Skip to content
Snippets Groups Projects
spd_sdram.c 33.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Copyright 2004 Freescale Semiconductor.
     * (C) Copyright 2003 Motorola Inc.
     * Xianghua Xiao (X.Xiao@motorola.com)
     *
     * See file CREDITS for list of people who contributed to this
     * project.
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public License as
     * published by the Free Software Foundation; either version 2 of
     * the License, or (at your option) any later version.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software
     * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
     * MA 02111-1307 USA
     */
    
    #include <common.h>
    #include <asm/processor.h>
    #include <i2c.h>
    #include <spd.h>
    #include <asm/mmu.h>
    
    
    #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
    extern void dma_init(void);
    extern uint dma_check(void);
    extern int dma_xfer(void *dest, uint count, void *src);
    #endif
    
    #ifdef CONFIG_SPD_EEPROM
    
    #ifndef	CFG_READ_SPD
    #define CFG_READ_SPD	i2c_read
    #endif
    
    
    /*
     * Only one of the following three should be 1; others should be 0
     * By default the cache line interleaving is selected if
    
    John Traill's avatar
    John Traill committed
     * the CONFIG_DDR_INTERLEAVE flag is defined
    
     */
    #define CFG_PAGE_INTERLEAVING		0
    #define CFG_BANK_INTERLEAVING		0
    #define CFG_SUPER_BANK_INTERLEAVING	0
    
    
    /*
     * Convert picoseconds into clock cycles (rounding up if needed).
     */
    
    int
    picos_to_clk(int picos)
    {
    	int clks;
    
    	clks = picos / (2000000000 / (get_bus_freq(0) / 1000));
    	if (picos % (2000000000 / (get_bus_freq(0) / 1000)) != 0) {
    		clks++;
    	}
    
    	return clks;
    }
    
    
    /*
     * Calculate the Density of each Physical Rank.
     * Returned size is in bytes.
     *
     * Study these table from Byte 31 of JEDEC SPD Spec.
     *
     *		DDR I	DDR II
     *	Bit	Size	Size
     *	---	-----	------
     *	7 high	512MB	512MB
     *	6	256MB	256MB
     *	5	128MB	128MB
     *	4	 64MB	 16GB
     *	3	 32MB	  8GB
     *	2	 16MB	  4GB
     *	1	  2GB	  2GB
     *	0 low	  1GB	  1GB
     *
     * Reorder Table to be linear by stripping the bottom
     * 2 or 5 bits off and shifting them up to the top.
     */
    
    unsigned int
    compute_banksize(unsigned int mem_type, unsigned char row_dens)
    {
    	unsigned int bsize;
    
    	if (mem_type == SPD_MEMTYPE_DDR) {
    		/* Bottom 2 bits up to the top. */
    		bsize = ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24;
    		debug("DDR: DDR I rank density = 0x%08x\n", bsize);
    	} else {
    		/* Bottom 5 bits up to the top. */
    		bsize = ((row_dens >> 5) | ((row_dens & 31) << 3)) << 27;
    		debug("DDR: DDR II rank density = 0x%08x\n", bsize);
    	}
    	return bsize;
    }
    
    
    /*
     * Convert a two-nibble BCD value into a cycle time.
     * While the spec calls for nano-seconds, picos are returned.
     *
     * This implements the tables for bytes 9, 23 and 25 for both
     * DDR I and II.  No allowance for distinguishing the invalid
     * fields absent for DDR I yet present in DDR II is made.
     * (That is, cycle times of .25, .33, .66 and .75 ns are
     * allowed for both DDR II and I.)
     */
    
    unsigned int
    convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
    {
    	/*
    	 * Table look up the lower nibble, allow DDR I & II.
    	 */
    	unsigned int tenths_ps[16] = {
    		0,
    		100,
    		200,
    		300,
    		400,
    		500,
    		600,
    		700,
    		800,
    		900,
    		250,
    
    John Traill's avatar
    John Traill committed
    		330,
    		660,
    
    		750,
    		0,	/* undefined */
    		0	/* undefined */
    	};
    
    	unsigned int whole_ns = (spd_val & 0xF0) >> 4;
    	unsigned int tenth_ns = spd_val & 0x0F;
    	unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
    
    	return ps;
    }
    
    
    
