	 argc is adjusted accordingly. This avoids confusion as to how
     *	 many arguments are available for the OS.
     * @images: Pointers to os/initrd/fdt
     * @return 1 on error. On success the OS boots so this function does
     * not return.
     */
    typedef int boot_os_fn(int flag, int argc, char * const argv[],
    			bootm_headers_t *images);
    
    #ifdef CONFIG_BOOTM_LINUX
    extern boot_os_fn do_bootm_linux;
    #endif
    #ifdef CONFIG_BOOTM_NETBSD
    static boot_os_fn do_bootm_netbsd;
    #endif
    #if defined(CONFIG_LYNXKDI)
    static boot_os_fn do_bootm_lynxkdi;
    extern void lynxkdi_boot(image_header_t *);
    #endif
    #ifdef CONFIG_BOOTM_RTEMS
    static boot_os_fn do_bootm_rtems;
    #endif
    #if defined(CONFIG_BOOTM_OSE)
    static boot_os_fn do_bootm_ose;
    #endif
    #if defined(CONFIG_BOOTM_PLAN9)
    static boot_os_fn do_bootm_plan9;
    #endif
    #if defined(CONFIG_BOOTM_VXWORKS) && \
    	(defined(CONFIG_PPC) || defined(CONFIG_ARM))
    static boot_os_fn do_bootm_vxworks;
    #endif
    #if defined(CONFIG_CMD_ELF)
    static boot_os_fn do_bootm_qnxelf;
    int do_bootvx(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]);
    int do_bootelf(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]);
    #endif
    #if defined(CONFIG_INTEGRITY)
    static boot_os_fn do_bootm_integrity;
    #endif
    
    static boot_os_fn *boot_os[] = {
    	[IH_OS_U_BOOT] = do_bootm_standalone,
    #ifdef CONFIG_BOOTM_LINUX
    	[IH_OS_LINUX] = do_bootm_linux,
    #endif
    #ifdef CONFIG_BOOTM_NETBSD
    	[IH_OS_NETBSD] = do_bootm_netbsd,
    #endif
    #ifdef CONFIG_LYNXKDI
    	[IH_OS_LYNXOS] = do_bootm_lynxkdi,
    #endif
    #ifdef CONFIG_BOOTM_RTEMS
    	[IH_OS_RTEMS] = do_bootm_rtems,
    #endif
    #if defined(CONFIG_BOOTM_OSE)
    	[IH_OS_OSE] = do_bootm_ose,
    #endif
    #if defined(CONFIG_BOOTM_PLAN9)
    	[IH_OS_PLAN9] = do_bootm_plan9,
    #endif
    #if defined(CONFIG_BOOTM_VXWORKS) && \
    	(defined(CONFIG_PPC) || defined(CONFIG_ARM))
    	[IH_OS_VXWORKS] = do_bootm_vxworks,
    #endif
    #if defined(CONFIG_CMD_ELF)
    	[IH_OS_QNX] = do_bootm_qnxelf,
    #endif
    #ifdef CONFIG_INTEGRITY
    	[IH_OS_INTEGRITY] = do_bootm_integrity,
    #endif
    };
    
    bootm_headers_t images;		/* pointers to os/initrd/fdt images */
    
    /* Allow for arch specific config before we boot */
    static void __arch_preboot_os(void)
    {
    	/* please define platform specific arch_preboot_os() */
    }
    void arch_preboot_os(void) __attribute__((weak, alias("__arch_preboot_os")));
    
    #define IH_INITRD_ARCH IH_ARCH_DEFAULT
    
    #ifdef CONFIG_LMB
    static void boot_start_lmb(bootm_headers_t *images)
    {
    	ulong		mem_start;
    	phys_size_t	mem_size;
    
    	lmb_init(&images->lmb);
    
    	mem_start = getenv_bootm_low();
    	mem_size = getenv_bootm_size();
    
    	lmb_add(&images->lmb, (phys_addr_t)mem_start, mem_size);
    
    	arch_lmb_reserve(&images->lmb);
    	board_lmb_reserve(&images->lmb);
    }
    #else
    #define lmb_reserve(lmb, base, size)
    static inline void boot_start_lmb(bootm_headers_t *images) { }
    #endif
    
    static int bootm_start(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
    {
    	memset((void *)&images, 0, sizeof(images));
    	images.verify = getenv_yesno("verify");
    
    	boot_start_lmb(&images);
    
    	bootstage_mark_name(BOOTSTAGE_ID_BOOTM_START, "bootm_start");
    	images.state = BOOTM_STATE_START;
    
    	return 0;
    }
    
    static int bootm_find_os(cmd_tbl_t *cmdtp, int flag, int argc,
    			 char * const argv[])
    {
    	const void *os_hdr;
    	bool ep_found = false;
    
    	/* get kernel image header, start address and length */
    	os_hdr = boot_get_kernel(cmdtp, flag, argc, argv,
    			&images, &images.os.image_start, &images.os.image_len);
    	if (images.os.image_len == 0) {
    		puts("ERROR: can't get kernel image!\n");
    		return 1;
    	}
    
    	/* get image parameters */
    	switch (genimg_get_format(os_hdr)) {
    #if defined(CONFIG_IMAGE_FORMAT_LEGACY)
    	case IMAGE_FORMAT_LEGACY:
    		images.os.type = image_get_type(os_hdr);
    		images.os.comp = image_get_comp(os_hdr);
    		images.os.os = image_get_os(os_hdr);
    
    		images.os.end = image_get_image_end(os_hdr);
    		images.os.load = image_get_load(os_hdr);
    		break;
    #endif
    #if defined(CONFIG_FIT)
    	case IMAGE_FORMAT_FIT:
    		if (fit_image_get_type(images.fit_hdr_os,
    					images.fit_noffset_os, &images.os.type)) {
    			puts("Can't get image type!\n");
    			bootstage_error(BOOTSTAGE_ID_FIT_TYPE);
    			return 1;
    		}
    
    		if (fit_image_get_comp(images.fit_hdr_os,
    					images.fit_noffset_os, &images.os.comp)) {
    			puts("Can't get image compression!\n");
    			bootstage_error(BOOTSTAGE_ID_FIT_COMPRESSION);
    			return 1;
    		}
    
    		if (fit_image_get_os(images.fit_hdr_os,
    					images.fit_noffset_os, &images.os.os)) {
    			puts("Can't get image OS!\n");
    			bootstage_error(BOOTSTAGE_ID_FIT_OS);
    			return 1;
    		}
    
    		images.os.end = fit_get_end(images.fit_hdr_os);
    
    		if (fit_image_get_load(images.fit_hdr_os, images.fit_noffset_os,
    					&images.os.load)) {
    			puts("Can't get image load address!\n");
    			bootstage_error(BOOTSTAGE_ID_FIT_LOADADDR);
    			return 1;
    		}
    		break;
    #endif
    #ifdef CONFIG_ANDROID_BOOT_IMAGE
    	case IMAGE_FORMAT_ANDROID:
    		images.os.type = IH_TYPE_KERNEL;
    		images.os.comp = IH_COMP_NONE;
    		images.os.os = IH_OS_LINUX;
    		images.ep = images.os.load;
    		ep_found = true;
    
    		images.os.end = android_image_get_end(os_hdr);
    		images.os.load = android_image_get_kload(os_hdr);
    		break;
    #endif
    	default:
    		puts("ERROR: unknown image format type!\n");
    		return 1;
    	}
    
    	/* find kernel entry point */
    	if (images.legacy_hdr_valid) {
    		images.ep = image_get_ep(&images.legacy_hdr_os_copy);
    #if defined(CONFIG_FIT)
    	} else if (images.fit_uname_os) {
    		int ret;
    
    		ret = fit_image_get_entry(images.fit_hdr_os,
    					  images.fit_noffset_os, &images.ep);
    		if (ret) {
    			puts("Can't get entry point property!\n");
    			return 1;
    		}
    #endif
    	} else if (!ep_found) {
    		puts("Could not find kernel entry point!\n");
    		return 1;
    	}
    
    	if (images.os.type == IH_TYPE_KERNEL_NOLOAD) {
    		images.os.load = images.os.image_start;
    		images.ep += images.os.load;
    	}
    
    	images.os.start = (ulong)os_hdr;
    
    	return 0;
    }
    
    static int bootm_find_ramdisk(int flag, int argc, char * const argv[])
    {
    	int ret;
    
