Newer
Older
/*
* Driver for Disk-On-Chip 2000 and Millennium
* (c) 1999 Machine Vision Holdings, Inc.
* (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
*
* $Id: doc2000.c,v 1.46 2001/10/02 15:05:13 dwmw2 Exp $
*/
#include <common.h>
#include <config.h>
#include <command.h>
#include <malloc.h>
#include <asm/io.h>
#ifdef CONFIG_SHOW_BOOT_PROGRESS
# include <status_led.h>
# define SHOW_BOOT_PROGRESS(arg) show_boot_progress(arg)
#else
# define SHOW_BOOT_PROGRESS(arg)
#endif
#if (CONFIG_COMMANDS & CFG_CMD_DOC)
#include <linux/mtd/nftl.h>
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ids.h>
#include <linux/mtd/doc2000.h>
#include <linux/mtd/nftl.h>
#ifdef CFG_DOC_SUPPORT_2000
#define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k)
#else
#define DoC_is_2000(doc) (0)
#endif
#ifdef CFG_DOC_SUPPORT_MILLENNIUM
#define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil)
#else
#define DoC_is_Millennium(doc) (0)
#endif
/* CFG_DOC_PASSIVE_PROBE:
In order to ensure that the BIOS checksum is correct at boot time, and
hence that the onboard BIOS extension gets executed, the DiskOnChip
goes into reset mode when it is read sequentially: all registers
return 0xff until the chip is woken up again by writing to the
DOCControl register.
Unfortunately, this means that the probe for the DiskOnChip is unsafe,
because one of the first things it does is write to where it thinks
the DOCControl register should be - which may well be shared memory
for another device. I've had machines which lock up when this is
attempted. Hence the possibility to do a passive probe, which will fail
to detect a chip in reset mode, but is at least guaranteed not to lock
the machine.
If you have this problem, uncomment the following line:
#define CFG_DOC_PASSIVE_PROBE
*/
#undef DOC_DEBUG
#undef ECC_DEBUG
#undef PSYCHO_DEBUG
#undef NFTL_DEBUG
static struct DiskOnChip doc_dev_desc[CFG_MAX_DOC_DEVICE];
/* Current DOC Device */
static int curr_device = -1;
/* ------------------------------------------------------------------------- */
int do_doc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
int rcode = 0;
switch (argc) {
case 0:
case 1:
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
case 2:
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
int i;
putc ('\n');
for (i=0; i<CFG_MAX_DOC_DEVICE; ++i) {
if(doc_dev_desc[i].ChipID == DOC_ChipID_UNKNOWN)
continue; /* list only known devices */
printf ("Device %d: ", i);
doc_print(&doc_dev_desc[i]);
}
return 0;
} else if (strcmp(argv[1],"device") == 0) {
if ((curr_device < 0) || (curr_device >= CFG_MAX_DOC_DEVICE)) {
puts ("\nno devices available\n");
return 1;
}
printf ("\nDevice %d: ", curr_device);
doc_print(&doc_dev_desc[curr_device]);
return 0;
}
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
case 3:
if (strcmp(argv[1],"device") == 0) {
int dev = (int)simple_strtoul(argv[2], NULL, 10);
printf ("\nDevice %d: ", dev);
if (dev >= CFG_MAX_DOC_DEVICE) {
puts ("unknown device\n");
return 1;
}
doc_print(&doc_dev_desc[dev]);
/*doc_print (dev);*/
if (doc_dev_desc[dev].ChipID == DOC_ChipID_UNKNOWN) {
return 1;
}
curr_device = dev;
puts ("... is now current device\n");