    /*
     * Determine Refresh Rate.  Ignore self refresh bit on DDR I.
     * Table from SPD Spec, Byte 12, converted to picoseconds and
     * filled in with "default" normal values.
     */
    unsigned int determine_refresh_rate(unsigned int spd_refresh)
    {
    	unsigned int refresh_time_ns[8] = {
    		15625000,	/* 0 Normal    1.00x */
    		3900000,	/* 1 Reduced    .25x */
    		7800000,	/* 2 Extended   .50x */
    		31300000,	/* 3 Extended  2.00x */
    		62500000,	/* 4 Extended  4.00x */
    		125000000,	/* 5 Extended  8.00x */
    		15625000,	/* 6 Normal    1.00x  filler */
    		15625000,	/* 7 Normal    1.00x  filler */
    	};
    
    	return picos_to_clk(refresh_time_ns[spd_refresh & 0x7]);
    }
    
    
    
    spd_init(unsigned char i2c_address, unsigned int ddr_num,
    	 unsigned int dimm_num, unsigned int start_addr)
    
    {
    	volatile immap_t *immap = (immap_t *)CFG_IMMR;
    
    	volatile ccsr_ddr_t *ddr;
    
    	volatile ccsr_gur_t *gur = &immap->im_gur;
    	spd_eeprom_t spd;
    	unsigned int n_ranks;
    	unsigned int rank_density;
    	unsigned int odt_rd_cfg, odt_wr_cfg;
    	unsigned int odt_cfg, mode_odt_enable;
    
    	unsigned int refresh_clk;
    #ifdef MPC86xx_DDR_SDRAM_CLK_CNTL
    	unsigned char clk_adjust;
    #endif
    
    	unsigned int dqs_cfg;
    	unsigned char twr_clk, twtr_clk, twr_auto_clk;
    	unsigned int tCKmin_ps, tCKmax_ps;
    
    John Traill's avatar
    John Traill committed
    	unsigned int max_data_rate;
    
    	unsigned int busfreq;
    	unsigned int memsize;
    	unsigned char caslat, caslat_ctrl;
    	unsigned int trfc, trfc_clk, trfc_low, trfc_high;
    	unsigned int trcd_clk;
    	unsigned int trtp_clk;
    	unsigned char cke_min_clk;
    	unsigned char add_lat;
    	unsigned char wr_lat;
    	unsigned char wr_data_delay;
    	unsigned char four_act;
    	unsigned char cpo;
    	unsigned char burst_len;
    	unsigned int mode_caslat;
    	unsigned char d_init;
    
    John Traill's avatar
    John Traill committed
    	unsigned int tCycle_ps, modfreq;
    
    	if (ddr_num == 1)
    		ddr = &immap->im_ddr1;
    	else
    		ddr = &immap->im_ddr2;
    
    	/*
    	 * Read SPD information.
    	 */
    
    	debug("Performing SPD read at I2C address 0x%02lx\n",i2c_address);
    	memset((void *)&spd, 0, sizeof(spd));
    	CFG_READ_SPD(i2c_address, 0, 1, (uchar *) &spd, sizeof(spd));
    
    
    	/*
    	 * Check for supported memory module types.
    	 */
    	if (spd.mem_type != SPD_MEMTYPE_DDR &&
    	    spd.mem_type != SPD_MEMTYPE_DDR2) {
    
    		debug("Warning: Unable to locate DDR I or DDR II module for DIMM %d of DDR controller %d.\n"
    		      "         Fundamental memory type is 0x%0x\n",
    		      dimm_num,
    		      ddr_num,
    		      spd.mem_type);
    
    	debug("\nFound memory of type 0x%02lx  ", spd.mem_type);
    	if (spd.mem_type == SPD_MEMTYPE_DDR)
    		debug("DDR I\n");
    	else
    		debug("DDR II\n");
    
