Skip to content
Snippets Groups Projects
pci_tegra.c 28.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Copyright (c) 2010, CompuLab, Ltd.
     * Author: Mike Rapoport <mike@compulab.co.il>
     *
     * Based on NVIDIA PCIe driver
     * Copyright (c) 2008-2009, NVIDIA Corporation.
     *
     * Copyright (c) 2013-2014, NVIDIA Corporation.
     *
     * SPDX-License-Identifier:	GPL-2.0
     */
    
    #define DEBUG
    #define pr_fmt(fmt) "tegra-pcie: " fmt
    
    #include <common.h>
    #include <errno.h>
    #include <fdtdec.h>
    #include <malloc.h>
    #include <pci.h>
    
    #include <asm/io.h>
    #include <asm/gpio.h>
    
    #include <asm/arch/clock.h>
    #include <asm/arch/powergate.h>
    #include <asm/arch-tegra/xusb-padctl.h>
    
    #include <linux/list.h>
    
    #include <dt-bindings/pinctrl/pinctrl-tegra-xusb.h>
    
    DECLARE_GLOBAL_DATA_PTR;
    
    #define AFI_AXI_BAR0_SZ	0x00
    #define AFI_AXI_BAR1_SZ	0x04
    #define AFI_AXI_BAR2_SZ	0x08
    #define AFI_AXI_BAR3_SZ	0x0c
    #define AFI_AXI_BAR4_SZ	0x10
    #define AFI_AXI_BAR5_SZ	0x14
    
    #define AFI_AXI_BAR0_START	0x18
    #define AFI_AXI_BAR1_START	0x1c
    #define AFI_AXI_BAR2_START	0x20
    #define AFI_AXI_BAR3_START	0x24
    #define AFI_AXI_BAR4_START	0x28
    #define AFI_AXI_BAR5_START	0x2c
    
    #define AFI_FPCI_BAR0	0x30
    #define AFI_FPCI_BAR1	0x34
    #define AFI_FPCI_BAR2	0x38
    #define AFI_FPCI_BAR3	0x3c
    #define AFI_FPCI_BAR4	0x40
    #define AFI_FPCI_BAR5	0x44
    
    #define AFI_CACHE_BAR0_SZ	0x48
    #define AFI_CACHE_BAR0_ST	0x4c
    #define AFI_CACHE_BAR1_SZ	0x50
    #define AFI_CACHE_BAR1_ST	0x54
    
    #define AFI_MSI_BAR_SZ		0x60
    #define AFI_MSI_FPCI_BAR_ST	0x64
    #define AFI_MSI_AXI_BAR_ST	0x68
    
    #define AFI_CONFIGURATION		0xac
    #define  AFI_CONFIGURATION_EN_FPCI	(1 << 0)
    
    #define AFI_FPCI_ERROR_MASKS	0xb0
    
    #define AFI_INTR_MASK		0xb4
    #define  AFI_INTR_MASK_INT_MASK	(1 << 0)
    #define  AFI_INTR_MASK_MSI_MASK	(1 << 8)
    
    #define AFI_SM_INTR_ENABLE	0xc4
    #define  AFI_SM_INTR_INTA_ASSERT	(1 << 0)
    #define  AFI_SM_INTR_INTB_ASSERT	(1 << 1)
    #define  AFI_SM_INTR_INTC_ASSERT	(1 << 2)
    #define  AFI_SM_INTR_INTD_ASSERT	(1 << 3)
    #define  AFI_SM_INTR_INTA_DEASSERT	(1 << 4)
    #define  AFI_SM_INTR_INTB_DEASSERT	(1 << 5)
    #define  AFI_SM_INTR_INTC_DEASSERT	(1 << 6)
    #define  AFI_SM_INTR_INTD_DEASSERT	(1 << 7)
    
    #define AFI_AFI_INTR_ENABLE		0xc8
    #define  AFI_INTR_EN_INI_SLVERR		(1 << 0)
    #define  AFI_INTR_EN_INI_DECERR		(1 << 1)
    #define  AFI_INTR_EN_TGT_SLVERR		(1 << 2)
    #define  AFI_INTR_EN_TGT_DECERR		(1 << 3)
    #define  AFI_INTR_EN_TGT_WRERR		(1 << 4)
    #define  AFI_INTR_EN_DFPCI_DECERR	(1 << 5)
    #define  AFI_INTR_EN_AXI_DECERR		(1 << 6)
    #define  AFI_INTR_EN_FPCI_TIMEOUT	(1 << 7)
    #define  AFI_INTR_EN_PRSNT_SENSE	(1 << 8)
    
