Skip to content
Snippets Groups Projects
main.c 19.5 KiB
Newer Older
  • Learn to ignore specific revisions
  •  * Copyright 2008-2012 Freescale Semiconductor, Inc.
    
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public License
     * Version 2 as published by the Free Software Foundation.
     */
    
    /*
     * Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
     * Based on code from spd_sdram.c
     * Author: James Yang [at freescale.com]
     */
    
    #include <common.h>
    
    #include <asm/fsl_ddr_sdram.h>
    
    #include <asm/fsl_law.h>
    
    void fsl_ddr_set_lawbar(
    
    		const common_timing_params_t *memctl_common_params,
    		unsigned int memctl_interleaved,
    		unsigned int ctrl_num);
    
    void fsl_ddr_set_intl3r(const unsigned int granule_size);
    
    
    /* processor specific function */
    extern void fsl_ddr_set_memctl_regs(const fsl_ddr_cfg_regs_t *regs,
    				   unsigned int ctrl_num);
    
    
    #if defined(SPD_EEPROM_ADDRESS) || \
        defined(SPD_EEPROM_ADDRESS1) || defined(SPD_EEPROM_ADDRESS2) || \
        defined(SPD_EEPROM_ADDRESS3) || defined(SPD_EEPROM_ADDRESS4)
    #if (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
    u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
    	[0][0] = SPD_EEPROM_ADDRESS,
    };
    
    #elif (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
    u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
    	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
    	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
    };
    #elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
    
    u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
    	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
    	[1][0] = SPD_EEPROM_ADDRESS2,	/* controller 2 */
    };
    
    #elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
    
    u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
    	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
    	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
    	[1][0] = SPD_EEPROM_ADDRESS3,	/* controller 2 */
    	[1][1] = SPD_EEPROM_ADDRESS4,	/* controller 2 */
    };
    
    #elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
    u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
    	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
    	[1][0] = SPD_EEPROM_ADDRESS2,	/* controller 2 */
    	[2][0] = SPD_EEPROM_ADDRESS3,	/* controller 3 */
    };
    #elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
    u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
    	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
    	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
    	[1][0] = SPD_EEPROM_ADDRESS3,	/* controller 2 */
    	[1][1] = SPD_EEPROM_ADDRESS4,	/* controller 2 */
    	[2][0] = SPD_EEPROM_ADDRESS5,	/* controller 3 */
    	[2][1] = SPD_EEPROM_ADDRESS6,	/* controller 3 */
    };
    
    
    #endif
    
    static void __get_spd(generic_spd_eeprom_t *spd, u8 i2c_address)
    {
    	int ret = i2c_read(i2c_address, 0, 1, (uchar *)spd,
    				sizeof(generic_spd_eeprom_t));
    
    	if (ret) {
    
    		if (i2c_address ==
    #ifdef SPD_EEPROM_ADDRESS
    				SPD_EEPROM_ADDRESS
    #elif defined(SPD_EEPROM_ADDRESS1)
    				SPD_EEPROM_ADDRESS1
    #endif
    				) {
    			printf("DDR: failed to read SPD from address %u\n",
    				i2c_address);
    		} else {
    			debug("DDR: failed to read SPD from address %u\n",
    				i2c_address);
    		}
    
    		memset(spd, 0, sizeof(generic_spd_eeprom_t));
    	}
    }
    
    __attribute__((weak, alias("__get_spd")))
    void get_spd(generic_spd_eeprom_t *spd, u8 i2c_address);
    
    void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
    		      unsigned int ctrl_num)
    {
    	unsigned int i;
    	unsigned int i2c_address = 0;
    
    	if (ctrl_num >= CONFIG_NUM_DDR_CONTROLLERS) {
    		printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
    		return;
    	}
    
    	for (i = 0; i < CONFIG_DIMM_SLOTS_PER_CTLR; i++) {
    		i2c_address = spd_i2c_addr[ctrl_num][i];
    		get_spd(&(ctrl_dimms_spd[i]), i2c_address);
    	}
    }
    #else
    void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
    		      unsigned int ctrl_num)
    {
    }
    #endif /* SPD_EEPROM_ADDRESSx */
    