    
    	/*
    	 * These test gloss over DDR I and II differences in interpretation
    	 * of bytes 3 and 4, but irrelevantly.  Multiple asymmetric banks
    	 * are not supported on DDR I; and not encoded on DDR II.
    	 *
    	 * Also note that the 8548 controller can support:
    	 *    12 <= nrow <= 16
    	 * and
    	 *     8 <= ncol <= 11 (still, for DDR)
    	 *     6 <= ncol <=  9 (for FCRAM)
    	 */
    	if (spd.nrow_addr < 12 || spd.nrow_addr > 14) {
    		printf("DDR: Unsupported number of Row Addr lines: %d.\n",
    		       spd.nrow_addr);
    		return 0;
    	}
    	if (spd.ncol_addr < 8 || spd.ncol_addr > 11) {
    		printf("DDR: Unsupported number of Column Addr lines: %d.\n",
    		       spd.ncol_addr);
    		return 0;
    	}
    
    	/*
    	 * Determine the number of physical banks controlled by
    	 * different Chip Select signals.  This is not quite the
    	 * same as the number of DIMM modules on the board.  Feh.
    	 */
    	if (spd.mem_type == SPD_MEMTYPE_DDR) {
    		n_ranks = spd.nrows;
    	} else {
    		n_ranks = (spd.nrows & 0x7) + 1;
    	}
    
    	debug("DDR: number of ranks = %d\n", n_ranks);
    
    	if (n_ranks > 2) {
    		printf("DDR: Only 2 chip selects are supported: %d\n",
    		       n_ranks);
    		return 0;
    	}
    
    	/*
    	 * Adjust DDR II IO voltage biasing.  It just makes it work.
    	 */
    	if (spd.mem_type == SPD_MEMTYPE_DDR2) {
    		gur->ddrioovcr = (0
    				  | 0x80000000		/* Enable */
    				  | 0x10000000		/* VSEL to 1.8V */
    				  );
    	}
    
    	/*
    	 * Determine the size of each Rank in bytes.
    	 */
    	rank_density = compute_banksize(spd.mem_type, spd.row_dens);
    
    
    	debug("Start address for this controller is 0x%08lx\n", start_addr);
    
    
    	/*
    	 * ODT configuration recommendation from DDR Controller Chapter.
    	 */
    	odt_rd_cfg = 0;			/* Never assert ODT */
    	odt_wr_cfg = 0;			/* Never assert ODT */
    	if (spd.mem_type == SPD_MEMTYPE_DDR2) {
    		odt_wr_cfg = 1;		/* Assert ODT on writes to CS0 */
    	}
    
    
    #ifdef CONFIG_DDR_INTERLEAVE
    
    	if (dimm_num != 1) {
    		printf("For interleaving memory on HPCN, need to use DIMM 1 for DDR Controller %d !\n", ddr_num);
    		return 0;
    	} else {
    		/*
    		 * Since interleaved memory only uses CS0, the
    		 * memory sticks have to be identical in size and quantity
    		 * of ranks.  That essentially gives double the size on
    		 * one rank, i.e on CS0 for both controllers put together.
    		 * Confirm this???
    		 */
    		rank_density *= 2;
    
    		 * Eg: Bounds: 0x0000_0000 to 0x0f000_0000	first 256 Meg
    		 */
    		start_addr = 0;
    		ddr->cs0_bnds = (start_addr >> 8)
    			| (((start_addr + rank_density - 1) >> 24));
    		/*
    		 * Default interleaving mode to cache-line interleaving.
    
    		ddr->cs0_config = ( 1 << 31
    #if	(CFG_PAGE_INTERLEAVING == 1)
    				    | (PAGE_INTERLEAVING)
    #elif	(CFG_BANK_INTERLEAVING == 1)
    				    | (BANK_INTERLEAVING)
    #elif	(CFG_SUPER_BANK_INTERLEAVING == 1)
    				    | (SUPER_BANK_INTERLEAVING)
    #else
    				    | (CACHE_LINE_INTERLEAVING)
    #endif
    
    				    | (odt_rd_cfg << 20)
    				    | (odt_wr_cfg << 16)
    				    | (spd.nrow_addr - 12) << 8
    				    | (spd.ncol_addr - 8) );
    
    
    		debug("DDR: cs0_bnds   = 0x%08x\n", ddr->cs0_bnds);
    		debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config);
    
    		/*
    		 * Adjustment for dual rank memory to get correct memory
    		 * size (return value of this function).
    		 */
    		if (n_ranks == 2) {
    			n_ranks = 1;
    			rank_density /= 2;
    		} else {
    			rank_density /= 2;
    		}
    