    	/* find ramdisk */
    	ret = boot_get_ramdisk(argc, argv, &images, IH_INITRD_ARCH,
    			       &images.rd_start, &images.rd_end);
    	if (ret) {
    		puts("Ramdisk image is corrupt or invalid\n");
    		return 1;
    	}
    
    	return 0;
    }
    
    #if defined(CONFIG_OF_LIBFDT)
    static int bootm_find_fdt(int flag, int argc, char * const argv[])
    {
    	int ret;
    
    	/* find flattened device tree */
    	ret = boot_get_fdt(flag, argc, argv, IH_ARCH_DEFAULT, &images,
    			   &images.ft_addr, &images.ft_len);
    	if (ret) {
    		puts("Could not find a valid device tree\n");
    		return 1;
    	}
    
    	set_working_fdt_addr(images.ft_addr);
    
    	return 0;
    }
    #endif
    
    static int bootm_find_other(cmd_tbl_t *cmdtp, int flag, int argc,
    			    char * const argv[])
    {
    	if (((images.os.type == IH_TYPE_KERNEL) ||
    	     (images.os.type == IH_TYPE_KERNEL_NOLOAD) ||
    	     (images.os.type == IH_TYPE_MULTI)) &&
    	    (images.os.os == IH_OS_LINUX ||
    		 images.os.os == IH_OS_VXWORKS)) {
    		if (bootm_find_ramdisk(flag, argc, argv))
    			return 1;
    
    #if defined(CONFIG_OF_LIBFDT)
    		if (bootm_find_fdt(flag, argc, argv))
    			return 1;
    #endif
    	}
    
    	return 0;
    }
    
    #define BOOTM_ERR_RESET		-1
    #define BOOTM_ERR_OVERLAP	-2
    #define BOOTM_ERR_UNIMPLEMENTED	-3
    static int bootm_load_os(bootm_headers_t *images, unsigned long *load_end,
    		int boot_progress)
    {
    	image_info_t os = images->os;
    	uint8_t comp = os.comp;
    	ulong load = os.load;
    	ulong blob_start = os.start;
    	ulong blob_end = os.end;
    	ulong image_start = os.image_start;
    	ulong image_len = os.image_len;
    	__maybe_unused uint unc_len = CONFIG_SYS_BOOTM_LEN;
    	int no_overlap = 0;
    	void *load_buf, *image_buf;
    #if defined(CONFIG_LZMA) || defined(CONFIG_LZO)
    	int ret;
    #endif /* defined(CONFIG_LZMA) || defined(CONFIG_LZO) */
    
    	const char *type_name = genimg_get_type_name(os.type);
    
    	load_buf = map_sysmem(load, unc_len);
    	image_buf = map_sysmem(image_start, image_len);
    	switch (comp) {
    	case IH_COMP_NONE:
    		if (load == image_start) {
    			printf("   XIP %s ... ", type_name);
    			no_overlap = 1;
    		} else {
    			printf("   Loading %s ... ", type_name);
    			memmove_wd(load_buf, image_buf, image_len, CHUNKSZ);
    		}
    		*load_end = load + image_len;
    		break;
    #ifdef CONFIG_GZIP
    	case IH_COMP_GZIP:
    		printf("   Uncompressing %s ... ", type_name);
    		if (gunzip(load_buf, unc_len, image_buf, &image_len) != 0) {
    			puts("GUNZIP: uncompress, out-of-mem or overwrite "
    				"error - must RESET board to recover\n");
    			if (boot_progress)
    				bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE);
    			return BOOTM_ERR_RESET;
    		}
    
    		*load_end = load + image_len;
    		break;
    #endif /* CONFIG_GZIP */
    #ifdef CONFIG_BZIP2
    	case IH_COMP_BZIP2:
    		printf("   Uncompressing %s ... ", type_name);
    		/*
    		 * If we've got less than 4 MB of malloc() space,
    		 * use slower decompression algorithm which requires
    		 * at most 2300 KB of memory.
    		 */
    		int i = BZ2_bzBuffToBuffDecompress(load_buf, &unc_len,
    			image_buf, image_len,
    			CONFIG_SYS_MALLOC_LEN < (4096 * 1024), 0);
    		if (i != BZ_OK) {
    			printf("BUNZIP2: uncompress or overwrite error %d "
    				"- must RESET board to recover\n", i);
    			if (boot_progress)
    				bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE);
    			return BOOTM_ERR_RESET;
    		}
    
    		*load_end = load + unc_len;
    		break;
    #endif /* CONFIG_BZIP2 */
    #ifdef CONFIG_LZMA
    	case IH_COMP_LZMA: {
    		SizeT lzma_len = unc_len;
    		printf("   Uncompressing %s ... ", type_name);
    
    		ret = lzmaBuffToBuffDecompress(load_buf, &lzma_len,
    					       image_buf, image_len);
    		unc_len = lzma_len;
    		if (ret != SZ_OK) {
    			printf("LZMA: uncompress or overwrite error %d "
    				"- must RESET board to recover\n", ret);
    			bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE);
    			return BOOTM_ERR_RESET;
    		}
    		*load_end = load + unc_len;
    		break;
    	}
    #endif /* CONFIG_LZMA */
    #ifdef CONFIG_LZO
    	case IH_COMP_LZO: {
    		size_t size = unc_len;
    
    		printf("   Uncompressing %s ... ", type_name);
    
    		ret = lzop_decompress(image_buf, image_len, load_buf, &size);
    		if (ret != LZO_E_OK) {
    			printf("LZO: uncompress or overwrite error %d "
    			      "- must RESET board to recover\n", ret);
    			if (boot_progress)
    				bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE);
    			return BOOTM_ERR_RESET;
    		}
    
    		*load_end = load + size;
    		break;
    	}
    #endif /* CONFIG_LZO */
    	default:
    		printf("Unimplemented compression type %d\n", comp);
    		return BOOTM_ERR_UNIMPLEMENTED;
    	}
    
    	flush_cache(load, (*load_end - load) * sizeof(ulong));
    
    	puts("OK\n");
    	debug("   kernel loaded at 0x%08lx, end = 0x%08lx\n", load, *load_end);
    	bootstage_mark(BOOTSTAGE_ID_KERNEL_LOADED);
    
    	if (!no_overlap && (load < blob_end) && (*load_end > blob_start)) {
    		debug("images.os.start = 0x%lX, images.os.end = 0x%lx\n",
    			blob_start, blob_end);
    		debug("images.os.load = 0x%lx, load_end = 0x%lx\n", load,
    			*load_end);
    
    		/* Check what type of image this is. */
    		if (images->legacy_hdr_valid) {
    			if (image_get_type(&images->legacy_hdr_os_copy)
    					== IH_TYPE_MULTI)
    				puts("WARNING: legacy format multi component image overwritten\n");
    			return BOOTM_ERR_OVERLAP;
    		} else {
    			puts("ERROR: new format image overwritten - must RESET the board to recover\n");
    			bootstage_error(BOOTSTAGE_ID_OVERWRITTEN);
    			return BOOTM_ERR_RESET;
    		}
    	}
    
    	return 0;
    }
    
    static int do_bootm_standalone(int flag, int argc, char * const argv[],
    			       bootm_headers_t *images)
    {
    	char  *s;
    	int   (*appl)(int, char * const []);
    
    	/* Don't start if "autostart" is set to "no" */
    	if (((s = getenv("autostart")) != NULL) && (strcmp(s, "no") == 0)) {
    		setenv_hex("filesize", images->os.image_len);
    		return 0;
    	}
    	appl = (int (*)(int, char * const []))images->ep;
    	appl(argc, argv);
    	return 0;
    }
    