return 0;
}
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
default:
/* at least 4 args */
if (strcmp(argv[1],"read") == 0 || strcmp(argv[1],"write") == 0) {
ulong addr = simple_strtoul(argv[2], NULL, 16);
ulong off = simple_strtoul(argv[3], NULL, 16);
ulong size = simple_strtoul(argv[4], NULL, 16);
int cmd = (strcmp(argv[1],"read") == 0);
int ret, total;
printf ("\nDOC %s: device %d offset %ld, size %ld ... ",
cmd ? "read" : "write", curr_device, off, size);
ret = doc_rw(doc_dev_desc + curr_device, cmd, off, size,
&total, (u_char*)addr);
printf ("%d bytes %s: %s\n", total, cmd ? "read" : "write",
ret ? "ERROR" : "OK");
return ret;
} else if (strcmp(argv[1],"erase") == 0) {
ulong off = simple_strtoul(argv[2], NULL, 16);
ulong size = simple_strtoul(argv[3], NULL, 16);
int ret;
printf ("\nDOC erase: device %d offset %ld, size %ld ... ",
curr_device, off, size);
ret = doc_erase (doc_dev_desc + curr_device, off, size);
printf("%s\n", ret ? "ERROR" : "OK");
return ret;
} else {
printf ("Usage:\n%s\n", cmdtp->usage);
rcode = 1;
}
return rcode;
}
}
U_BOOT_CMD(
doc, 5, 1, do_doc,
"doc - Disk-On-Chip sub-system\n",
"info - show available DOC devices\n"
"doc device [dev] - show or set current device\n"
"doc read addr off size\n"
"doc write addr off size - read/write `size'"
" bytes starting at offset `off'\n"
" to/from memory address `addr'\n"
"doc erase off size - erase `size' bytes of DOC from offset `off'\n"
);
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
int do_docboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
char *boot_device = NULL;
char *ep;
int dev;
ulong cnt;
ulong addr;
ulong offset = 0;
image_header_t *hdr;
int rcode = 0;
switch (argc) {
case 1:
addr = CFG_LOAD_ADDR;
boot_device = getenv ("bootdevice");
break;
case 2:
addr = simple_strtoul(argv[1], NULL, 16);
boot_device = getenv ("bootdevice");
break;
case 3:
addr = simple_strtoul(argv[1], NULL, 16);
boot_device = argv[2];
break;
case 4:
addr = simple_strtoul(argv[1], NULL, 16);
boot_device = argv[2];
offset = simple_strtoul(argv[3], NULL, 16);
break;
default:
printf ("Usage:\n%s\n", cmdtp->usage);
SHOW_BOOT_PROGRESS (-1);
return 1;
}
if (!boot_device) {
puts ("\n** No boot device **\n");
SHOW_BOOT_PROGRESS (-1);
return 1;
}
dev = simple_strtoul(boot_device, &ep, 16);
if ((dev >= CFG_MAX_DOC_DEVICE) ||
(doc_dev_desc[dev].ChipID == DOC_ChipID_UNKNOWN)) {
printf ("\n** Device %d not available\n", dev);
SHOW_BOOT_PROGRESS (-1);
return 1;
}
printf ("\nLoading from device %d: %s at 0x%lX (offset 0x%lX)\n",
dev, doc_dev_desc[dev].name, doc_dev_desc[dev].physadr,
offset);
if (doc_rw (doc_dev_desc + dev, 1, offset,
SECTORSIZE, NULL, (u_char *)addr)) {
printf ("** Read error on %d\n", dev);
SHOW_BOOT_PROGRESS (-1);
return 1;
}
hdr = (image_header_t *)addr;
if (hdr->ih_magic == IH_MAGIC) {
print_image_hdr (hdr);
cnt = (hdr->ih_size + sizeof(image_header_t));
cnt -= SECTORSIZE;
} else {
puts ("\n** Bad Magic Number **\n");
SHOW_BOOT_PROGRESS (-1);
return 1;
}
if (doc_rw (doc_dev_desc + dev, 1, offset + SECTORSIZE, cnt,
NULL, (u_char *)(addr+SECTORSIZE))) {
printf ("** Read error on %d\n", dev);