    #define AFI_PCIE_CONFIG					0x0f8
    #define  AFI_PCIE_CONFIG_PCIE_DISABLE(x)		(1 << ((x) + 1))
    #define  AFI_PCIE_CONFIG_PCIE_DISABLE_ALL		0xe
    #define  AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_MASK	(0xf << 20)
    #define  AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_SINGLE	(0x0 << 20)
    #define  AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_420	(0x0 << 20)
    #define  AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X2_X1	(0x0 << 20)
    #define  AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_DUAL	(0x1 << 20)
    #define  AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_222	(0x1 << 20)
    #define  AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X4_X1	(0x1 << 20)
    #define  AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_411	(0x2 << 20)
    
    #define AFI_FUSE			0x104
    #define  AFI_FUSE_PCIE_T0_GEN2_DIS	(1 << 2)
    
    #define AFI_PEX0_CTRL			0x110
    #define AFI_PEX1_CTRL			0x118
    #define AFI_PEX2_CTRL			0x128
    #define  AFI_PEX_CTRL_RST		(1 << 0)
    #define  AFI_PEX_CTRL_CLKREQ_EN		(1 << 1)
    #define  AFI_PEX_CTRL_REFCLK_EN		(1 << 3)
    #define  AFI_PEX_CTRL_OVERRIDE_EN	(1 << 4)
    
    #define AFI_PLLE_CONTROL		0x160
    #define  AFI_PLLE_CONTROL_BYPASS_PADS2PLLE_CONTROL (1 << 9)
    #define  AFI_PLLE_CONTROL_PADS2PLLE_CONTROL_EN (1 << 1)
    
    #define AFI_PEXBIAS_CTRL_0		0x168
    
    #define PADS_CTL_SEL		0x0000009C
    
    #define PADS_CTL		0x000000A0
    #define  PADS_CTL_IDDQ_1L	(1 <<  0)
    #define  PADS_CTL_TX_DATA_EN_1L	(1 <<  6)
    #define  PADS_CTL_RX_DATA_EN_1L	(1 << 10)
    
    #define PADS_PLL_CTL_TEGRA20			0x000000B8
    #define PADS_PLL_CTL_TEGRA30			0x000000B4
    #define  PADS_PLL_CTL_RST_B4SM			(0x1 <<  1)
    #define  PADS_PLL_CTL_LOCKDET			(0x1 <<  8)
    #define  PADS_PLL_CTL_REFCLK_MASK		(0x3 << 16)
    #define  PADS_PLL_CTL_REFCLK_INTERNAL_CML	(0x0 << 16)
    #define  PADS_PLL_CTL_REFCLK_INTERNAL_CMOS	(0x1 << 16)
    #define  PADS_PLL_CTL_REFCLK_EXTERNAL		(0x2 << 16)
    #define  PADS_PLL_CTL_TXCLKREF_MASK		(0x1 << 20)
    #define  PADS_PLL_CTL_TXCLKREF_DIV10		(0x0 << 20)
    #define  PADS_PLL_CTL_TXCLKREF_DIV5		(0x1 << 20)
    #define  PADS_PLL_CTL_TXCLKREF_BUF_EN		(0x1 << 22)
    
    #define PADS_REFCLK_CFG0			0x000000C8
    #define PADS_REFCLK_CFG1			0x000000CC
    
    /*
     * Fields in PADS_REFCLK_CFG*. Those registers form an array of 16-bit
     * entries, one entry per PCIe port. These field definitions and desired
     * values aren't in the TRM, but do come from NVIDIA.
     */
    #define PADS_REFCLK_CFG_TERM_SHIFT		2  /* 6:2 */
    #define PADS_REFCLK_CFG_E_TERM_SHIFT		7
    #define PADS_REFCLK_CFG_PREDI_SHIFT		8  /* 11:8 */
    #define PADS_REFCLK_CFG_DRVI_SHIFT		12 /* 15:12 */
    
    /* Default value provided by HW engineering is 0xfa5c */
    #define PADS_REFCLK_CFG_VALUE \
    	( \
    		(0x17 << PADS_REFCLK_CFG_TERM_SHIFT)   | \
    		(0    << PADS_REFCLK_CFG_E_TERM_SHIFT) | \
    		(0xa  << PADS_REFCLK_CFG_PREDI_SHIFT)  | \
    		(0xf  << PADS_REFCLK_CFG_DRVI_SHIFT)     \
    	)
    
    #define RP_VEND_XP	0x00000F00
    #define  RP_VEND_XP_DL_UP	(1 << 30)
    
    
    #define RP_VEND_CTL2				0x00000FA8
    #define  RP_VEND_CTL2_PCA_ENABLE		(1 << 7)
    
    
    #define RP_PRIV_MISC	0x00000FE0
    #define  RP_PRIV_MISC_PRSNT_MAP_EP_PRSNT (0xE << 0)
    #define  RP_PRIV_MISC_PRSNT_MAP_EP_ABSNT (0xF << 0)
    