    /* we overload the cmd field with our state machine info instead of a
     * function pointer */
    static cmd_tbl_t cmd_bootm_sub[] = {
    	U_BOOT_CMD_MKENT(start, 0, 1, (void *)BOOTM_STATE_START, "", ""),
    	U_BOOT_CMD_MKENT(loados, 0, 1, (void *)BOOTM_STATE_LOADOS, "", ""),
    #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH
    	U_BOOT_CMD_MKENT(ramdisk, 0, 1, (void *)BOOTM_STATE_RAMDISK, "", ""),
    #endif
    #ifdef CONFIG_OF_LIBFDT
    	U_BOOT_CMD_MKENT(fdt, 0, 1, (void *)BOOTM_STATE_FDT, "", ""),
    #endif
    	U_BOOT_CMD_MKENT(cmdline, 0, 1, (void *)BOOTM_STATE_OS_CMDLINE, "", ""),
    	U_BOOT_CMD_MKENT(bdt, 0, 1, (void *)BOOTM_STATE_OS_BD_T, "", ""),
    	U_BOOT_CMD_MKENT(prep, 0, 1, (void *)BOOTM_STATE_OS_PREP, "", ""),
    	U_BOOT_CMD_MKENT(fake, 0, 1, (void *)BOOTM_STATE_OS_FAKE_GO, "", ""),
    	U_BOOT_CMD_MKENT(go, 0, 1, (void *)BOOTM_STATE_OS_GO, "", ""),
    };
    
    static int boot_selected_os(int argc, char * const argv[], int state,
    		bootm_headers_t *images, boot_os_fn *boot_fn)
    {
    	arch_preboot_os();
    	boot_fn(state, argc, argv, images);
    
    	/* Stand-alone may return when 'autostart' is 'no' */
    	if (images->os.type == IH_TYPE_STANDALONE ||
    	    state == BOOTM_STATE_OS_FAKE_GO) /* We expect to return */
    		return 0;
    	bootstage_error(BOOTSTAGE_ID_BOOT_OS_RETURNED);
    #ifdef DEBUG
    	puts("\n## Control returned to monitor - resetting...\n");
    #endif
    	return BOOTM_ERR_RESET;
    }
    
    /**
     * bootm_disable_interrupts() - Disable interrupts in preparation for load/boot
     *
     * @return interrupt flag (0 if interrupts were disabled, non-zero if they were
     *	enabled)
     */
    static ulong bootm_disable_interrupts(void)
    {
    	ulong iflag;
    
    	/*
    	 * We have reached the point of no return: we are going to
    	 * overwrite all exception vector code, so we cannot easily
    	 * recover from any failures any more...
    	 */
    	iflag = disable_interrupts();
    #ifdef CONFIG_NETCONSOLE
    	/* Stop the ethernet stack if NetConsole could have left it up */
    	eth_halt();
    	eth_unregister(eth_get_dev());
    #endif
    
    #if defined(CONFIG_CMD_USB)
    	/*
    	 * turn off USB to prevent the host controller from writing to the
    	 * SDRAM while Linux is booting. This could happen (at least for OHCI
    	 * controller), because the HCCA (Host Controller Communication Area)
    	 * lies within the SDRAM and the host controller writes continously to
    	 * this area (as busmaster!). The HccaFrameNumber is for example
    	 * updated every 1 ms within the HCCA structure in SDRAM! For more
    	 * details see the OpenHCI specification.
    	 */
    	usb_stop();
    #endif
    	return iflag;
    }
    
    /**
     * Execute selected states of the bootm command.
     *
     * Note the arguments to this state must be the first argument, Any 'bootm'
     * or sub-command arguments must have already been taken.
     *
     * Note that if states contains more than one flag it MUST contain
     * BOOTM_STATE_START, since this handles and consumes the command line args.
     *
     * Also note that aside from boot_os_fn functions and bootm_load_os no other
     * functions we store the return value of in 'ret' may use a negative return
     * value, without special handling.
     *
     * @param cmdtp		Pointer to bootm command table entry
     * @param flag		Command flags (CMD_FLAG_...)
     * @param argc		Number of subcommand arguments (0 = no arguments)
     * @param argv		Arguments
     * @param states	Mask containing states to run (BOOTM_STATE_...)
     * @param images	Image header information
     * @param boot_progress 1 to show boot progress, 0 to not do this
     * @return 0 if ok, something else on error. Some errors will cause this
     *	function to perform a reboot! If states contains BOOTM_STATE_OS_GO
     *	then the intent is to boot an OS, so this function will not return
     *	unless the image type is standalone.
     */
    static int do_bootm_states(cmd_tbl_t *cmdtp, int flag, int argc,
    		char * const argv[], int states, bootm_headers_t *images,
    		int boot_progress)
    {
    	boot_os_fn *boot_fn;
    	ulong iflag = 0;
    	int ret = 0, need_boot_fn;
    
    	images->state |= states;
    
    	/*
    	 * Work through the states and see how far we get. We stop on
    	 * any error.
    	 */
    	if (states & BOOTM_STATE_START)
    		ret = bootm_start(cmdtp, flag, argc, argv);
    
    	if (!ret && (states & BOOTM_STATE_FINDOS))
    		ret = bootm_find_os(cmdtp, flag, argc, argv);
    
    	if (!ret && (states & BOOTM_STATE_FINDOTHER)) {
    		ret = bootm_find_other(cmdtp, flag, argc, argv);
    		argc = 0;	/* consume the args */
    	}
    
    	/* Load the OS */
    	if (!ret && (states & BOOTM_STATE_LOADOS)) {
    		ulong load_end;
    
    		iflag = bootm_disable_interrupts();
    		ret = bootm_load_os(images, &load_end, 0);
    		if (ret == 0)
    			lmb_reserve(&images->lmb, images->os.load,
    				    (load_end - images->os.load));
    		else if (ret && ret != BOOTM_ERR_OVERLAP)
    			goto err;
    		else if (ret == BOOTM_ERR_OVERLAP)
    			ret = 0;
    #if defined(CONFIG_SILENT_CONSOLE) && !defined(CONFIG_SILENT_U_BOOT_ONLY)
    		if (images->os.os == IH_OS_LINUX)
    			fixup_silent_linux();
    #endif
    	}
    
    	/* Relocate the ramdisk */
    #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH
    	if (!ret && (states & BOOTM_STATE_RAMDISK)) {
    		ulong rd_len = images->rd_end - images->rd_start;
    
    		ret = boot_ramdisk_high(&images->lmb, images->rd_start,
    			rd_len, &images->initrd_start, &images->initrd_end);
    		if (!ret) {
    			setenv_hex("initrd_start", images->initrd_start);
    			setenv_hex("initrd_end", images->initrd_end);
    		}
    	}
    #endif
    #if defined(CONFIG_OF_LIBFDT) && defined(CONFIG_LMB)
    	if (!ret && (states & BOOTM_STATE_FDT)) {
    		boot_fdt_add_mem_rsv_regions(&images->lmb, images->ft_addr);
    		ret = boot_relocate_fdt(&images->lmb, &images->ft_addr,
    					&images->ft_len);
    	}
    #endif
    
    	/* From now on, we need the OS boot function */
    	if (ret)
    		return ret;
    	boot_fn = boot_os[images->os.os];
    	need_boot_fn = states & (BOOTM_STATE_OS_CMDLINE |
    			BOOTM_STATE_OS_BD_T | BOOTM_STATE_OS_PREP |
    			BOOTM_STATE_OS_FAKE_GO | BOOTM_STATE_OS_GO);
    	if (boot_fn == NULL && need_boot_fn) {
    		if (iflag)
    			enable_interrupts();
    		printf("ERROR: booting os '%s' (%d) is not supported\n",
    		       genimg_get_os_name(images->os.os), images->os.os);
    		bootstage_error(BOOTSTAGE_ID_CHECK_BOOT_OS);
    		return 1;
    	}
    
    	/* Call various other states that are not generally used */
    	if (!ret && (states & BOOTM_STATE_OS_CMDLINE))
    		ret = boot_fn(BOOTM_STATE_OS_CMDLINE, argc, argv, images);
    	if (!ret && (states & BOOTM_STATE_OS_BD_T))
    		ret = boot_fn(BOOTM_STATE_OS_BD_T, argc, argv, images);
    	if (!ret && (states & BOOTM_STATE_OS_PREP))
    		ret = boot_fn(BOOTM_STATE_OS_PREP, argc, argv, images);
    