SHOW_BOOT_PROGRESS (-1);
return 1;
}
/* Loading ok, update default load address */
load_addr = addr;
/* Check if we should attempt an auto-start */
if (((ep = getenv("autostart")) != NULL) && (strcmp(ep,"yes") == 0)) {
char *local_args[2];
extern int do_bootm (cmd_tbl_t *, int, int, char *[]);
local_args[0] = argv[0];
local_args[1] = NULL;
printf ("Automatic boot of image at addr 0x%08lX ...\n", addr);
do_bootm (cmdtp, 0, 1, local_args);
rcode = 1;
}
return rcode;
}
U_BOOT_CMD(
docboot, 4, 1, do_docboot,
"docboot - boot from DOC device\n",
"loadAddr dev\n"
);
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
int doc_rw (struct DiskOnChip* this, int cmd,
loff_t from, size_t len,
size_t * retlen, u_char * buf)
{
int noecc, ret = 0, n, total = 0;
char eccbuf[6];
while(len) {
/* The ECC will not be calculated correctly if
less than 512 is written or read */
noecc = (from != (from | 0x1ff) + 1) || (len < 0x200);
if (cmd)
ret = doc_read_ecc(this, from, len,
&n, (u_char*)buf,
noecc ? NULL : eccbuf);
else
ret = doc_write_ecc(this, from, len,
&n, (u_char*)buf,
noecc ? NULL : eccbuf);
if (ret)
break;
from += n;
buf += n;
total += n;
len -= n;
}
if (retlen)
*retlen = total;
return ret;
}
void doc_print(struct DiskOnChip *this) {
printf("%s at 0x%lX,\n"
"\t %d chip%s %s, size %d MB, \n"
"\t total size %ld MB, sector size %ld kB\n",
this->name, this->physadr, this->numchips,
this->numchips>1 ? "s" : "", this->chips_name,
1 << (this->chipshift - 20),
this->totlen >> 20, this->erasesize >> 10);
if (this->nftl_found) {
struct NFTLrecord *nftl = &this->nftl;
unsigned long bin_size, flash_size;
bin_size = nftl->nb_boot_blocks * this->erasesize;
flash_size = (nftl->nb_blocks - nftl->nb_boot_blocks) * this->erasesize;
printf("\t NFTL boot record:\n"
"\t Binary partition: size %ld%s\n"
"\t Flash disk partition: size %ld%s, offset 0x%lx\n",
bin_size > (1 << 20) ? bin_size >> 20 : bin_size >> 10,
bin_size > (1 << 20) ? "MB" : "kB",
flash_size > (1 << 20) ? flash_size >> 20 : flash_size >> 10,
flash_size > (1 << 20) ? "MB" : "kB", bin_size);
} else {
puts ("\t No NFTL boot record found.\n");
}
}
/* ------------------------------------------------------------------------- */
/* This function is needed to avoid calls of the __ashrdi3 function. */
static int shr(int val, int shift) {
return val >> shift;
}
/* Perform the required delay cycles by reading from the appropriate register */
static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles)
{
volatile char dummy;
int i;
for (i = 0; i < cycles; i++) {
if (DoC_is_Millennium(doc))
dummy = ReadDOC(doc->virtadr, NOP);
else
dummy = ReadDOC(doc->virtadr, DOCStatus);
}
}
/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
static int _DoC_WaitReady(struct DiskOnChip *doc)
{
unsigned long docptr = doc->virtadr;
unsigned long start = get_timer(0);
#ifdef PSYCHO_DEBUG
puts ("_DoC_WaitReady called for out-of-line wait\n");
#endif
/* Out-of-line routine to wait for chip response */
while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
#ifdef CFG_DOC_SHORT_TIMEOUT
/* it seems that after a certain time the DoC deasserts
* the CDSN_CTRL_FR_B although it is not ready...