    #define RP_LINK_CONTROL_STATUS			0x00000090
    #define  RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE	0x20000000
    #define  RP_LINK_CONTROL_STATUS_LINKSTAT_MASK	0x3fff0000
    
    struct tegra_pcie;
    
    struct tegra_pcie_port {
    	struct tegra_pcie *pcie;
    
    	struct fdt_resource regs;
    	unsigned int num_lanes;
    	unsigned int index;
    
    	struct list_head list;
    };
    
    struct tegra_pcie_soc {
    	unsigned int num_ports;
    	unsigned long pads_pll_ctl;
    	unsigned long tx_ref_sel;
    	bool has_pex_clkreq_en;
    	bool has_pex_bias_ctrl;
    	bool has_cml_clk;
    	bool has_gen2;
    
    	bool force_pca_enable;
    
    };
    
    struct tegra_pcie {
    	struct pci_controller hose;
    
    	struct fdt_resource pads;
    	struct fdt_resource afi;
    	struct fdt_resource cs;
    
    	struct fdt_resource prefetch;
    	struct fdt_resource mem;
    	struct fdt_resource io;
    
    	struct list_head ports;
    	unsigned long xbar;
    
    	const struct tegra_pcie_soc *soc;
    	struct tegra_xusb_phy *phy;
    };
    
    static inline struct tegra_pcie *to_tegra_pcie(struct pci_controller *hose)
    {
    	return container_of(hose, struct tegra_pcie, hose);
    }
    
    static void afi_writel(struct tegra_pcie *pcie, unsigned long value,
    		       unsigned long offset)
    {
    	writel(value, pcie->afi.start + offset);
    }
    
    static unsigned long afi_readl(struct tegra_pcie *pcie, unsigned long offset)
    {
    	return readl(pcie->afi.start + offset);
    }
    
    static void pads_writel(struct tegra_pcie *pcie, unsigned long value,
    			unsigned long offset)
    {
    	writel(value, pcie->pads.start + offset);
    }
    
    static unsigned long pads_readl(struct tegra_pcie *pcie, unsigned long offset)
    {
    	return readl(pcie->pads.start + offset);
    }
    
    static unsigned long rp_readl(struct tegra_pcie_port *port,
    			      unsigned long offset)
    {
    	return readl(port->regs.start + offset);
    }
    
    static void rp_writel(struct tegra_pcie_port *port, unsigned long value,
    		      unsigned long offset)
    {
    	writel(value, port->regs.start + offset);
    }
    
    static unsigned long tegra_pcie_conf_offset(pci_dev_t bdf, int where)
    {
    	return ((where & 0xf00) << 16) | (PCI_BUS(bdf) << 16) |
    	       (PCI_DEV(bdf) << 11) | (PCI_FUNC(bdf) << 8) |
    	       (where & 0xfc);
    }
    
    static int tegra_pcie_conf_address(struct tegra_pcie *pcie, pci_dev_t bdf,
    				   int where, unsigned long *address)
    {
    	unsigned int bus = PCI_BUS(bdf);
    
    	if (bus == 0) {
    		unsigned int dev = PCI_DEV(bdf);
    		struct tegra_pcie_port *port;
    
    		list_for_each_entry(port, &pcie->ports, list) {
    			if (port->index + 1 == dev) {
    				*address = port->regs.start + (where & ~3);
    				return 0;
    			}
    		}
    	} else {
    		*address = pcie->cs.start + tegra_pcie_conf_offset(bdf, where);
    		return 0;
    	}
    
    	return -1;
    }
    
    static int tegra_pcie_read_conf(struct pci_controller *hose, pci_dev_t bdf,
    				int where, u32 *value)
    {
    	struct tegra_pcie *pcie = to_tegra_pcie(hose);
    	unsigned long address;
    	int err;
    
    	err = tegra_pcie_conf_address(pcie, bdf, where, &address);
    	if (err < 0) {
    		*value = 0xffffffff;
    		return 1;
    	}
    
    	*value = readl(address);
    
    	/* fixup root port class */
    	if (PCI_BUS(bdf) == 0) {
    		if (where == PCI_CLASS_REVISION) {
    			*value &= ~0x00ff0000;
    			*value |= PCI_CLASS_BRIDGE_PCI << 16;
    		}
    	}
    
    	return 0;
    }
    
    static int tegra_pcie_write_conf(struct pci_controller *hose, pci_dev_t bdf,
    				 int where, u32 value)
    {
    	struct tegra_pcie *pcie = to_tegra_pcie(hose);
    	unsigned long address;
    	int err;
    
    	err = tegra_pcie_conf_address(pcie, bdf, where, &address);
    	if (err < 0)
    		return 1;
    
    	writel(value, address);
    
    	return 0;
    }
    
    static int tegra_pcie_port_parse_dt(const void *fdt, int node,
    				    struct tegra_pcie_port *port)
    {
    	const u32 *addr;
    	int len;
    