    #ifdef CONFIG_TRACE
    	/* Pretend to run the OS, then run a user command */
    	if (!ret && (states & BOOTM_STATE_OS_FAKE_GO)) {
    		char *cmd_list = getenv("fakegocmd");
    
    		ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_FAKE_GO,
    				images, boot_fn);
    		if (!ret && cmd_list)
    			ret = run_command_list(cmd_list, -1, flag);
    	}
    #endif
    
    	/* Check for unsupported subcommand. */
    	if (ret) {
    		puts("subcommand not supported\n");
    		return ret;
    	}
    
    	/* Now run the OS! We hope this doesn't return */
    	if (!ret && (states & BOOTM_STATE_OS_GO))
    		ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_GO,
    				images, boot_fn);
    
    	/* Deal with any fallout */
    err:
    	if (iflag)
    		enable_interrupts();
    
    	if (ret == BOOTM_ERR_UNIMPLEMENTED)
    		bootstage_error(BOOTSTAGE_ID_DECOMP_UNIMPL);
    	else if (ret == BOOTM_ERR_RESET)
    		do_reset(cmdtp, flag, argc, argv);
    
    	return ret;
    }
    
    static int do_bootm_subcommand(cmd_tbl_t *cmdtp, int flag, int argc,
    			char * const argv[])
    {
    	int ret = 0;
    	long state;
    	cmd_tbl_t *c;
    
    	c = find_cmd_tbl(argv[0], &cmd_bootm_sub[0], ARRAY_SIZE(cmd_bootm_sub));
    	argc--; argv++;
    
    	if (c) {
    		state = (long)c->cmd;
    		if (state == BOOTM_STATE_START)
    			state |= BOOTM_STATE_FINDOS | BOOTM_STATE_FINDOTHER;
    	} else {
    		/* Unrecognized command */
    		return CMD_RET_USAGE;
    	}
    
    	if (state != BOOTM_STATE_START && images.state >= state) {
    		printf("Trying to execute a command out of order\n");
    		return CMD_RET_USAGE;
    	}
    
    	ret = do_bootm_states(cmdtp, flag, argc, argv, state, &images, 0);
    
    	return ret;
    }
    
    /*******************************************************************/
    /* bootm - boot application image from image in memory */
    /*******************************************************************/
    
    int do_bootm(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
    {
    #ifdef CONFIG_NEEDS_MANUAL_RELOC
    	static int relocated = 0;
    
    	if (!relocated) {
    		int i;
    
    		/* relocate boot function table */
    		for (i = 0; i < ARRAY_SIZE(boot_os); i++)
    			if (boot_os[i] != NULL)
    				boot_os[i] += gd->reloc_off;
    
    		/* relocate names of sub-command table */
    		for (i = 0; i < ARRAY_SIZE(cmd_bootm_sub); i++)
    			cmd_bootm_sub[i].name += gd->reloc_off;
    
    		relocated = 1;
    	}
    #endif
    
    	/* determine if we have a sub command */
    	argc--; argv++;
    	if (argc > 0) {
    		char *endp;
    
    		simple_strtoul(argv[0], &endp, 16);
    		/* endp pointing to NULL means that argv[0] was just a
    		 * valid number, pass it along to the normal bootm processing
    		 *
    		 * If endp is ':' or '#' assume a FIT identifier so pass
    		 * along for normal processing.
    		 *
    		 * Right now we assume the first arg should never be '-'
    		 */
    		if ((*endp != 0) && (*endp != ':') && (*endp != '#'))
    			return do_bootm_subcommand(cmdtp, flag, argc, argv);
    	}
    
    	return do_bootm_states(cmdtp, flag, argc, argv, BOOTM_STATE_START |
    		BOOTM_STATE_FINDOS | BOOTM_STATE_FINDOTHER |
    		BOOTM_STATE_LOADOS |
    #if defined(CONFIG_PPC) || defined(CONFIG_MIPS)
    		BOOTM_STATE_OS_CMDLINE |
    #endif
    		BOOTM_STATE_OS_PREP | BOOTM_STATE_OS_FAKE_GO |
    		BOOTM_STATE_OS_GO, &images, 1);
    }
    
    int bootm_maybe_autostart(cmd_tbl_t *cmdtp, const char *cmd)
    {
    	const char *ep = getenv("autostart");
    
    	if (ep && !strcmp(ep, "yes")) {
    		char *local_args[2];
    		local_args[0] = (char *)cmd;
    		local_args[1] = NULL;
    		printf("Automatic boot of image at addr 0x%08lX ...\n", load_addr);
    		return do_bootm(cmdtp, 0, 1, local_args);
    	}
    
    	return 0;
    }
    
    #if defined(CONFIG_IMAGE_FORMAT_LEGACY)
    /**
     * image_get_kernel - verify legacy format kernel image
     * @img_addr: in RAM address of the legacy format image to be verified
     * @verify: data CRC verification flag
     *
     * image_get_kernel() verifies legacy image integrity and returns pointer to
     * legacy image header if image verification was completed successfully.
     *
     * returns:
     *     pointer to a legacy image header if valid image was found
     *     otherwise return NULL
     */
    static image_header_t *image_get_kernel(ulong img_addr, int verify)
    {
    	image_header_t *hdr = (image_header_t *)img_addr;
    
    	if (!image_check_magic(hdr)) {
    		puts("Bad Magic Number\n");
    		bootstage_error(BOOTSTAGE_ID_CHECK_MAGIC);
    		return NULL;
    	}
    	bootstage_mark(BOOTSTAGE_ID_CHECK_HEADER);
    
    	if (!image_check_hcrc(hdr)) {
    		puts("Bad Header Checksum\n");
    		bootstage_error(BOOTSTAGE_ID_CHECK_HEADER);
    		return NULL;
    	}
    
    	bootstage_mark(BOOTSTAGE_ID_CHECK_CHECKSUM);
    	image_print_contents(hdr);
    
    	if (verify) {
    		puts("   Verifying Checksum ... ");
    		if (!image_check_dcrc(hdr)) {
    			printf("Bad Data CRC\n");
    			bootstage_error(BOOTSTAGE_ID_CHECK_CHECKSUM);
    			return NULL;
    		}
    		puts("OK\n");
    	}
    	bootstage_mark(BOOTSTAGE_ID_CHECK_ARCH);
    
    	if (!image_check_target_arch(hdr)) {
    		printf("Unsupported Architecture 0x%x\n", image_get_arch(hdr));
    		bootstage_error(BOOTSTAGE_ID_CHECK_ARCH);
    		return NULL;
    	}
    	return hdr;
    }
    #endif
    
    /**
     * boot_get_kernel - find kernel image
     * @os_data: pointer to a ulong variable, will hold os data start address
     * @os_len: pointer to a ulong variable, will hold os data length
     *
     * boot_get_kernel() tries to find a kernel image, verifies its integrity
     * and locates kernel data.
     *
     * returns:
     *     pointer to image header if valid image was found, plus kernel start
     *     address and length, otherwise NULL
     */
    static const void *boot_get_kernel(cmd_tbl_t *cmdtp, int flag, int argc,
    		char * const argv[], bootm_headers_t *images, ulong *os_data,
    		ulong *os_len)
    {
    #if defined(CONFIG_IMAGE_FORMAT_LEGACY)
    	image_header_t	*hdr;
    #endif
    	ulong		img_addr;
    	const void *buf;
    #if defined(CONFIG_FIT)
    	const char	*fit_uname_config = NULL;
    	const char	*fit_uname_kernel = NULL;
    	int		os_noffset;
    #endif
    
    	/* find out kernel image address */
    	if (argc < 1) {
    		img_addr = load_addr;
    		debug("*  kernel: default image load address = 0x%08lx\n",
    				load_addr);
    #if defined(CONFIG_FIT)
    	} else if (fit_parse_conf(argv[0], load_addr, &img_addr,
    							&fit_uname_config)) {
    		debug("*  kernel: config '%s' from image at 0x%08lx\n",
    				fit_uname_config, img_addr);
    	} else if (fit_parse_subimage(argv[0], load_addr, &img_addr,
    							&fit_uname_kernel)) {
    		debug("*  kernel: subimage '%s' from image at 0x%08lx\n",
    				fit_uname_kernel, img_addr);
    #endif
    	} else {
    		img_addr = simple_strtoul(argv[0], NULL, 16);
    		debug("*  kernel: cmdline image address = 0x%08lx\n", img_addr);
    	}
    
    	bootstage_mark(BOOTSTAGE_ID_CHECK_MAGIC);
    