    #else	/* CONFIG_DDR_INTERLEAVE */
    
    	if (dimm_num == 1) {
    		/*
    		 * Eg: Bounds: 0x0000_0000 to 0x0f000_0000	first 256 Meg
    		 */
    		ddr->cs0_bnds = (start_addr >> 8)
    			| (((start_addr + rank_density - 1) >> 24));
    
    		ddr->cs0_config = ( 1 << 31
    				    | (odt_rd_cfg << 20)
    				    | (odt_wr_cfg << 16)
    				    | (spd.nrow_addr - 12) << 8
    				    | (spd.ncol_addr - 8) );
    
    		debug("DDR: cs0_bnds   = 0x%08x\n", ddr->cs0_bnds);
    		debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config);
    
    		if (n_ranks == 2) {
    			/*
    			 * Eg: Bounds: 0x1000_0000 to 0x1f00_0000,
    			 * second 256 Meg
    			 */
    			ddr->cs1_bnds = (((start_addr + rank_density) >> 8)
    					| (( start_addr + 2*rank_density - 1)
    					   >> 24));
    			ddr->cs1_config = ( 1<<31
    					    | (odt_rd_cfg << 20)
    					    | (odt_wr_cfg << 16)
    					    | (spd.nrow_addr - 12) << 8
    					    | (spd.ncol_addr - 8) );
    			debug("DDR: cs1_bnds   = 0x%08x\n", ddr->cs1_bnds);
    			debug("DDR: cs1_config = 0x%08x\n", ddr->cs1_config);
    		}
    
    	} else {
    		/*
    		 * This is the 2nd DIMM slot for this controller
    		 */
    		/*
    		 * Eg: Bounds: 0x0000_0000 to 0x0f000_0000	first 256 Meg
    		 */
    		ddr->cs2_bnds = (start_addr >> 8)
    			| (((start_addr + rank_density - 1) >> 24));
    
    		ddr->cs2_config = ( 1 << 31
    				    | (odt_rd_cfg << 20)
    				    | (odt_wr_cfg << 16)
    				    | (spd.nrow_addr - 12) << 8
    				    | (spd.ncol_addr - 8) );
    
    		debug("DDR: cs2_bnds   = 0x%08x\n", ddr->cs2_bnds);
    		debug("DDR: cs2_config = 0x%08x\n", ddr->cs2_config);
    
    		if (n_ranks == 2) {
    			/*
    			 * Eg: Bounds: 0x1000_0000 to 0x1f00_0000,
    			 * second 256 Meg
    			 */
    			ddr->cs3_bnds = (((start_addr + rank_density) >> 8)
    					| (( start_addr + 2*rank_density - 1)
    					   >> 24));
    			ddr->cs3_config = ( 1<<31
    					    | (odt_rd_cfg << 20)
    					    | (odt_wr_cfg << 16)
    					    | (spd.nrow_addr - 12) << 8
    					    | (spd.ncol_addr - 8) );
    			debug("DDR: cs3_bnds   = 0x%08x\n", ddr->cs3_bnds);
    			debug("DDR: cs3_config = 0x%08x\n", ddr->cs3_config);
    		}
    	}
    #endif /* CONFIG_DDR_INTERLEAVE */
    
    
    	/*
    	 * Find the largest CAS by locating the highest 1 bit
    	 * in the spd.cas_lat field.  Translate it to a DDR
    	 * controller field value:
    	 *
    	 *	CAS Lat	DDR I	DDR II	Ctrl
    	 *	Clocks	SPD Bit	SPD Bit	Value
    	 *	-------	-------	-------	-----
    	 *	1.0	0		0001
    	 *	1.5	1		0010
    	 *	2.0	2	2	0011
    	 *	2.5	3		0100
    	 *	3.0	4	3	0101
    	 *	3.5	5		0110
    	 *	4.0		4	0111
    	 *	4.5			1000
    	 *	5.0		5	1001
    	 */
    	caslat = __ilog2(spd.cas_lat);
    	if ((spd.mem_type == SPD_MEMTYPE_DDR)
    	    && (caslat > 5)) {
    		printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat);
    		return 0;
    
    	} else if (spd.mem_type == SPD_MEMTYPE_DDR2
    		   && (caslat < 2 || caslat > 5)) {
    		printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n",
    		       spd.cas_lat);
    		return 0;
    	}
    	debug("DDR: caslat SPD bit is %d\n", caslat);
    