    	addr = fdt_getprop(fdt, node, "assigned-addresses", &len);
    	if (!addr) {
    		error("property \"assigned-addresses\" not found");
    		return -FDT_ERR_NOTFOUND;
    	}
    
    	port->regs.start = fdt32_to_cpu(addr[2]);
    	port->regs.end = port->regs.start + fdt32_to_cpu(addr[4]);
    
    	return 0;
    }
    
    static int tegra_pcie_get_xbar_config(const void *fdt, int node, u32 lanes,
    				      unsigned long *xbar)
    {
    	enum fdt_compat_id id = fdtdec_lookup(fdt, node);
    
    	switch (id) {
    	case COMPAT_NVIDIA_TEGRA20_PCIE:
    		switch (lanes) {
    		case 0x00000004:
    			debug("single-mode configuration\n");
    			*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_SINGLE;
    			return 0;
    
    		case 0x00000202:
    			debug("dual-mode configuration\n");
    			*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_DUAL;
    			return 0;
    		}
    		break;
    
    	case COMPAT_NVIDIA_TEGRA30_PCIE:
    		switch (lanes) {
    		case 0x00000204:
    			debug("4x1, 2x1 configuration\n");
    			*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_420;
    			return 0;
    
    		case 0x00020202:
    			debug("2x3 configuration\n");
    			*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_222;
    			return 0;
    
    		case 0x00010104:
    			debug("4x1, 1x2 configuration\n");
    			*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_411;
    			return 0;
    		}
    		break;
    
    	case COMPAT_NVIDIA_TEGRA124_PCIE:
    
    	case COMPAT_NVIDIA_TEGRA210_PCIE:
    
    		switch (lanes) {
    		case 0x0000104:
    			debug("4x1, 1x1 configuration\n");
    			*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X4_X1;
    			return 0;
    
    		case 0x0000102:
    			debug("2x1, 1x1 configuration\n");
    			*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X2_X1;
    			return 0;
    		}
    		break;
    
    	default:
    		break;
    	}
    
    	return -FDT_ERR_NOTFOUND;
    }
    
    static int tegra_pcie_parse_dt_ranges(const void *fdt, int node,
    				      struct tegra_pcie *pcie)
    {
    
    	int parent, na_parent, na_pcie, ns_pcie;
    
    	const u32 *ptr, *end;
    	int len;
    
    
    	parent = fdt_parent_offset(fdt, node);
    	if (parent < 0) {
    		error("Can't find PCI parent node\n");
    		return -FDT_ERR_NOTFOUND;
    	}
    
    	na_parent = fdt_address_cells(fdt, parent);
    	if (na_parent < 1) {
    		error("bad #address-cells for PCIE parent\n");
    		return -FDT_ERR_NOTFOUND;
    	}
    
    	na_pcie = fdt_address_cells(fdt, node);
    	if (na_pcie < 1) {
    		error("bad #address-cells for PCIE\n");
    		return -FDT_ERR_NOTFOUND;
    	}
    
    	ns_pcie = fdt_size_cells(fdt, node);
    	if (ns_pcie < 1) {
    		error("bad #size-cells for PCIE\n");
    		return -FDT_ERR_NOTFOUND;
    	}
    
    
    	ptr = fdt_getprop(fdt, node, "ranges", &len);
    	if (!ptr) {
    		error("missing \"ranges\" property");
    		return -FDT_ERR_NOTFOUND;
    	}
    
    	end = ptr + len / 4;
    
    	while (ptr < end) {
    		struct fdt_resource *res = NULL;
    		u32 space = fdt32_to_cpu(*ptr);
    
    		switch ((space >> 24) & 0x3) {
    		case 0x01:
    			res = &pcie->io;
    			break;
    
    		case 0x02: /* 32 bit */
    		case 0x03: /* 64 bit */
    			if (space & (1 << 30))
    				res = &pcie->prefetch;
    			else
    				res = &pcie->mem;
    
    			break;
    		}
    
    		if (res) {
    
    			int start_low = na_pcie + (na_parent - 1);
    			int size_low = na_pcie + na_parent + (ns_pcie - 1);
    			res->start = fdt32_to_cpu(ptr[start_low]);
    			res->end = res->start + fdt32_to_cpu(ptr[size_low]);
    
    		ptr += na_pcie + na_parent + ns_pcie;
    