    	/* copy from dataflash if needed */
    	img_addr = genimg_get_image(img_addr);
    
    	/* check image type, for FIT images get FIT kernel node */
    	*os_data = *os_len = 0;
    	buf = map_sysmem(img_addr, 0);
    	switch (genimg_get_format(buf)) {
    #if defined(CONFIG_IMAGE_FORMAT_LEGACY)
    	case IMAGE_FORMAT_LEGACY:
    		printf("## Booting kernel from Legacy Image at %08lx ...\n",
    				img_addr);
    		hdr = image_get_kernel(img_addr, images->verify);
    		if (!hdr)
    			return NULL;
    		bootstage_mark(BOOTSTAGE_ID_CHECK_IMAGETYPE);
    
    		/* get os_data and os_len */
    		switch (image_get_type(hdr)) {
    		case IH_TYPE_KERNEL:
    		case IH_TYPE_KERNEL_NOLOAD:
    			*os_data = image_get_data(hdr);
    			*os_len = image_get_data_size(hdr);
    			break;
    		case IH_TYPE_MULTI:
    			image_multi_getimg(hdr, 0, os_data, os_len);
    			break;
    		case IH_TYPE_STANDALONE:
    			*os_data = image_get_data(hdr);
    			*os_len = image_get_data_size(hdr);
    			break;
    		default:
    			printf("Wrong Image Type for %s command\n",
    				cmdtp->name);
    			bootstage_error(BOOTSTAGE_ID_CHECK_IMAGETYPE);
    			return NULL;
    		}
    
    		/*
    		 * copy image header to allow for image overwrites during
    		 * kernel decompression.
    		 */
    		memmove(&images->legacy_hdr_os_copy, hdr,
    			sizeof(image_header_t));
    
    		/* save pointer to image header */
    		images->legacy_hdr_os = hdr;
    
    		images->legacy_hdr_valid = 1;
    		bootstage_mark(BOOTSTAGE_ID_DECOMP_IMAGE);
    		break;
    #endif
    #if defined(CONFIG_FIT)
    	case IMAGE_FORMAT_FIT:
    		os_noffset = fit_image_load(images, FIT_KERNEL_PROP,
    				img_addr,
    				&fit_uname_kernel, &fit_uname_config,
    				IH_ARCH_DEFAULT, IH_TYPE_KERNEL,
    				BOOTSTAGE_ID_FIT_KERNEL_START,
    				FIT_LOAD_IGNORED, os_data, os_len);
    		if (os_noffset < 0)
    			return NULL;
    
    		images->fit_hdr_os = map_sysmem(img_addr, 0);
    		images->fit_uname_os = fit_uname_kernel;
    		images->fit_uname_cfg = fit_uname_config;
    		images->fit_noffset_os = os_noffset;
    		break;
    #endif
    #ifdef CONFIG_ANDROID_BOOT_IMAGE
    	case IMAGE_FORMAT_ANDROID:
    		printf("## Booting Android Image at 0x%08lx ...\n", img_addr);
    		if (android_image_get_kernel((void *)img_addr, images->verify,
    					     os_data, os_len))
    			return NULL;
    		break;
    #endif
    	default:
    		printf("Wrong Image Format for %s command\n", cmdtp->name);
    		bootstage_error(BOOTSTAGE_ID_FIT_KERNEL_INFO);
    		return NULL;
    	}
    
    	debug("   kernel data at 0x%08lx, len = 0x%08lx (%ld)\n",
    			*os_data, *os_len, *os_len);
    
    	return buf;
    }
    
    #ifdef CONFIG_SYS_LONGHELP
    static char bootm_help_text[] =
    	"[addr [arg ...]]\n    - boot application image stored in memory\n"
    	"\tpassing arguments 'arg ...'; when booting a Linux kernel,\n"
    	"\t'arg' can be the address of an initrd image\n"
    #if defined(CONFIG_OF_LIBFDT)
    	"\tWhen booting a Linux kernel which requires a flat device-tree\n"
    	"\ta third argument is required which is the address of the\n"
    	"\tdevice-tree blob. To boot that kernel without an initrd image,\n"
    	"\tuse a '-' for the second argument. If you do not pass a third\n"
    	"\ta bd_info struct will be passed instead\n"
    #endif
    #if defined(CONFIG_FIT)
    	"\t\nFor the new multi component uImage format (FIT) addresses\n"
    	"\tmust be extened to include component or configuration unit name:\n"
    	"\taddr:<subimg_uname> - direct component image specification\n"
    	"\taddr#<conf_uname>   - configuration specification\n"
    	"\tUse iminfo command to get the list of existing component\n"
    	"\timages and configurations.\n"
    #endif
    	"\nSub-commands to do part of the bootm sequence.  The sub-commands "
    	"must be\n"
    	"issued in the order below (it's ok to not issue all sub-commands):\n"
    	"\tstart [addr [arg ...]]\n"
    	"\tloados  - load OS image\n"
    #if defined(CONFIG_SYS_BOOT_RAMDISK_HIGH)
    	"\tramdisk - relocate initrd, set env initrd_start/initrd_end\n"
    #endif
    #if defined(CONFIG_OF_LIBFDT)
    	"\tfdt     - relocate flat device tree\n"
    #endif
    	"\tcmdline - OS specific command line processing/setup\n"
    	"\tbdt     - OS specific bd_t processing\n"
    	"\tprep    - OS specific prep before relocation or go\n"
    	"\tgo      - start OS";
    #endif
    
    U_BOOT_CMD(
    	bootm,	CONFIG_SYS_MAXARGS,	1,	do_bootm,
    	"boot application image from memory", bootm_help_text
    );
    
    /*******************************************************************/
    /* bootd - boot default image */
    /*******************************************************************/
    #if defined(CONFIG_CMD_BOOTD)
    int do_bootd(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
    {
    	int rcode = 0;
    
    	if (run_command(getenv("bootcmd"), flag) < 0)
    		rcode = 1;
    	return rcode;
    }
    
    U_BOOT_CMD(
    	boot,	1,	1,	do_bootd,
    	"boot default, i.e., run 'bootcmd'",
    	""
    );
    
    /* keep old command name "bootd" for backward compatibility */
    U_BOOT_CMD(
    	bootd, 1,	1,	do_bootd,
    	"boot default, i.e., run 'bootcmd'",
    	""
    );
    
    #endif
    
    
    /*******************************************************************/
    /* iminfo - print header info for a requested image */
    /*******************************************************************/
    #if defined(CONFIG_CMD_IMI)
    static int do_iminfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
    {
    	int	arg;
    	ulong	addr;
    	int	rcode = 0;
    
    	if (argc < 2) {
    		return image_info(load_addr);
    	}
    
    	for (arg = 1; arg < argc; ++arg) {
    		addr = simple_strtoul(argv[arg], NULL, 16);
    		if (image_info(addr) != 0)
    			rcode = 1;
    	}
    	return rcode;
    }
    
    static int image_info(ulong addr)
    {
    	void *hdr = (void *)addr;
    
    	printf("\n## Checking Image at %08lx ...\n", addr);
    
    	switch (genimg_get_format(hdr)) {
    #if defined(CONFIG_IMAGE_FORMAT_LEGACY)
    	case IMAGE_FORMAT_LEGACY:
    		puts("   Legacy image found\n");
    		if (!image_check_magic(hdr)) {
    			puts("   Bad Magic Number\n");
    			return 1;
    		}
    
    		if (!image_check_hcrc(hdr)) {
    			puts("   Bad Header Checksum\n");
    			return 1;
    		}
    
    		image_print_contents(hdr);
    
    		puts("   Verifying Checksum ... ");
    		if (!image_check_dcrc(hdr)) {
    			puts("   Bad Data CRC\n");
    			return 1;
    		}
    		puts("OK\n");
    		return 0;
    #endif
    #if defined(CONFIG_FIT)
    	case IMAGE_FORMAT_FIT:
    		puts("   FIT image found\n");
    
    		if (!fit_check_format(hdr)) {
    			puts("Bad FIT image format!\n");
    			return 1;
    		}
    
    		fit_print_contents(hdr);
    
    		if (!fit_all_image_verify(hdr)) {
    			puts("Bad hash in FIT image!\n");
    			return 1;
    		}
    
    		return 0;
    #endif
    	default:
    		puts("Unknown image format!\n");
    		break;
    	}
    
    	return 1;
    }
    
    U_BOOT_CMD(
    	iminfo,	CONFIG_SYS_MAXARGS,	1,	do_iminfo,
    	"print header information for application image",
    	"addr [addr ...]\n"
    	"    - print header information for application image starting at\n"
    	"      address 'addr' in memory; this includes verification of the\n"
    	"      image contents (magic number, header and payload checksums)"
    );
    #endif
    