* using a short timout solve this (timer increments every ms) */
if (get_timer(start) > 10) {
return DOC_ETIMEOUT;
}
#else
if (get_timer(start) > 10 * 1000) {
puts ("_DoC_WaitReady timed out.\n");
return DOC_ETIMEOUT;
}
#endif
udelay(1);
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
return 0;
}
static int DoC_WaitReady(struct DiskOnChip *doc)
{
unsigned long docptr = doc->virtadr;
/* This is inline, to optimise the common case, where it's ready instantly */
int ret = 0;
/* 4 read form NOP register should be issued in prior to the read from CDSNControl
see Software Requirement 11.4 item 2. */
DoC_Delay(doc, 4);
if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
/* Call the out-of-line routine to wait */
ret = _DoC_WaitReady(doc);
/* issue 2 read from NOP register after reading from CDSNControl register
see Software Requirement 11.4 item 2. */
DoC_Delay(doc, 2);
return ret;
}
/* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to
bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
static inline int DoC_Command(struct DiskOnChip *doc, unsigned char command,
unsigned char xtraflags)
{
unsigned long docptr = doc->virtadr;
if (DoC_is_2000(doc))
xtraflags |= CDSN_CTRL_FLASH_IO;
/* Assert the CLE (Command Latch Enable) line to the flash chip */
WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl);
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
if (DoC_is_Millennium(doc))
WriteDOC(command, docptr, CDSNSlowIO);
/* Send the command */
WriteDOC_(command, docptr, doc->ioreg);
/* Lower the CLE line */
WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl);
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
/* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */
return DoC_WaitReady(doc);
}
/* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to
bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs,
unsigned char xtraflags1, unsigned char xtraflags2)
{
unsigned long docptr;
int i;
docptr = doc->virtadr;
if (DoC_is_2000(doc))
xtraflags1 |= CDSN_CTRL_FLASH_IO;
/* Assert the ALE (Address Latch Enable) line to the flash chip */
WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl);
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
/* Send the address */
/* Devices with 256-byte page are addressed as:
Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
* there is no device on the market with page256
and more than 24 bits.
Devices with 512-byte page are addressed as:
Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
* 25-31 is sent only if the chip support it.
* bit 8 changes the read command to be sent
(NAND_CMD_READ0 or NAND_CMD_READ1).
*/
if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) {
if (DoC_is_Millennium(doc))
WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
}
if (doc->page256) {
ofs = ofs >> 8;
} else {
ofs = ofs >> 9;
}
if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) {
if (DoC_is_Millennium(doc))
WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
}
}
DoC_Delay(doc, 2); /* Needed for some slow flash chips. mf. */
/* FIXME: The SlowIO's for millennium could be replaced by
a single WritePipeTerm here. mf. */
/* Lower the ALE line */
WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr,
CDSNControl);
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
/* Wait for the chip to respond - Software requirement 11.4.1 */
return DoC_WaitReady(doc);
}
/* Read a buffer from DoC, taking care of Millennium oddities */
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len)
{
volatile int dummy;
int modulus = 0xffff;
unsigned long docptr;
int i;
docptr = doc->virtadr;
if (len <= 0)
return;
if (DoC_is_Millennium(doc)) {
/* Read the data via the internal pipeline through CDSN IO register,
see Pipelined Read Operations 11.3 */
dummy = ReadDOC(docptr, ReadPipeInit);
/* Millennium should use the LastDataRead register - Pipeline Reads */
len--;