    	}
    
    	debug("PCI regions:\n");
    
    	debug("  I/O: %pa-%pa\n", &pcie->io.start, &pcie->io.end);
    	debug("  non-prefetchable memory: %pa-%pa\n", &pcie->mem.start,
    	      &pcie->mem.end);
    	debug("  prefetchable memory: %pa-%pa\n", &pcie->prefetch.start,
    	      &pcie->prefetch.end);
    
    
    	return 0;
    }
    
    static int tegra_pcie_parse_port_info(const void *fdt, int node,
    				      unsigned int *index,
    				      unsigned int *lanes)
    {
    
    	struct fdt_pci_addr addr;
    
    	int err;
    
    	err = fdtdec_get_int(fdt, node, "nvidia,num-lanes", 0);
    	if (err < 0) {
    		error("failed to parse \"nvidia,num-lanes\" property");
    		return err;
    	}
    
    	*lanes = err;
    
    
    	err = fdtdec_get_pci_addr(fdt, node, 0, "reg", &addr);
    
    	if (err < 0) {
    		error("failed to parse \"reg\" property");
    		return err;
    	}
    
    
    	*index = PCI_DEV(addr.phys_hi) - 1;
    
    511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
    
    	return 0;
    }
    
    static int tegra_pcie_parse_dt(const void *fdt, int node,
    			       struct tegra_pcie *pcie)
    {
    	int err, subnode;
    	u32 lanes = 0;
    
    	err = fdt_get_named_resource(fdt, node, "reg", "reg-names", "pads",
    				     &pcie->pads);
    	if (err < 0) {
    		error("resource \"pads\" not found");
    		return err;
    	}
    
    	err = fdt_get_named_resource(fdt, node, "reg", "reg-names", "afi",
    				     &pcie->afi);
    	if (err < 0) {
    		error("resource \"afi\" not found");
    		return err;
    	}
    
    	err = fdt_get_named_resource(fdt, node, "reg", "reg-names", "cs",
    				     &pcie->cs);
    	if (err < 0) {
    		error("resource \"cs\" not found");
    		return err;
    	}
    
    	pcie->phy = tegra_xusb_phy_get(TEGRA_XUSB_PADCTL_PCIE);
    	if (pcie->phy) {
    		err = tegra_xusb_phy_prepare(pcie->phy);
    		if (err < 0) {
    			error("failed to prepare PHY: %d", err);
    			return err;
    		}
    	}
    
    	err = tegra_pcie_parse_dt_ranges(fdt, node, pcie);
    	if (err < 0) {
    		error("failed to parse \"ranges\" property");
    		return err;
    	}
    
    	fdt_for_each_subnode(fdt, subnode, node) {
    		unsigned int index = 0, num_lanes = 0;
    		struct tegra_pcie_port *port;
    
    		err = tegra_pcie_parse_port_info(fdt, subnode, &index,
    						 &num_lanes);
    		if (err < 0) {
    			error("failed to obtain root port info");
    			continue;
    		}
    
    		lanes |= num_lanes << (index << 3);
    
    		if (!fdtdec_get_is_enabled(fdt, subnode))
    			continue;
    
    		port = malloc(sizeof(*port));
    		if (!port)
    			continue;
    
    		memset(port, 0, sizeof(*port));
    		port->num_lanes = num_lanes;
    		port->index = index;
    
    		err = tegra_pcie_port_parse_dt(fdt, subnode, port);
    		if (err < 0) {
    			free(port);
    			continue;
    		}
    
    		list_add_tail(&port->list, &pcie->ports);
    		port->pcie = pcie;
    	}
    
    	err = tegra_pcie_get_xbar_config(fdt, node, lanes, &pcie->xbar);
    	if (err < 0) {
    		error("invalid lane configuration");
    		return err;
    	}
    
    	return 0;
    }
    
    int __weak tegra_pcie_board_init(void)
    {
    	return 0;
    }
    
    static int tegra_pcie_power_on(struct tegra_pcie *pcie)
    {
    	const struct tegra_pcie_soc *soc = pcie->soc;
    	unsigned long value;
    	int err;
    
    	/* reset PCIEXCLK logic, AFI controller and PCIe controller */
    	reset_set_enable(PERIPH_ID_PCIEXCLK, 1);
    	reset_set_enable(PERIPH_ID_AFI, 1);
    	reset_set_enable(PERIPH_ID_PCIE, 1);
    
    	err = tegra_powergate_power_off(TEGRA_POWERGATE_PCIE);
    	if (err < 0) {
    		error("failed to power off PCIe partition: %d", err);
    		return err;
    	}
    
    	err = tegra_powergate_sequence_power_up(TEGRA_POWERGATE_PCIE,
    						PERIPH_ID_PCIE);
    	if (err < 0) {
    		error("failed to power up PCIe partition: %d", err);
    		return err;
    	}
    
    	/* take AFI controller out of reset */
    	reset_set_enable(PERIPH_ID_AFI, 0);
    