    
    /*
     * ASSUMPTIONS:
     *    - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller
     *    - Same memory data bus width on all controllers
     *
     * NOTES:
     *
     * The memory controller and associated documentation use confusing
     * terminology when referring to the orgranization of DRAM.
     *
     * Here is a terminology translation table:
     *
     * memory controller/documention  |industry   |this code  |signals
     * -------------------------------|-----------|-----------|-----------------
    
     * physical bank/bank		  |rank       |rank	  |chip select (CS)
     * logical bank/sub-bank	  |bank       |bank	  |bank address (BA)
     * page/row			  |row	      |page	  |row address
     * ???				  |column     |column	  |column address
    
     *
     * The naming confusion is further exacerbated by the descriptions of the
     * memory controller interleaving feature, where accesses are interleaved
     * _BETWEEN_ two seperate memory controllers.  This is configured only in
     * CS0_CONFIG[INTLV_CTL] of each memory controller.
     *
     * memory controller documentation | number of chip selects
    
     *				   | per memory controller supported
    
     * --------------------------------|-----------------------------------------
    
     * cache line interleaving	   | 1 (CS0 only)
     * page interleaving		   | 1 (CS0 only)
     * bank interleaving		   | 1 (CS0 only)
     * superbank interleraving	   | depends on bank (chip select)
     *				   |   interleraving [rank interleaving]
     *				   |   mode used on every memory controller
    
     *
     * Even further confusing is the existence of the interleaving feature
     * _WITHIN_ each memory controller.  The feature is referred to in
     * documentation as chip select interleaving or bank interleaving,
     * although it is configured in the DDR_SDRAM_CFG field.
     *
    
     * Name of field		| documentation name	| this code
    
     * -----------------------------|-----------------------|------------------
    
     * DDR_SDRAM_CFG[BA_INTLV_CTL]	| Bank (chip select)	| rank interleaving
     *				|  interleaving
    
     */
    
    const char *step_string_tbl[] = {
    	"STEP_GET_SPD",
    	"STEP_COMPUTE_DIMM_PARMS",
    	"STEP_COMPUTE_COMMON_PARMS",
    	"STEP_GATHER_OPTS",
    	"STEP_ASSIGN_ADDRESSES",
    	"STEP_COMPUTE_REGS",
    	"STEP_PROGRAM_REGS",
    	"STEP_ALL"
    };
    
    const char * step_to_string(unsigned int step) {
    
    	unsigned int s = __ilog2(step);
    
    	if ((1 << s) != step)
    		return step_string_tbl[7];
    
    	return step_string_tbl[s];
    }
    
    
    static unsigned long long __step_assign_addresses(fsl_ddr_info_t *pinfo,
    
    			  unsigned int dbw_cap_adj[])
    
    	unsigned long long total_mem, current_mem_base, total_ctlr_mem;
    	unsigned long long rank_density, ctlr_density = 0;
    
    
    	/*
    	 * If a reduced data width is requested, but the SPD
    	 * specifies a physically wider device, adjust the
    	 * computed dimm capacities accordingly before
    	 * assigning addresses.
    	 */
    	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
    		unsigned int found = 0;
    
    		switch (pinfo->memctl_opts[i].data_bus_width) {
    		case 2:
    			/* 16-bit */
    