/* This is needed for correctly ECC calculation */
modulus = 0xff;
}
for (i = 0; i < len; i++)
buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus));
if (DoC_is_Millennium(doc)) {
buf[i] = ReadDOC(docptr, LastDataRead);
}
}
/* Write a buffer to DoC, taking care of Millennium oddities */
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len)
{
unsigned long docptr;
int i;
docptr = doc->virtadr;
if (len <= 0)
return;
for (i = 0; i < len; i++)
WriteDOC_(buf[i], docptr, doc->ioreg + i);
if (DoC_is_Millennium(doc)) {
WriteDOC(0x00, docptr, WritePipeTerm);
}
}
/* DoC_SelectChip: Select a given flash chip within the current floor */
static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip)
{
unsigned long docptr = doc->virtadr;
/* Software requirement 11.4.4 before writing DeviceSelect */
/* Deassert the CE line to eliminate glitches on the FCE# outputs */
WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl);
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
/* Select the individual flash chip requested */
WriteDOC(chip, docptr, CDSNDeviceSelect);
DoC_Delay(doc, 4);
/* Reassert the CE line */
WriteDOC(CDSN_CTRL_CE | CDSN_CTRL_FLASH_IO | CDSN_CTRL_WP, docptr,
CDSNControl);
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
/* Wait for it to be ready */
return DoC_WaitReady(doc);
}
/* DoC_SelectFloor: Select a given floor (bank of flash chips) */
static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor)
{
unsigned long docptr = doc->virtadr;
/* Select the floor (bank) of chips required */
WriteDOC(floor, docptr, FloorSelect);
/* Wait for the chip to be ready */
return DoC_WaitReady(doc);
}
/* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */
static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip)
{
int mfr, id, i;
volatile char dummy;
/* Page in the required floor/chip */
DoC_SelectFloor(doc, floor);
DoC_SelectChip(doc, chip);
/* Reset the chip */
if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) {
#ifdef DOC_DEBUG
printf("DoC_Command (reset) for %d,%d returned true\n",
floor, chip);
#endif
return 0;
}
/* Read the NAND chip ID: 1. Send ReadID command */
if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) {
#ifdef DOC_DEBUG
printf("DoC_Command (ReadID) for %d,%d returned true\n",
floor, chip);
#endif
return 0;
}
/* Read the NAND chip ID: 2. Send address byte zero */
DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0);
/* Read the manufacturer and device id codes from the device */
/* CDSN Slow IO register see Software Requirement 11.4 item 5. */
dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
DoC_Delay(doc, 2);
mfr = ReadDOC_(doc->virtadr, doc->ioreg);
/* CDSN Slow IO register see Software Requirement 11.4 item 5. */
dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
DoC_Delay(doc, 2);
id = ReadDOC_(doc->virtadr, doc->ioreg);
/* No response - return failure */
if (mfr == 0xff || mfr == 0)
return 0;
/* Check it's the same as the first chip we identified.
* M-Systems say that any given DiskOnChip device should only
* contain _one_ type of flash part, although that's not a
* hardware restriction. */
if (doc->mfr) {
if (doc->mfr == mfr && doc->id == id)
return 1; /* This is another the same the first */
else
printf("Flash chip at floor %d, chip %d is different:\n",
floor, chip);
}
/* Print and store the manufacturer and ID codes. */
for (i = 0; nand_flash_ids[i].name != NULL; i++) {
if (mfr == nand_flash_ids[i].manufacture_id &&
id == nand_flash_ids[i].model_id) {
#ifdef DOC_DEBUG
printf("Flash chip found: Manufacturer ID: %2.2X, "
"Chip ID: %2.2X (%s)\n", mfr, id,
nand_flash_ids[i].name);
#endif
if (!doc->mfr) {
doc->mfr = mfr;
doc->id = id;
doc->chipshift =
nand_flash_ids[i].chipshift;
doc->page256 = nand_flash_ids[i].page256;
doc->pageadrlen =
nand_flash_ids[i].pageadrlen;
doc->erasesize =
nand_flash_ids[i].erasesize;
doc->chips_name =
nand_flash_ids[i].name;