    	/* enable AFI clock */
    	clock_enable(PERIPH_ID_AFI);
    
    	if (soc->has_cml_clk) {
    		/* enable CML clock */
    		value = readl(NV_PA_CLK_RST_BASE + 0x48c);
    		value |= (1 << 0);
    		value &= ~(1 << 1);
    		writel(value, NV_PA_CLK_RST_BASE + 0x48c);
    	}
    
    	err = tegra_plle_enable();
    	if (err < 0) {
    		error("failed to enable PLLE: %d\n", err);
    		return err;
    	}
    
    	return 0;
    }
    
    static int tegra_pcie_pll_wait(struct tegra_pcie *pcie, unsigned long timeout)
    {
    	const struct tegra_pcie_soc *soc = pcie->soc;
    	unsigned long start = get_timer(0);
    	u32 value;
    
    	while (get_timer(start) < timeout) {
    		value = pads_readl(pcie, soc->pads_pll_ctl);
    		if (value & PADS_PLL_CTL_LOCKDET)
    			return 0;
    	}
    
    	return -ETIMEDOUT;
    }
    
    static int tegra_pcie_phy_enable(struct tegra_pcie *pcie)
    {
    	const struct tegra_pcie_soc *soc = pcie->soc;
    	u32 value;
    	int err;
    
    	/* initialize internal PHY, enable up to 16 PCIe lanes */
    	pads_writel(pcie, 0, PADS_CTL_SEL);
    
    	/* override IDDQ to 1 on all 4 lanes */
    	value = pads_readl(pcie, PADS_CTL);
    	value |= PADS_CTL_IDDQ_1L;
    	pads_writel(pcie, value, PADS_CTL);
    
    	/*
    	 * Set up PHY PLL inputs select PLLE output as refclock, set TX
    	 * ref sel to div10 (not div5).
    	 */
    	value = pads_readl(pcie, soc->pads_pll_ctl);
    	value &= ~(PADS_PLL_CTL_REFCLK_MASK | PADS_PLL_CTL_TXCLKREF_MASK);
    	value |= PADS_PLL_CTL_REFCLK_INTERNAL_CML | soc->tx_ref_sel;
    	pads_writel(pcie, value, soc->pads_pll_ctl);
    
    	/* reset PLL */
    	value = pads_readl(pcie, soc->pads_pll_ctl);
    	value &= ~PADS_PLL_CTL_RST_B4SM;
    	pads_writel(pcie, value, soc->pads_pll_ctl);
    
    	udelay(20);
    
    	/* take PLL out of reset */
    	value = pads_readl(pcie, soc->pads_pll_ctl);
    	value |= PADS_PLL_CTL_RST_B4SM;
    	pads_writel(pcie, value, soc->pads_pll_ctl);
    
    	/* configure the reference clock driver */
    	value = PADS_REFCLK_CFG_VALUE | (PADS_REFCLK_CFG_VALUE << 16);
    	pads_writel(pcie, value, PADS_REFCLK_CFG0);
    
    	if (soc->num_ports > 2)
    		pads_writel(pcie, PADS_REFCLK_CFG_VALUE, PADS_REFCLK_CFG1);
    
    	/* wait for the PLL to lock */
    	err = tegra_pcie_pll_wait(pcie, 500);
    	if (err < 0) {
    		error("PLL failed to lock: %d", err);
    		return err;
    	}
    
    	/* turn off IDDQ override */
    	value = pads_readl(pcie, PADS_CTL);
    	value &= ~PADS_CTL_IDDQ_1L;
    	pads_writel(pcie, value, PADS_CTL);
    
    	/* enable TX/RX data */
    	value = pads_readl(pcie, PADS_CTL);
    	value |= PADS_CTL_TX_DATA_EN_1L | PADS_CTL_RX_DATA_EN_1L;
    	pads_writel(pcie, value, PADS_CTL);
    
    	return 0;
    }
    
    static int tegra_pcie_enable_controller(struct tegra_pcie *pcie)
    {
    	const struct tegra_pcie_soc *soc = pcie->soc;
    	struct tegra_pcie_port *port;
    	u32 value;
    	int err;
    
    	if (pcie->phy) {
    		value = afi_readl(pcie, AFI_PLLE_CONTROL);
    		value &= ~AFI_PLLE_CONTROL_BYPASS_PADS2PLLE_CONTROL;
    		value |= AFI_PLLE_CONTROL_PADS2PLLE_CONTROL_EN;
    		afi_writel(pcie, value, AFI_PLLE_CONTROL);
    	}
    
    	if (soc->has_pex_bias_ctrl)
    		afi_writel(pcie, 0, AFI_PEXBIAS_CTRL_0);
    
    	value = afi_readl(pcie, AFI_PCIE_CONFIG);
    	value &= ~AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_MASK;
    	value |= AFI_PCIE_CONFIG_PCIE_DISABLE_ALL | pcie->xbar;
    
    	list_for_each_entry(port, &pcie->ports, list)
    		value &= ~AFI_PCIE_CONFIG_PCIE_DISABLE(port->index);
    
    	afi_writel(pcie, value, AFI_PCIE_CONFIG);
    
    	value = afi_readl(pcie, AFI_FUSE);
    
    	if (soc->has_gen2)
    		value &= ~AFI_FUSE_PCIE_T0_GEN2_DIS;
    	else
    		value |= AFI_FUSE_PCIE_T0_GEN2_DIS;
    
    	afi_writel(pcie, value, AFI_FUSE);
    
    	if (pcie->phy)
    		err = tegra_xusb_phy_enable(pcie->phy);
    	else
    		err = tegra_pcie_phy_enable(pcie);
    
    	if (err < 0) {
    		error("failed to power on PHY: %d\n", err);
    		return err;
    	}
    