    
    /*******************************************************************/
    /* imls - list all images found in flash */
    /*******************************************************************/
    #if defined(CONFIG_CMD_IMLS)
    static int do_imls_nor(void)
    {
    	flash_info_t *info;
    	int i, j;
    	void *hdr;
    
    	for (i = 0, info = &flash_info[0];
    		i < CONFIG_SYS_MAX_FLASH_BANKS; ++i, ++info) {
    
    		if (info->flash_id == FLASH_UNKNOWN)
    			goto next_bank;
    		for (j = 0; j < info->sector_count; ++j) {
    
    			hdr = (void *)info->start[j];
    			if (!hdr)
    				goto next_sector;
    
    			switch (genimg_get_format(hdr)) {
    #if defined(CONFIG_IMAGE_FORMAT_LEGACY)
    			case IMAGE_FORMAT_LEGACY:
    				if (!image_check_hcrc(hdr))
    					goto next_sector;
    
    				printf("Legacy Image at %08lX:\n", (ulong)hdr);
    				image_print_contents(hdr);
    
    				puts("   Verifying Checksum ... ");
    				if (!image_check_dcrc(hdr)) {
    					puts("Bad Data CRC\n");
    				} else {
    					puts("OK\n");
    				}
    				break;
    #endif
    #if defined(CONFIG_FIT)
    			case IMAGE_FORMAT_FIT:
    				if (!fit_check_format(hdr))
    					goto next_sector;
    
    				printf("FIT Image at %08lX:\n", (ulong)hdr);
    				fit_print_contents(hdr);
    				break;
    #endif
    			default:
    				goto next_sector;
    			}
    
    next_sector:		;
    		}
    next_bank:	;
    	}
    	return 0;
    }
    #endif
    
    #if defined(CONFIG_CMD_IMLS_NAND)
    static int nand_imls_legacyimage(nand_info_t *nand, int nand_dev, loff_t off,
    		size_t len)
    {
    	void *imgdata;
    	int ret;
    
    	imgdata = malloc(len);
    	if (!imgdata) {
    		printf("May be a Legacy Image at NAND device %d offset %08llX:\n",
    				nand_dev, off);
    		printf("   Low memory(cannot allocate memory for image)\n");
    		return -ENOMEM;
    	}
    
    	ret = nand_read_skip_bad(nand, off, &len,
    			imgdata);
    	if (ret < 0 && ret != -EUCLEAN) {
    		free(imgdata);
    		return ret;
    	}
    
    	if (!image_check_hcrc(imgdata)) {
    		free(imgdata);
    		return 0;
    	}
    
    	printf("Legacy Image at NAND device %d offset %08llX:\n",
    			nand_dev, off);
    	image_print_contents(imgdata);
    
    	puts("   Verifying Checksum ... ");
    	if (!image_check_dcrc(imgdata))
    		puts("Bad Data CRC\n");
    	else
    		puts("OK\n");
    
    	free(imgdata);
    
    	return 0;
    }
    
    static int nand_imls_fitimage(nand_info_t *nand, int nand_dev, loff_t off,
    		size_t len)
    {
    	void *imgdata;
    	int ret;
    
    	imgdata = malloc(len);
    	if (!imgdata) {
    		printf("May be a FIT Image at NAND device %d offset %08llX:\n",
    				nand_dev, off);
    		printf("   Low memory(cannot allocate memory for image)\n");
    		return -ENOMEM;
    	}
    
    	ret = nand_read_skip_bad(nand, off, &len,
    			imgdata);
    	if (ret < 0 && ret != -EUCLEAN) {
    		free(imgdata);
    		return ret;
    	}
    
    	if (!fit_check_format(imgdata)) {
    		free(imgdata);
    		return 0;
    	}
    
    	printf("FIT Image at NAND device %d offset %08llX:\n", nand_dev, off);
    
    	fit_print_contents(imgdata);
    	free(imgdata);
    
    	return 0;
    }
    
    static int do_imls_nand(void)
    {
    	nand_info_t *nand;
    	int nand_dev = nand_curr_device;
    	size_t len;
    	loff_t off;
    	u32 buffer[16];
    
    	if (nand_dev < 0 || nand_dev >= CONFIG_SYS_MAX_NAND_DEVICE) {
    		puts("\nNo NAND devices available\n");
    		return -ENODEV;
    	}
    
    	printf("\n");
    
    	for (nand_dev = 0; nand_dev < CONFIG_SYS_MAX_NAND_DEVICE; nand_dev++) {
    		nand = &nand_info[nand_dev];
    		if (!nand->name || !nand->size)
    			continue;
    
    		for (off = 0; off < nand->size; off += nand->erasesize) {
    			const image_header_t *header;
    			int ret;
    
    			if (nand_block_isbad(nand, off))
    				continue;
    
    			len = sizeof(buffer);
    
    			ret = nand_read(nand, off, &len, (u8 *)buffer);
    			if (ret < 0 && ret != -EUCLEAN) {
    				printf("NAND read error %d at offset %08llX\n",
    						ret, off);
    				continue;
    			}
    
    			switch (genimg_get_format(buffer)) {
    #if defined(CONFIG_IMAGE_FORMAT_LEGACY)
    			case IMAGE_FORMAT_LEGACY:
    				header = (const image_header_t *)buffer;
    
    				len = image_get_image_size(header);
    				nand_imls_legacyimage(nand, nand_dev, off, len);
    				break;
    #endif
    #if defined(CONFIG_FIT)
    			case IMAGE_FORMAT_FIT:
    				len = fit_get_size(buffer);
    				nand_imls_fitimage(nand, nand_dev, off, len);
    				break;
    #endif
    			}
    		}
    	}
    
    	return 0;
    }
    #endif
    
    #if defined(CONFIG_CMD_IMLS) || defined(CONFIG_CMD_IMLS_NAND)
    static int do_imls(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
    {
    	int ret_nor = 0, ret_nand = 0;
    
    #if defined(CONFIG_CMD_IMLS)
    	ret_nor = do_imls_nor();
    #endif
    
    #if defined(CONFIG_CMD_IMLS_NAND)
    	ret_nand = do_imls_nand();
    #endif
    
    	if (ret_nor)
    		return ret_nor;
    
    	if (ret_nand)
    		return ret_nand;
    
    	return (0);
    }
    
    U_BOOT_CMD(
    	imls,	1,		1,	do_imls,
    	"list all images found in flash",
    	"\n"
    	"    - Prints information about all images found at sector/block\n"
    	"      boundaries in nor/nand flash."
    );
    #endif
    
    /*******************************************************************/
    /* helper routines */
    /*******************************************************************/
    #if defined(CONFIG_SILENT_CONSOLE) && !defined(CONFIG_SILENT_U_BOOT_ONLY)
    
    #define CONSOLE_ARG     "console="
    #define CONSOLE_ARG_LEN (sizeof(CONSOLE_ARG) - 1)
    
    static void fixup_silent_linux(void)
    {
    	char *buf;
    	const char *env_val;
    	char *cmdline = getenv("bootargs");
    	int want_silent;
    
    	/*
    	 * Only fix cmdline when requested. The environment variable can be:
    	 *
    	 *	no - we never fixup
    	 *	yes - we always fixup
    	 *	unset - we rely on the console silent flag
    	 */
    	want_silent = getenv_yesno("silent_linux");
    	if (want_silent == 0)
    		return;
    	else if (want_silent == -1 && !(gd->flags & GD_FLG_SILENT))
    		return;
    
    	debug("before silent fix-up: %s\n", cmdline);
    	if (cmdline && (cmdline[0] != '\0')) {
    		char *start = strstr(cmdline, CONSOLE_ARG);
    