return 1;
}
return 0;
}
}
#ifdef DOC_DEBUG
/* We haven't fully identified the chip. Print as much as we know. */
printf("Unknown flash chip found: %2.2X %2.2X\n",
id, mfr);
#endif
return 0;
}
/* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */
static void DoC_ScanChips(struct DiskOnChip *this)
{
int floor, chip;
int numchips[MAX_FLOORS];
int maxchips = MAX_CHIPS;
int ret = 1;
this->numchips = 0;
this->mfr = 0;
this->id = 0;
if (DoC_is_Millennium(this))
maxchips = MAX_CHIPS_MIL;
/* For each floor, find the number of valid chips it contains */
for (floor = 0; floor < MAX_FLOORS; floor++) {
ret = 1;
numchips[floor] = 0;
for (chip = 0; chip < maxchips && ret != 0; chip++) {
ret = DoC_IdentChip(this, floor, chip);
if (ret) {
numchips[floor]++;
this->numchips++;
}
}
}
/* If there are none at all that we recognise, bail */
if (!this->numchips) {
puts ("No flash chips recognised.\n");
return;
}
/* Allocate an array to hold the information for each chip */
this->chips = malloc(sizeof(struct Nand) * this->numchips);
if (!this->chips) {
puts ("No memory for allocating chip info structures\n");
return;
}
ret = 0;
/* Fill out the chip array with {floor, chipno} for each
* detected chip in the device. */
for (floor = 0; floor < MAX_FLOORS; floor++) {
for (chip = 0; chip < numchips[floor]; chip++) {
this->chips[ret].floor = floor;
this->chips[ret].chip = chip;
this->chips[ret].curadr = 0;
this->chips[ret].curmode = 0x50;
ret++;
}
}
/* Calculate and print the total size of the device */
this->totlen = this->numchips * (1 << this->chipshift);
#ifdef DOC_DEBUG
printf("%d flash chips found. Total DiskOnChip size: %ld MB\n",
this->numchips, this->totlen >> 20);
#endif
}
/* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the
* various device information of the NFTL partition and Bad Unit Table. Update
* the ReplUnitTable[] table accroding to the Bad Unit Table. ReplUnitTable[]
* is used for management of Erase Unit in other routines in nftl.c and nftlmount.c
*/
static int find_boot_record(struct NFTLrecord *nftl)
{
struct nftl_uci1 h1;
struct nftl_oob oob;
unsigned int block, boot_record_count = 0;
int retlen;
u8 buf[SECTORSIZE];
struct NFTLMediaHeader *mh = &nftl->MediaHdr;
unsigned int i;
nftl->MediaUnit = BLOCK_NIL;
nftl->SpareMediaUnit = BLOCK_NIL;
/* search for a valid boot record */
for (block = 0; block < nftl->nb_blocks; block++) {
int ret;
/* Check for ANAND header first. Then can whinge if it's found but later
checks fail */
if ((ret = doc_read_ecc(nftl->mtd, block * nftl->EraseSize, SECTORSIZE,
&retlen, buf, NULL))) {
static int warncount = 5;
if (warncount) {
printf("Block read at 0x%x failed\n", block * nftl->EraseSize);
if (!--warncount)
puts ("Further failures for this block will not be printed\n");
}
continue;
}
if (retlen < 6 || memcmp(buf, "ANAND", 6)) {
/* ANAND\0 not found. Continue */
#ifdef PSYCHO_DEBUG
printf("ANAND header not found at 0x%x\n", block * nftl->EraseSize);
#endif
continue;
}
#ifdef NFTL_DEBUG
printf("ANAND header found at 0x%x\n", block * nftl->EraseSize);
#endif
/* To be safer with BIOS, also use erase mark as discriminant */
if ((ret = doc_read_oob(nftl->mtd, block * nftl->EraseSize + SECTORSIZE + 8,
8, &retlen, (char *)&h1) < 0)) {
#ifdef NFTL_DEBUG
printf("ANAND header found at 0x%x, but OOB data read failed\n",
block * nftl->EraseSize);
#endif
continue;
}
/* OK, we like it. */
if (boot_record_count) {
/* We've already processed one. So we just check if
this one is the same as the first one we found */
if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) {
#ifdef NFTL_DEBUG
printf("NFTL Media Headers at 0x%x and 0x%x disagree.\n",
nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize);
#endif
/* if (debug) Print both side by side */
return -1;
}
if (boot_record_count == 1)
nftl->SpareMediaUnit = block;
boot_record_count++;
continue;
}