    			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
    				unsigned int dw;
    				if (!pinfo->dimm_params[i][j].n_ranks)
    					continue;
    				dw = pinfo->dimm_params[i][j].primary_sdram_width;
    				if ((dw == 72 || dw == 64)) {
    					dbw_cap_adj[i] = 2;
    					break;
    				} else if ((dw == 40 || dw == 32)) {
    					dbw_cap_adj[i] = 1;
    					break;
    				}
    			}
    
    			break;
    
    		case 1:
    			/* 32-bit */
    			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
    				unsigned int dw;
    				dw = pinfo->dimm_params[i][j].data_width;
    				if (pinfo->dimm_params[i][j].n_ranks
    				    && (dw == 72 || dw == 64)) {
    					/*
    					 * FIXME: can't really do it
    					 * like this because this just
    					 * further reduces the memory
    					 */
    					found = 1;
    					break;
    				}
    			}
    			if (found) {
    				dbw_cap_adj[i] = 1;
    			}
    			break;
    
    		case 0:
    			/* 64-bit */
    			break;
    
    		default:
    			printf("unexpected data bus width "
    				"specified controller %u\n", i);
    			return 1;
    		}
    
    		debug("dbw_cap_adj[%d]=%d\n", i, dbw_cap_adj[i]);
    
    	current_mem_base = 0ull;
    	total_mem = 0;
    	if (pinfo->memctl_opts[0].memctl_interleaving) {
    		rank_density = pinfo->dimm_params[0][0].rank_density >>
    					dbw_cap_adj[0];
    		switch (pinfo->memctl_opts[0].ba_intlv_ctl &
    					FSL_DDR_CS0_CS1_CS2_CS3) {
    		case FSL_DDR_CS0_CS1_CS2_CS3:
    			ctlr_density = 4 * rank_density;
    			break;
    		case FSL_DDR_CS0_CS1:
    		case FSL_DDR_CS0_CS1_AND_CS2_CS3:
    			ctlr_density = 2 * rank_density;
    			break;
    		case FSL_DDR_CS2_CS3:
    		default:
    			ctlr_density = rank_density;
    			break;
    		}
    		debug("rank density is 0x%llx, ctlr density is 0x%llx\n",
    			rank_density, ctlr_density);
    
    		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
    
    			if (pinfo->memctl_opts[i].memctl_interleaving) {
    				switch (pinfo->memctl_opts[i].memctl_interleaving_mode) {
    				case FSL_DDR_CACHE_LINE_INTERLEAVING:
    				case FSL_DDR_PAGE_INTERLEAVING:
    				case FSL_DDR_BANK_INTERLEAVING:
    				case FSL_DDR_SUPERBANK_INTERLEAVING:
    					total_ctlr_mem = 2 * ctlr_density;
    					break;
    				case FSL_DDR_3WAY_1KB_INTERLEAVING:
    				case FSL_DDR_3WAY_4KB_INTERLEAVING:
    				case FSL_DDR_3WAY_8KB_INTERLEAVING:
    					total_ctlr_mem = 3 * ctlr_density;
    					break;
    				case FSL_DDR_4WAY_1KB_INTERLEAVING:
    				case FSL_DDR_4WAY_4KB_INTERLEAVING:
    				case FSL_DDR_4WAY_8KB_INTERLEAVING:
    					total_ctlr_mem = 4 * ctlr_density;
    					break;
    				default:
    					panic("Unknown interleaving mode");
    				}
    				pinfo->common_timing_params[i].base_address =
    							current_mem_base;
    				pinfo->common_timing_params[i].total_mem =
    							total_ctlr_mem;
    				total_mem = current_mem_base + total_ctlr_mem;
    				debug("ctrl %d base 0x%llx\n", i, current_mem_base);
    				debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
    			} else {
    				/* when 3rd controller not interleaved */
    				current_mem_base = total_mem;
    				total_ctlr_mem = 0;
    				pinfo->common_timing_params[i].base_address =
    							current_mem_base;
    				for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
    					unsigned long long cap =
    						pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
    					pinfo->dimm_params[i][j].base_address =
    						current_mem_base;
    					debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
    					current_mem_base += cap;
    					total_ctlr_mem += cap;
    				}
    				debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
    				pinfo->common_timing_params[i].total_mem =
    							total_ctlr_mem;
    				total_mem += total_ctlr_mem;
    