    	/*
    	 * Calculate the Maximum Data Rate based on the Minimum Cycle time.
    	 * The SPD clk_cycle field (tCKmin) is measured in tenths of
    	 * nanoseconds and represented as BCD.
    	 */
    	tCKmin_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle);
    	debug("DDR: tCKmin = %d ps\n", tCKmin_ps);
    
    	/*
    	 * Double-data rate, scaled 1000 to picoseconds, and back down to MHz.
    	 */
    	max_data_rate = 2 * 1000 * 1000 / tCKmin_ps;
    	debug("DDR: Module max data rate = %d Mhz\n", max_data_rate);
    
    
    	/*
    	 * Adjust the CAS Latency to allow for bus speeds that
    	 * are slower than the DDR module.
    	 */
    	busfreq = get_bus_freq(0) / 1000000;	/* MHz */
    
    	tCycle_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle3);
    	modfreq = 2 * 1000 * 1000 / tCycle_ps;
    
    John Traill's avatar
    John Traill committed
    	if ((spd.mem_type == SPD_MEMTYPE_DDR2) && (busfreq < 266)) {
    		printf("DDR: platform frequency too low for correct DDR2 controller operation\n");
    
    John Traill's avatar
    John Traill committed
    	} else if (busfreq < 90) {
    		printf("DDR: platform frequency too low for correct DDR1 operation\n");
    
    John Traill's avatar
    John Traill committed
    	if ((busfreq <= modfreq) && (spd.cas_lat & (1 << (caslat - 2)))) {
    		caslat -= 2;
    	} else {
    		tCycle_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle2);
    		modfreq = 2 * 1000 * 1000 / tCycle_ps;
    		if ((busfreq <= modfreq) && (spd.cas_lat & (1 << (caslat - 1))))
    			caslat -= 1;
    		else if (busfreq > max_data_rate) {
    			printf("DDR: Bus freq %d MHz is not fit for DDR rate %d MHz\n",
    		     	busfreq, max_data_rate);
    			return 0;
    		}
    	}
    
    	/*
    	 * Empirically set ~MCAS-to-preamble override for DDR 2.
    	 * Your milage will vary.
    	 */
    	cpo = 0;
    	if (spd.mem_type == SPD_MEMTYPE_DDR2) {
    		if (busfreq <= 333) {
    			cpo = 0x7;
    		} else if (busfreq <= 400) {
    			cpo = 0x9;
    		} else {
    			cpo = 0xa;
    		}
    	}
    
    
    	/*
    	 * Convert caslat clocks to DDR controller value.
    	 * Force caslat_ctrl to be DDR Controller field-sized.
    	 */
    	if (spd.mem_type == SPD_MEMTYPE_DDR) {
    		caslat_ctrl = (caslat + 1) & 0x07;
    	} else {
    		caslat_ctrl =  (2 * caslat - 1) & 0x0f;
    	}
    
    	debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n",
    	      caslat, caslat_ctrl);
    
    	/*
    	 * Timing Config 0.
    	 * Avoid writing for DDR I.  The new PQ38 DDR controller
    	 * dreams up non-zero default values to be backwards compatible.
    	 */
    	if (spd.mem_type == SPD_MEMTYPE_DDR2) {
    		unsigned char taxpd_clk = 8;		/* By the book. */
    		unsigned char tmrd_clk = 2;		/* By the book. */
    		unsigned char act_pd_exit = 2;		/* Empirical? */
    		unsigned char pre_pd_exit = 6;		/* Empirical? */
    
    
    		ddr->timing_cfg_0 = (0
    
    			| ((act_pd_exit & 0x7) << 20)	/* ACT_PD_EXIT */
    			| ((pre_pd_exit & 0x7) << 16)	/* PRE_PD_EXIT */
    			| ((taxpd_clk & 0xf) << 8)	/* ODT_PD_EXIT */
    			| ((tmrd_clk & 0xf) << 0)	/* MRS_CYC */
    			);
    
    		debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
    
    
    	}
    
    
    	/*
    	 * Some Timing Config 1 values now.
    	 * Sneak Extended Refresh Recovery in here too.
    	 */
    