/* This is the first we've seen. Copy the media header structure into place */
memcpy(mh, buf, sizeof(struct NFTLMediaHeader));
/* Do some sanity checks on it */
if (mh->UnitSizeFactor == 0) {
#ifdef NFTL_DEBUG
puts ("UnitSizeFactor 0x00 detected.\n"
"This violates the spec but we think we know what it means...\n");
#endif
} else if (mh->UnitSizeFactor != 0xff) {
printf ("Sorry, we don't support UnitSizeFactor "
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
"of != 1 yet.\n");
return -1;
}
nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN);
if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) {
printf ("NFTL Media Header sanity check failed:\n"
"nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n",
nftl->nb_boot_blocks, nftl->nb_blocks);
return -1;
}
nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize;
if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) {
printf ("NFTL Media Header sanity check failed:\n"
"numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n",
nftl->numvunits,
nftl->nb_blocks,
nftl->nb_boot_blocks);
return -1;
}
nftl->nr_sects = nftl->numvunits * (nftl->EraseSize / SECTORSIZE);
/* If we're not using the last sectors in the device for some reason,
reduce nb_blocks accordingly so we forget they're there */
nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN);
/* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */
for (i = 0; i < nftl->nb_blocks; i++) {
if ((i & (SECTORSIZE - 1)) == 0) {
/* read one sector for every SECTORSIZE of blocks */
if ((ret = doc_read_ecc(nftl->mtd, block * nftl->EraseSize +
i + SECTORSIZE, SECTORSIZE,
&retlen, buf, (char *)&oob)) < 0) {
puts ("Read of bad sector table failed\n");
return -1;
}
}
/* mark the Bad Erase Unit as RESERVED in ReplUnitTable */
if (buf[i & (SECTORSIZE - 1)] != 0xff)
nftl->ReplUnitTable[i] = BLOCK_RESERVED;
}
nftl->MediaUnit = block;
boot_record_count++;
} /* foreach (block) */
return boot_record_count?0:-1;
}
/* This routine is made available to other mtd code via
* inter_module_register. It must only be accessed through
* inter_module_get which will bump the use count of this module. The
* addresses passed back in mtd are valid as long as the use count of
* this module is non-zero, i.e. between inter_module_get and
* inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
*/
static void DoC2k_init(struct DiskOnChip* this)
{
struct NFTLrecord *nftl;
switch (this->ChipID) {
case DOC_ChipID_Doc2k:
this->name = "DiskOnChip 2000";
this->ioreg = DoC_2k_CDSN_IO;
break;
case DOC_ChipID_DocMil:
this->name = "DiskOnChip Millennium";
this->ioreg = DoC_Mil_CDSN_IO;
break;
}
#ifdef DOC_DEBUG
printf("%s found at address 0x%lX\n", this->name,
this->physadr);
#endif
this->totlen = 0;
this->numchips = 0;
this->curfloor = -1;
this->curchip = -1;
/* Ident all the chips present. */
DoC_ScanChips(this);
if ((!this->numchips) || (!this->chips))
return;
nftl = &this->nftl;
/* Get physical parameters */
nftl->EraseSize = this->erasesize;
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
nftl->mtd = this;
if (find_boot_record(nftl) != 0)
this->nftl_found = 0;
else
this->nftl_found = 1;
printf("%s @ 0x%lX, %ld MB\n", this->name, this->physadr, this->totlen >> 20);
}
int doc_read_ecc(struct DiskOnChip* this, loff_t from, size_t len,
size_t * retlen, u_char * buf, u_char * eccbuf)
{
unsigned long docptr;
struct Nand *mychip;
unsigned char syndrome[6];
volatile char dummy;
int i, len256 = 0, ret=0;
docptr = this->virtadr;
/* Don't allow read past end of device */
if (from >= this->totlen) {
puts ("Out of flash\n");
return DOC_EINVAL;
}
/* Don't allow a single read to cross a 512-byte block boundary */
if (from + len > ((from | 0x1ff) + 1))
len = ((from | 0x1ff) + 1) - from;
/* The ECC will not be calculated correctly if less than 512 is read */
if (len != 0x200 && eccbuf)
printf("ECC needs a full sector read (adr: %lx size %lx)\n",
(long) from, (long) len);