    	/* take the PCIEXCLK logic out of reset */
    	reset_set_enable(PERIPH_ID_PCIEXCLK, 0);
    
    	/* finally enable PCIe */
    	value = afi_readl(pcie, AFI_CONFIGURATION);
    	value |= AFI_CONFIGURATION_EN_FPCI;
    	afi_writel(pcie, value, AFI_CONFIGURATION);
    
    	/* disable all interrupts */
    	afi_writel(pcie, 0, AFI_AFI_INTR_ENABLE);
    	afi_writel(pcie, 0, AFI_SM_INTR_ENABLE);
    	afi_writel(pcie, 0, AFI_INTR_MASK);
    	afi_writel(pcie, 0, AFI_FPCI_ERROR_MASKS);
    
    	return 0;
    }
    
    static void tegra_pcie_setup_translations(struct tegra_pcie *pcie)
    {
    	unsigned long fpci, axi, size;
    
    	/* BAR 0: type 1 extended configuration space */
    	fpci = 0xfe100000;
    	size = fdt_resource_size(&pcie->cs);
    	axi = pcie->cs.start;
    
    	afi_writel(pcie, axi, AFI_AXI_BAR0_START);
    	afi_writel(pcie, size >> 12, AFI_AXI_BAR0_SZ);
    	afi_writel(pcie, fpci, AFI_FPCI_BAR0);
    
    	/* BAR 1: downstream I/O */
    	fpci = 0xfdfc0000;
    	size = fdt_resource_size(&pcie->io);
    	axi = pcie->io.start;
    
    	afi_writel(pcie, axi, AFI_AXI_BAR1_START);
    	afi_writel(pcie, size >> 12, AFI_AXI_BAR1_SZ);
    	afi_writel(pcie, fpci, AFI_FPCI_BAR1);
    
    	/* BAR 2: prefetchable memory */
    	fpci = (((pcie->prefetch.start >> 12) & 0x0fffffff) << 4) | 0x1;
    	size = fdt_resource_size(&pcie->prefetch);
    	axi = pcie->prefetch.start;
    
    	afi_writel(pcie, axi, AFI_AXI_BAR2_START);
    	afi_writel(pcie, size >> 12, AFI_AXI_BAR2_SZ);
    	afi_writel(pcie, fpci, AFI_FPCI_BAR2);
    
    	/* BAR 3: non-prefetchable memory */
    	fpci = (((pcie->mem.start >> 12) & 0x0fffffff) << 4) | 0x1;
    	size = fdt_resource_size(&pcie->mem);
    	axi = pcie->mem.start;
    
    	afi_writel(pcie, axi, AFI_AXI_BAR3_START);
    	afi_writel(pcie, size >> 12, AFI_AXI_BAR3_SZ);
    	afi_writel(pcie, fpci, AFI_FPCI_BAR3);
    
    	/* NULL out the remaining BARs as they are not used */
    	afi_writel(pcie, 0, AFI_AXI_BAR4_START);
    	afi_writel(pcie, 0, AFI_AXI_BAR4_SZ);
    	afi_writel(pcie, 0, AFI_FPCI_BAR4);
    
    	afi_writel(pcie, 0, AFI_AXI_BAR5_START);
    	afi_writel(pcie, 0, AFI_AXI_BAR5_SZ);
    	afi_writel(pcie, 0, AFI_FPCI_BAR5);
    
    	/* map all upstream transactions as uncached */
    	afi_writel(pcie, NV_PA_SDRAM_BASE, AFI_CACHE_BAR0_ST);
    	afi_writel(pcie, 0, AFI_CACHE_BAR0_SZ);
    	afi_writel(pcie, 0, AFI_CACHE_BAR1_ST);
    	afi_writel(pcie, 0, AFI_CACHE_BAR1_SZ);
    