    	/*
    	 * For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD,
    	 * use conservative value.
    	 * For DDR II, they are bytes 36 and 37, in quarter nanos.
    	 */
    
    	if (spd.mem_type == SPD_MEMTYPE_DDR) {
    		twr_clk = 3;	/* Clocks */
    		twtr_clk = 1;	/* Clocks */
    	} else {
    		twr_clk = picos_to_clk(spd.twr * 250);
    		twtr_clk = picos_to_clk(spd.twtr * 250);
    	}
    
    	/*
    	 * Calculate Trfc, in picos.
    	 * DDR I:  Byte 42 straight up in ns.
    	 * DDR II: Byte 40 and 42 swizzled some, in ns.
    	 */
    	if (spd.mem_type == SPD_MEMTYPE_DDR) {
    		trfc = spd.trfc * 1000;		/* up to ps */
    	} else {
    		unsigned int byte40_table_ps[8] = {
    			0,
    			250,
    			330,
    			500,
    			660,
    			750,
    			0,
    			0
    		};
    
    		trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000
    			+ byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7];
    	}
    	trfc_clk = picos_to_clk(trfc);
    
    	/*
    	 * Trcd, Byte 29, from quarter nanos to ps and clocks.
    	 */
    	trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7;
    
    	/*
    	 * Convert trfc_clk to DDR controller fields.  DDR I should
    	 * fit in the REFREC field (16-19) of TIMING_CFG_1, but the
    	 * 8548 controller has an extended REFREC field of three bits.
    	 * The controller automatically adds 8 clocks to this value,
    	 * so preadjust it down 8 first before splitting it up.
    	 */
    	trfc_low = (trfc_clk - 8) & 0xf;
    	trfc_high = ((trfc_clk - 8) >> 4) & 0x3;
    
    	/*
    	 * Sneak in some Extended Refresh Recovery.
    	 */
    
    	ddr->ext_refrec = (trfc_high << 16);
    	debug("DDR: ext_refrec = 0x%08x\n", ddr->ext_refrec);
    
    	ddr->timing_cfg_1 =
    
    	    (0
    	     | ((picos_to_clk(spd.trp * 250) & 0x07) << 28)	/* PRETOACT */
    	     | ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24)	/* ACTTOPRE */
    	     | (trcd_clk << 20)					/* ACTTORW */
    	     | (caslat_ctrl << 16)				/* CASLAT */
    	     | (trfc_low << 12)					/* REFEC */
    	     | ((twr_clk & 0x07) << 8)				/* WRRREC */
    	     | ((picos_to_clk(spd.trrd * 250) & 0x07) << 4)	/* ACTTOACT */
    	     | ((twtr_clk & 0x07) << 0)				/* WRTORD */
    	     );
    
    
    	debug("DDR: timing_cfg_1  = 0x%08x\n", ddr->timing_cfg_1);
    
    
    
    	/*
    	 * Timing_Config_2
    	 * Was: 0x00000800;
    	 */
    
    	/*
    	 * Additive Latency
    	 * For DDR I, 0.
    	 * For DDR II, with ODT enabled, use "a value" less than ACTTORW,
    	 * which comes from Trcd, and also note that:
    	 *	add_lat + caslat must be >= 4
    	 */
    	add_lat = 0;
    	if (spd.mem_type == SPD_MEMTYPE_DDR2
    	    && (odt_wr_cfg || odt_rd_cfg)
    	    && (caslat < 4)) {
    		add_lat = 4 - caslat;
    
    John Traill's avatar
    John Traill committed
    		if (add_lat >= trcd_clk) {
    
    			add_lat = trcd_clk - 1;
    		}
    	}
    
    	/*
    	 * Write Data Delay
    	 * Historically 0x2 == 4/8 clock delay.
    	 * Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266.
    	 */
    	wr_data_delay = 3;
    
    	/*
    	 * Write Latency
    	 * Read to Precharge
    	 * Minimum CKE Pulse Width.
    	 * Four Activate Window
    	 */
    	if (spd.mem_type == SPD_MEMTYPE_DDR) {
    		/*
    		 * This is a lie.  It should really be 1, but if it is
    		 * set to 1, bits overlap into the old controller's
    		 * otherwise unused ACSM field.  If we leave it 0, then
    		 * the HW will magically treat it as 1 for DDR 1.  Oh Yea.
    		 */
    		wr_lat = 0;
    
    		trtp_clk = 2;		/* By the book. */
    		cke_min_clk = 1;	/* By the book. */
    		four_act = 1;		/* By the book. */
    