    			}
    		}
    	} else {
    		/*
    		 * Simple linear assignment if memory
    		 * controllers are not interleaved.
    		 */
    		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
    
    			pinfo->common_timing_params[i].base_address =
    
    			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
    				/* Compute DIMM base addresses. */
    				unsigned long long cap =
    
    					pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
    
    				pinfo->dimm_params[i][j].base_address =
    
    					current_mem_base;
    				debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
    				current_mem_base += cap;
    				total_ctlr_mem += cap;
    
    			debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
    
    			pinfo->common_timing_params[i].total_mem =
    
    							total_ctlr_mem;
    			total_mem += total_ctlr_mem;
    
    	debug("Total mem by %s is 0x%llx\n", __func__, total_mem);
    
    /* Use weak function to allow board file to override the address assignment */
    __attribute__((weak, alias("__step_assign_addresses")))
    unsigned long long step_assign_addresses(fsl_ddr_info_t *pinfo,
    			  unsigned int dbw_cap_adj[]);
    
    
    fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step,
    				       unsigned int size_only)
    
    	unsigned long long total_mem = 0;
    
    
    	fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg;
    	common_timing_params_t *timing_params = pinfo->common_timing_params;
    
    	/* data bus width capacity adjust shift amount */
    	unsigned int dbw_capacity_adjust[CONFIG_NUM_DDR_CONTROLLERS];
    
    	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
    		dbw_capacity_adjust[i] = 0;
    	}
    
    	debug("starting at step %u (%s)\n",
    	      start_step, step_to_string(start_step));
    
    	switch (start_step) {
    	case STEP_GET_SPD:
    
    #if defined(CONFIG_DDR_SPD) || defined(CONFIG_SPD_EEPROM)
    
    		/* STEP 1:  Gather all DIMM SPD data */
    		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
    			fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i);
    		}
    
    	case STEP_COMPUTE_DIMM_PARMS:
    		/* STEP 2:  Compute DIMM parameters from SPD data */
    
    		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
    			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
    				unsigned int retval;
    				generic_spd_eeprom_t *spd =
    					&(pinfo->spd_installed_dimms[i][j]);
    				dimm_params_t *pdimm =
    
    					&(pinfo->dimm_params[i][j]);
    
    
    				retval = compute_dimm_parameters(spd, pdimm, i);
    
    #ifdef CONFIG_SYS_DDR_RAW_TIMING
    
    					printf("SPD error on controller %d! "
    					"Trying fallback to raw timing "
    					"calculation\n", i);
    
    					fsl_ddr_get_dimm_params(pdimm, i, j);
    				}
    #else
    
    				if (retval == 2) {
    					printf("Error: compute_dimm_parameters"
    					" non-zero returned FATAL value "
    					"for memctl=%u dimm=%u\n", i, j);
    					return 0;
    				}
    
    				if (retval) {
    					debug("Warning: compute_dimm_parameters"
    					" non-zero return value for memctl=%u "
    					"dimm=%u\n", i, j);
    				}
    			}
    		}
    
    
    #elif defined(CONFIG_SYS_DDR_RAW_TIMING)
    
    	case STEP_COMPUTE_DIMM_PARMS:
    		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
    			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
    				dimm_params_t *pdimm =
    					&(pinfo->dimm_params[i][j]);
    				fsl_ddr_get_dimm_params(pdimm, i, j);
    			}
    		}
    		debug("Filling dimm parameters from board specific file\n");
    #endif
    
    	case STEP_COMPUTE_COMMON_PARMS:
    		/*
    		 * STEP 3: Compute a common set of timing parameters
    		 * suitable for all of the DIMMs on each memory controller
    		 */
    		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
    			debug("Computing lowest common DIMM"
    				" parameters for memctl=%u\n", i);
    			compute_lowest_common_dimm_parameters(
    				pinfo->dimm_params[i],
    				&timing_params[i],
    				CONFIG_DIMM_SLOTS_PER_CTLR);
    		}
    
    	case STEP_GATHER_OPTS:
    		/* STEP 4:  Gather configuration requirements from user */
    		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
    			debug("Reloading memory controller "
    				"configuration options for memctl=%u\n", i);
    			/*
    			 * This "reloads" the memory controller options
    			 * to defaults.  If the user "edits" an option,
    			 * next_step points to the step after this,
    			 * which is currently STEP_ASSIGN_ADDRESSES.
    			 */
    			populate_memctl_options(
    					timing_params[i].all_DIMMs_registered,
    