    		/* Allocate space for maximum possible new command line */
    		buf = malloc(strlen(cmdline) + 1 + CONSOLE_ARG_LEN + 1);
    		if (!buf) {
    			debug("%s: out of memory\n", __func__);
    			return;
    		}
    
    		if (start) {
    			char *end = strchr(start, ' ');
    			int num_start_bytes = start - cmdline + CONSOLE_ARG_LEN;
    
    			strncpy(buf, cmdline, num_start_bytes);
    			if (end)
    				strcpy(buf + num_start_bytes, end);
    			else
    				buf[num_start_bytes] = '\0';
    		} else {
    			sprintf(buf, "%s %s", cmdline, CONSOLE_ARG);
    		}
    		env_val = buf;
    	} else {
    		buf = NULL;
    		env_val = CONSOLE_ARG;
    	}
    
    	setenv("bootargs", env_val);
    	debug("after silent fix-up: %s\n", env_val);
    	free(buf);
    }
    #endif /* CONFIG_SILENT_CONSOLE */
    
    #if defined(CONFIG_BOOTM_NETBSD) || defined(CONFIG_BOOTM_PLAN9)
    static void copy_args(char *dest, int argc, char * const argv[], char delim)
    {
    	int i;
    
    	for (i = 0; i < argc; i++) {
    		if (i > 0)
    			*dest++ = delim;
    		strcpy(dest, argv[i]);
    		dest += strlen(argv[i]);
    	}
    }
    #endif
    
    /*******************************************************************/
    /* OS booting routines */
    /*******************************************************************/
    
    #ifdef CONFIG_BOOTM_NETBSD
    static int do_bootm_netbsd(int flag, int argc, char * const argv[],
    			    bootm_headers_t *images)
    {
    	void (*loader)(bd_t *, image_header_t *, char *, char *);
    	image_header_t *os_hdr, *hdr;
    	ulong kernel_data, kernel_len;
    	char *consdev;
    	char *cmdline;
    
    	if (flag != BOOTM_STATE_OS_GO)
    		return 0;
    
    #if defined(CONFIG_FIT)
    	if (!images->legacy_hdr_valid) {
    		fit_unsupported_reset("NetBSD");
    		return 1;
    	}
    #endif
    	hdr = images->legacy_hdr_os;
    
    	/*
    	 * Booting a (NetBSD) kernel image
    	 *
    	 * This process is pretty similar to a standalone application:
    	 * The (first part of an multi-) image must be a stage-2 loader,
    	 * which in turn is responsible for loading & invoking the actual
    	 * kernel.  The only differences are the parameters being passed:
    	 * besides the board info strucure, the loader expects a command
    	 * line, the name of the console device, and (optionally) the
    	 * address of the original image header.
    	 */
    	os_hdr = NULL;
    	if (image_check_type(&images->legacy_hdr_os_copy, IH_TYPE_MULTI)) {
    		image_multi_getimg(hdr, 1, &kernel_data, &kernel_len);
    		if (kernel_len)
    			os_hdr = hdr;
    	}
    
    	consdev = "";
    #if   defined(CONFIG_8xx_CONS_SMC1)
    	consdev = "smc1";
    #elif defined(CONFIG_8xx_CONS_SMC2)
    	consdev = "smc2";
    #elif defined(CONFIG_8xx_CONS_SCC2)
    	consdev = "scc2";
    #elif defined(CONFIG_8xx_CONS_SCC3)
    	consdev = "scc3";
    #endif
    
    	if (argc > 0) {
    		ulong len;
    		int   i;
    
    		for (i = 0, len = 0; i < argc; i += 1)
    			len += strlen(argv[i]) + 1;
    		cmdline = malloc(len);
    		copy_args(cmdline, argc, argv, ' ');
    	} else if ((cmdline = getenv("bootargs")) == NULL) {
    		cmdline = "";
    	}
    
    	loader = (void (*)(bd_t *, image_header_t *, char *, char *))images->ep;
    
    	printf("## Transferring control to NetBSD stage-2 loader "
    		"(at address %08lx) ...\n",
    		(ulong)loader);
    
    	bootstage_mark(BOOTSTAGE_ID_RUN_OS);
    
    	/*
    	 * NetBSD Stage-2 Loader Parameters:
    	 *   arg[0]: pointer to board info data
    	 *   arg[1]: image load address
    	 *   arg[2]: char pointer to the console device to use
    	 *   arg[3]: char pointer to the boot arguments
    	 */
    	(*loader)(gd->bd, os_hdr, consdev, cmdline);
    
    	return 1;
    }
    #endif /* CONFIG_BOOTM_NETBSD*/
    
    #ifdef CONFIG_LYNXKDI
    static int do_bootm_lynxkdi(int flag, int argc, char * const argv[],
    			     bootm_headers_t *images)
    {
    	image_header_t *hdr = &images->legacy_hdr_os_copy;
    
    	if (flag != BOOTM_STATE_OS_GO)
    		return 0;
    
    #if defined(CONFIG_FIT)
    	if (!images->legacy_hdr_valid) {
    		fit_unsupported_reset("Lynx");
    		return 1;
    	}
    #endif
    
    	lynxkdi_boot((image_header_t *)hdr);
    
    	return 1;
    }
    #endif /* CONFIG_LYNXKDI */
    
    #ifdef CONFIG_BOOTM_RTEMS
    static int do_bootm_rtems(int flag, int argc, char * const argv[],
    			   bootm_headers_t *images)
    {
    	void (*entry_point)(bd_t *);
    
    	if (flag != BOOTM_STATE_OS_GO)
    		return 0;
    
    #if defined(CONFIG_FIT)
    	if (!images->legacy_hdr_valid) {
    		fit_unsupported_reset("RTEMS");
    		return 1;
    	}
    #endif
    
    	entry_point = (void (*)(bd_t *))images->ep;
    
    	printf("## Transferring control to RTEMS (at address %08lx) ...\n",
    		(ulong)entry_point);
    
    	bootstage_mark(BOOTSTAGE_ID_RUN_OS);
    
    	/*
    	 * RTEMS Parameters:
    	 *   r3: ptr to board info data
    	 */
    	(*entry_point)(gd->bd);
    
    	return 1;
    }
    #endif /* CONFIG_BOOTM_RTEMS */
    
    #if defined(CONFIG_BOOTM_OSE)
    static int do_bootm_ose(int flag, int argc, char * const argv[],
    			   bootm_headers_t *images)
    {
    	void (*entry_point)(void);
    
    	if (flag != BOOTM_STATE_OS_GO)
    		return 0;
    
    #if defined(CONFIG_FIT)
    	if (!images->legacy_hdr_valid) {
    		fit_unsupported_reset("OSE");
    		return 1;
    	}
    #endif
    
    	entry_point = (void (*)(void))images->ep;
    
    	printf("## Transferring control to OSE (at address %08lx) ...\n",
    		(ulong)entry_point);
    
    	bootstage_mark(BOOTSTAGE_ID_RUN_OS);
    
    	/*
    	 * OSE Parameters:
    	 *   None
    	 */
    	(*entry_point)();
    
    	return 1;
    }
    #endif /* CONFIG_BOOTM_OSE */
    
    #if defined(CONFIG_BOOTM_PLAN9)
    static int do_bootm_plan9(int flag, int argc, char * const argv[],
    			   bootm_headers_t *images)
    {
    	void (*entry_point)(void);
    	char *s;
    
    	if (flag != BOOTM_STATE_OS_GO)
    		return 0;
    
    #if defined(CONFIG_FIT)
    	if (!images->legacy_hdr_valid) {
    		fit_unsupported_reset("Plan 9");
    		return 1;
    	}
    #endif
    
    	/* See README.plan9 */
    	s = getenv("confaddr");
    	if (s != NULL) {
    		char *confaddr = (char *)simple_strtoul(s, NULL, 16);
    
    		if (argc > 0) {
    			copy_args(confaddr, argc, argv, '\n');
    		} else {
    			s = getenv("bootargs");
    			if (s != NULL)
    				strcpy(confaddr, s);
    		}
    	}
    
    	entry_point = (void (*)(void))images->ep;
    
    	printf("## Transferring control to Plan 9 (at address %08lx) ...\n",
    		(ulong)entry_point);
    
    	bootstage_mark(BOOTSTAGE_ID_RUN_OS);
    