    	/* MSI translations are setup only when needed */
    	afi_writel(pcie, 0, AFI_MSI_FPCI_BAR_ST);
    	afi_writel(pcie, 0, AFI_MSI_BAR_SZ);
    	afi_writel(pcie, 0, AFI_MSI_AXI_BAR_ST);
    	afi_writel(pcie, 0, AFI_MSI_BAR_SZ);
    }
    
    static unsigned long tegra_pcie_port_get_pex_ctrl(struct tegra_pcie_port *port)
    {
    	unsigned long ret = 0;
    
    	switch (port->index) {
    	case 0:
    		ret = AFI_PEX0_CTRL;
    		break;
    
    	case 1:
    		ret = AFI_PEX1_CTRL;
    		break;
    
    	case 2:
    		ret = AFI_PEX2_CTRL;
    		break;
    	}
    
    	return ret;
    }
    
    static void tegra_pcie_port_reset(struct tegra_pcie_port *port)
    {
    	unsigned long ctrl = tegra_pcie_port_get_pex_ctrl(port);
    	unsigned long value;
    
    	/* pulse reset signel */
    	value = afi_readl(port->pcie, ctrl);
    	value &= ~AFI_PEX_CTRL_RST;
    	afi_writel(port->pcie, value, ctrl);
    
    	udelay(2000);
    
    	value = afi_readl(port->pcie, ctrl);
    	value |= AFI_PEX_CTRL_RST;
    	afi_writel(port->pcie, value, ctrl);
    }
    
    static void tegra_pcie_port_enable(struct tegra_pcie_port *port)
    {
    
    	const struct tegra_pcie_soc *soc = port->pcie->soc;
    
    	unsigned long ctrl = tegra_pcie_port_get_pex_ctrl(port);
    	unsigned long value;
    
    	/* enable reference clock */
    	value = afi_readl(port->pcie, ctrl);
    	value |= AFI_PEX_CTRL_REFCLK_EN;
    
    	if (port->pcie->soc->has_pex_clkreq_en)
    		value |= AFI_PEX_CTRL_CLKREQ_EN;
    
    	value |= AFI_PEX_CTRL_OVERRIDE_EN;
    
    	afi_writel(port->pcie, value, ctrl);
    
    	tegra_pcie_port_reset(port);
    
    
    	if (soc->force_pca_enable) {
    		value = rp_readl(port, RP_VEND_CTL2);
    		value |= RP_VEND_CTL2_PCA_ENABLE;
    		rp_writel(port, value, RP_VEND_CTL2);
    	}
    
    }
    
    static bool tegra_pcie_port_check_link(struct tegra_pcie_port *port)
    {
    	unsigned int retries = 3;
    	unsigned long value;
    
    	value = rp_readl(port, RP_PRIV_MISC);
    	value &= ~RP_PRIV_MISC_PRSNT_MAP_EP_ABSNT;
    	value |= RP_PRIV_MISC_PRSNT_MAP_EP_PRSNT;
    	rp_writel(port, value, RP_PRIV_MISC);
    
    	do {
    		unsigned int timeout = 200;
    
    		do {
    			value = rp_readl(port, RP_VEND_XP);
    			if (value & RP_VEND_XP_DL_UP)
    				break;
    
    			udelay(2000);
    		} while (--timeout);
    
    		if (!timeout) {
    			debug("link %u down, retrying\n", port->index);
    			goto retry;
    		}
    
    		timeout = 200;
    
    		do {
    			value = rp_readl(port, RP_LINK_CONTROL_STATUS);
    			if (value & RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE)
    				return true;
    
    			udelay(2000);
    		} while (--timeout);
    
    retry:
    		tegra_pcie_port_reset(port);
    	} while (--retries);
    
    	return false;
    }
    
    static void tegra_pcie_port_disable(struct tegra_pcie_port *port)
    {
    	unsigned long ctrl = tegra_pcie_port_get_pex_ctrl(port);
    	unsigned long value;
    
    	/* assert port reset */
    	value = afi_readl(port->pcie, ctrl);
    	value &= ~AFI_PEX_CTRL_RST;
    	afi_writel(port->pcie, value, ctrl);
    
    	/* disable reference clock */
    	value = afi_readl(port->pcie, ctrl);
    	value &= ~AFI_PEX_CTRL_REFCLK_EN;
    	afi_writel(port->pcie, value, ctrl);
    }
    
    static void tegra_pcie_port_free(struct tegra_pcie_port *port)
    {
    	list_del(&port->list);
    	free(port);
    }
    
    static int tegra_pcie_enable(struct tegra_pcie *pcie)
    {
    	struct tegra_pcie_port *port, *tmp;
    
    	list_for_each_entry_safe(port, tmp, &pcie->ports, list) {
    		debug("probing port %u, using %u lanes\n", port->index,
    		      port->num_lanes);
    
    		tegra_pcie_port_enable(port);
    
    		if (tegra_pcie_port_check_link(port))
    			continue;
    
    		debug("link %u down, ignoring\n", port->index);
    
    		tegra_pcie_port_disable(port);
    		tegra_pcie_port_free(port);
    	}