    					&pinfo->memctl_opts[i],
    					pinfo->dimm_params[i], i);
    
    		}
    	case STEP_ASSIGN_ADDRESSES:
    		/* STEP 5:  Assign addresses to chip selects */
    
    		check_interleaving_options(pinfo);
    		total_mem = step_assign_addresses(pinfo, dbw_capacity_adjust);
    
    
    	case STEP_COMPUTE_REGS:
    		/* STEP 6:  compute controller register values */
    
    		debug("FSL Memory ctrl register computation\n");
    
    		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
    			if (timing_params[i].ndimms_present == 0) {
    				memset(&ddr_reg[i], 0,
    					sizeof(fsl_ddr_cfg_regs_t));
    				continue;
    			}
    
    			compute_fsl_memctl_config_regs(
    					&pinfo->memctl_opts[i],
    					&ddr_reg[i], &timing_params[i],
    					pinfo->dimm_params[i],
    
    					dbw_capacity_adjust[i],
    					size_only);
    
    		/*
    		 * Compute the amount of memory available just by
    		 * looking for the highest valid CSn_BNDS value.
    		 * This allows us to also experiment with using
    		 * only CS0 when using dual-rank DIMMs.
    		 */
    		unsigned int max_end = 0;
    
    		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
    			for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) {
    				fsl_ddr_cfg_regs_t *reg = &ddr_reg[i];
    				if (reg->cs[j].config & 0x80000000) {
    					unsigned int end;
    					end = reg->cs[j].bnds & 0xFFF;
    					if (end > max_end) {
    						max_end = end;
    					}
    				}
    			}
    		}
    
    		total_mem = 1 + (((unsigned long long)max_end << 24ULL)
    				    | 0xFFFFFFULL);
    	}
    
    	return total_mem;
    }
    
    /*
     * fsl_ddr_sdram() -- this is the main function to be called by
     *	initdram() in the board file.
     *
     * It returns amount of memory configured in bytes.
     */
    phys_size_t fsl_ddr_sdram(void)
    {
    	unsigned int i;
    
    	unsigned int law_memctl = LAW_TRGT_IF_DDR_1;
    
    	unsigned long long total_memory;
    
    	fsl_ddr_info_t info;
    
    	/* Reset info structure. */
    	memset(&info, 0, sizeof(fsl_ddr_info_t));
    
    	/* Compute it once normally. */
    
    #ifdef CONFIG_FSL_DDR_INTERACTIVE
    
    	if (tstc() && (getc() == 'd')) {	/* we got a key press of 'd' */
    		total_memory = fsl_ddr_interactive(&info, 0);
    	} else if (fsl_ddr_interactive_env_var_exists()) {
    		total_memory = fsl_ddr_interactive(&info, 1);
    
    #endif
    		total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 0);
    
    	/* setup 3-way interleaving before enabling DDRC */
    
    	if (info.memctl_opts[0].memctl_interleaving) {
    		switch (info.memctl_opts[0].memctl_interleaving_mode) {
    		case FSL_DDR_3WAY_1KB_INTERLEAVING:
    		case FSL_DDR_3WAY_4KB_INTERLEAVING:
    		case FSL_DDR_3WAY_8KB_INTERLEAVING:
    			fsl_ddr_set_intl3r(
    				info.memctl_opts[0].memctl_interleaving_mode);
    			break;
    		default:
    			break;
    		}
    