    	/*
    	 * Plan 9 Parameters:
    	 *   None
    	 */
    	(*entry_point)();
    
    	return 1;
    }
    #endif /* CONFIG_BOOTM_PLAN9 */
    
    #if defined(CONFIG_BOOTM_VXWORKS) && \
    	(defined(CONFIG_PPC) || defined(CONFIG_ARM))
    
    void do_bootvx_fdt(bootm_headers_t *images)
    {
    #if defined(CONFIG_OF_LIBFDT)
    	int ret;
    	char *bootline;
    	ulong of_size = images->ft_len;
    	char **of_flat_tree = &images->ft_addr;
    	struct lmb *lmb = &images->lmb;
    
    	if (*of_flat_tree) {
    		boot_fdt_add_mem_rsv_regions(lmb, *of_flat_tree);
    
    		ret = boot_relocate_fdt(lmb, of_flat_tree, &of_size);
    		if (ret)
    			return;
    
    		ret = fdt_add_subnode(*of_flat_tree, 0, "chosen");
    		if ((ret >= 0 || ret == -FDT_ERR_EXISTS)) {
    			bootline = getenv("bootargs");
    			if (bootline) {
    				ret = fdt_find_and_setprop(*of_flat_tree,
    						"/chosen", "bootargs",
    						bootline,
    						strlen(bootline) + 1, 1);
    				if (ret < 0) {
    					printf("## ERROR: %s : %s\n", __func__,
    					       fdt_strerror(ret));
    					return;
    				}
    			}
    		} else {
    			printf("## ERROR: %s : %s\n", __func__,
    			       fdt_strerror(ret));
    			return;
    		}
    	}
    #endif
    
    	boot_prep_vxworks(images);
    
    	bootstage_mark(BOOTSTAGE_ID_RUN_OS);
    
    #if defined(CONFIG_OF_LIBFDT)
    	printf("## Starting vxWorks at 0x%08lx, device tree at 0x%08lx ...\n",
    	       (ulong)images->ep, (ulong)*of_flat_tree);
    #else
    	printf("## Starting vxWorks at 0x%08lx\n", (ulong)images->ep);
    #endif
    
    	boot_jump_vxworks(images);
    
    	puts("## vxWorks terminated\n");
    }
    
    static int do_bootm_vxworks(int flag, int argc, char * const argv[],
    			     bootm_headers_t *images)
    {
    	if (flag != BOOTM_STATE_OS_GO)
    		return 0;
    
    #if defined(CONFIG_FIT)
    	if (!images->legacy_hdr_valid) {
    		fit_unsupported_reset("VxWorks");
    		return 1;
    	}
    #endif
    
    	do_bootvx_fdt(images);
    
    	return 1;
    }
    #endif
    
    #if defined(CONFIG_CMD_ELF)
    static int do_bootm_qnxelf(int flag, int argc, char * const argv[],
    			    bootm_headers_t *images)
    {
    	char *local_args[2];
    	char str[16];
    
    	if (flag != BOOTM_STATE_OS_GO)
    		return 0;
    
    #if defined(CONFIG_FIT)
    	if (!images->legacy_hdr_valid) {
    		fit_unsupported_reset("QNX");
    		return 1;
    	}
    #endif
    
    	sprintf(str, "%lx", images->ep); /* write entry-point into string */
    	local_args[0] = argv[0];
    	local_args[1] = str;	/* and provide it via the arguments */
    	do_bootelf(NULL, 0, 2, local_args);
    
    	return 1;
    }
    #endif
    
    #ifdef CONFIG_INTEGRITY
    static int do_bootm_integrity(int flag, int argc, char * const argv[],
    			   bootm_headers_t *images)
    {
    	void (*entry_point)(void);
    
    	if (flag != BOOTM_STATE_OS_GO)
    		return 0;
    
    #if defined(CONFIG_FIT)
    	if (!images->legacy_hdr_valid) {
    		fit_unsupported_reset("INTEGRITY");
    		return 1;
    	}
    #endif
    
    	entry_point = (void (*)(void))images->ep;
    
    	printf("## Transferring control to INTEGRITY (at address %08lx) ...\n",
    		(ulong)entry_point);
    
    	bootstage_mark(BOOTSTAGE_ID_RUN_OS);
    
    	/*
    	 * INTEGRITY Parameters:
    	 *   None
    	 */
    	(*entry_point)();
    
    	return 1;
    }
    #endif
    
    #ifdef CONFIG_CMD_BOOTZ
    
    int __weak bootz_setup(ulong image, ulong *start, ulong *end)
    {
    	/* Please define bootz_setup() for your platform */
    
    	puts("Your platform's zImage format isn't supported yet!\n");
    	return -1;
    }
    
    /*
     * zImage booting support
     */
    static int bootz_start(cmd_tbl_t *cmdtp, int flag, int argc,
    			char * const argv[], bootm_headers_t *images)
    {
    	int ret;
    	ulong zi_start, zi_end;
    
    	ret = do_bootm_states(cmdtp, flag, argc, argv, BOOTM_STATE_START,
    			      images, 1);
    
    	/* Setup Linux kernel zImage entry point */
    	if (!argc) {
    		images->ep = load_addr;
    		debug("*  kernel: default image load address = 0x%08lx\n",
    				load_addr);
    	} else {
    		images->ep = simple_strtoul(argv[0], NULL, 16);
    		debug("*  kernel: cmdline image address = 0x%08lx\n",
    			images->ep);
    	}
    
    	ret = bootz_setup(images->ep, &zi_start, &zi_end);
    	if (ret != 0)
    		return 1;
    
    	lmb_reserve(&images->lmb, images->ep, zi_end - zi_start);
    
    	/*
    	 * Handle the BOOTM_STATE_FINDOTHER state ourselves as we do not
    	 * have a header that provide this informaiton.
    	 */
    	if (bootm_find_ramdisk(flag, argc, argv))
    		return 1;
    
    #if defined(CONFIG_OF_LIBFDT)
    	if (bootm_find_fdt(flag, argc, argv))
    		return 1;
    #endif
    
    	return 0;
    }
    
    int do_bootz(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
    {
    	int ret;
    
    	/* Consume 'bootz' */
    	argc--; argv++;
    
    	if (bootz_start(cmdtp, flag, argc, argv, &images))
    		return 1;
    
    	/*
    	 * We are doing the BOOTM_STATE_LOADOS state ourselves, so must
    	 * disable interrupts ourselves
    	 */
    	bootm_disable_interrupts();
    
    	images.os.os = IH_OS_LINUX;
    	ret = do_bootm_states(cmdtp, flag, argc, argv,
    			      BOOTM_STATE_OS_PREP | BOOTM_STATE_OS_FAKE_GO |
    			      BOOTM_STATE_OS_GO,
    			      &images, 1);
    
    	return ret;
    }
    
    #ifdef CONFIG_SYS_LONGHELP
    static char bootz_help_text[] =
    	"[addr [initrd[:size]] [fdt]]\n"
    	"    - boot Linux zImage stored in memory\n"
    	"\tThe argument 'initrd' is optional and specifies the address\n"
    	"\tof the initrd in memory. The optional argument ':size' allows\n"
    	"\tspecifying the size of RAW initrd.\n"
    #if defined(CONFIG_OF_LIBFDT)
    	"\tWhen booting a Linux kernel which requires a flat device-tree\n"
    	"\ta third argument is required which is the address of the\n"
    	"\tdevice-tree blob. To boot that kernel without an initrd image,\n"
    	"\tuse a '-' for the second argument. If you do not pass a third\n"
    	"\ta bd_info struct will be passed instead\n"
    #endif
    	"";
    #endif
    
    U_BOOT_CMD(
    	bootz,	CONFIG_SYS_MAXARGS,	1,	do_bootz,
    	"boot Linux zImage image from memory", bootz_help_text
    );
    #endif	/* CONFIG_CMD_BOOTZ */