    	/* Program configuration registers. */
    	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
    		debug("Programming controller %u\n", i);
    		if (info.common_timing_params[i].ndimms_present == 0) {
    			debug("No dimms present on controller %u; "
    					"skipping programming\n", i);
    			continue;
    		}
    
    		fsl_ddr_set_memctl_regs(&(info.fsl_ddr_config_reg[i]), i);
    	}
    
    
    	/* program LAWs */
    	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
    		if (info.memctl_opts[i].memctl_interleaving) {
    			switch (info.memctl_opts[i].memctl_interleaving_mode) {
    			case FSL_DDR_CACHE_LINE_INTERLEAVING:
    			case FSL_DDR_PAGE_INTERLEAVING:
    			case FSL_DDR_BANK_INTERLEAVING:
    			case FSL_DDR_SUPERBANK_INTERLEAVING:
    				if (i == 0) {
    					law_memctl = LAW_TRGT_IF_DDR_INTRLV;
    					fsl_ddr_set_lawbar(&info.common_timing_params[i],
    						law_memctl, i);
    				} else if (i == 2) {
    					law_memctl = LAW_TRGT_IF_DDR_INTLV_34;
    					fsl_ddr_set_lawbar(&info.common_timing_params[i],
    						law_memctl, i);
    				}
    				break;
    			case FSL_DDR_3WAY_1KB_INTERLEAVING:
    			case FSL_DDR_3WAY_4KB_INTERLEAVING:
    			case FSL_DDR_3WAY_8KB_INTERLEAVING:
    				law_memctl = LAW_TRGT_IF_DDR_INTLV_123;
    				if (i == 0) {
    					fsl_ddr_set_lawbar(&info.common_timing_params[i],
    						law_memctl, i);
    				}
    				break;
    			case FSL_DDR_4WAY_1KB_INTERLEAVING:
    			case FSL_DDR_4WAY_4KB_INTERLEAVING:
    			case FSL_DDR_4WAY_8KB_INTERLEAVING:
    				law_memctl = LAW_TRGT_IF_DDR_INTLV_1234;
    				if (i == 0)
    					fsl_ddr_set_lawbar(&info.common_timing_params[i],
    						law_memctl, i);
    				/* place holder for future 4-way interleaving */
    				break;
    			default:
    				break;
    			}
    		} else {
    			switch (i) {
    			case 0:
    				law_memctl = LAW_TRGT_IF_DDR_1;
    				break;
    			case 1:
    				law_memctl = LAW_TRGT_IF_DDR_2;
    				break;
    			case 2:
    				law_memctl = LAW_TRGT_IF_DDR_3;
    				break;
    			case 3:
    				law_memctl = LAW_TRGT_IF_DDR_4;
    				break;
    			default:
    				break;
    			}
    
    			fsl_ddr_set_lawbar(&info.common_timing_params[i],
    
    	debug("total_memory by %s = %llu\n", __func__, total_memory);
    
    
    #if !defined(CONFIG_PHYS_64BIT)
    	/* Check for 4G or more.  Bad. */
    	if (total_memory >= (1ull << 32)) {
    		printf("Detected %lld MB of memory\n", total_memory >> 20);
    
    		printf("       This U-Boot only supports < 4G of DDR\n");
    		printf("       You could rebuild it with CONFIG_PHYS_64BIT\n");
    		printf("       "); /* re-align to match init_func_ram print */
    
    		total_memory = CONFIG_MAX_MEM_MAPPED;
    	}
    #endif
    
    
    /*
     * fsl_ddr_sdram_size() - This function only returns the size of the total
     * memory without setting ddr control registers.
     */
    phys_size_t
    fsl_ddr_sdram_size(void)
    {
    	fsl_ddr_info_t  info;
    	unsigned long long total_memory = 0;
    
    	memset(&info, 0 , sizeof(fsl_ddr_info_t));
    
    	/* Compute it once normally. */
    	total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 1);
    
    	return total_memory;
    }