    	} else {
    		wr_lat = caslat - 1;
    
    		/* Convert SPD value from quarter nanos to picos. */
    		trtp_clk = picos_to_clk(spd.trtp * 250);
    
    		cke_min_clk = 3;	/* By the book. */
    		four_act = picos_to_clk(37500);	/* By the book. 1k pages? */
    	}
    
    
    	ddr->timing_cfg_2 = (0
    
    		| ((add_lat & 0x7) << 28)		/* ADD_LAT */
    
    		| ((cpo & 0x1f) << 23)			/* CPO */
    
    		| ((wr_lat & 0x7) << 19)		/* WR_LAT */
    		| ((trtp_clk & 0x7) << 13)		/* RD_TO_PRE */
    		| ((wr_data_delay & 0x7) << 10)		/* WR_DATA_DELAY */
    		| ((cke_min_clk & 0x7) << 6)		/* CKE_PLS */
    		| ((four_act & 0x1f) << 0)		/* FOUR_ACT */
    		);
    
    
    	debug("DDR: timing_cfg_2 = 0x%08x\n", ddr->timing_cfg_2);
    
    
    
    	/*
    	 * Determine the Mode Register Set.
    	 *
    	 * This is nominally part specific, but it appears to be
    	 * consistent for all DDR I devices, and for all DDR II devices.
    	 *
    	 *     caslat must be programmed
    	 *     burst length is always 4
    	 *     burst type is sequential
    	 *
    	 * For DDR I:
    	 *     operating mode is "normal"
    	 *
    	 * For DDR II:
    	 *     other stuff
    	 */
    
    	mode_caslat = 0;
    
    	/*
    	 * Table lookup from DDR I or II Device Operation Specs.
    	 */
    	if (spd.mem_type == SPD_MEMTYPE_DDR) {
    		if (1 <= caslat && caslat <= 4) {
    			unsigned char mode_caslat_table[4] = {
    				0x5,	/* 1.5 clocks */
    				0x2,	/* 2.0 clocks */
    				0x6,	/* 2.5 clocks */
    				0x3	/* 3.0 clocks */
    			};
    			mode_caslat = mode_caslat_table[caslat - 1];
    		} else {
    			puts("DDR I: Only CAS Latencies of 1.5, 2.0, "
    			     "2.5 and 3.0 clocks are supported.\n");
    			return 0;
    		}
    
    	} else {
    		if (2 <= caslat && caslat <= 5) {
    			mode_caslat = caslat;
    		} else {
    			puts("DDR II: Only CAS Latencies of 2.0, 3.0, "
    			     "4.0 and 5.0 clocks are supported.\n");
    			return 0;
    		}
    	}
    
    	/*
    
    	 * Encoded Burst Length of 4.
    
    	 */
    	burst_len = 2;			/* Fiat. */
    
    	if (spd.mem_type == SPD_MEMTYPE_DDR) {
    		twr_auto_clk = 0;	/* Historical */
    	} else {
    		/*
    		 * Determine tCK max in picos.  Grab tWR and convert to picos.
    		 * Auto-precharge write recovery is:
    		 *	WR = roundup(tWR_ns/tCKmax_ns).
    		 *
    		 * Ponder: Is twr_auto_clk different than twr_clk?
    		 */
    		tCKmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd.tckmax);
    		twr_auto_clk = (spd.twr * 250 + tCKmax_ps - 1) / tCKmax_ps;
    	}
    
    	/*
    	 * Mode Reg in bits 16 ~ 31,
    	 * Extended Mode Reg 1 in bits 0 ~ 15.
    	 */
    	mode_odt_enable = 0x0;			/* Default disabled */
    	if (odt_wr_cfg || odt_rd_cfg) {
    		/*
    		 * Bits 6 and 2 in Extended MRS(1)
    		 * Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules.
    		 * Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module.
    		 */
    		mode_odt_enable = 0x40;		/* 150 Ohm */
    	}
    
    
    	ddr->sdram_mode_1 =
    
    		(0
    		 | (add_lat << (16 + 3))	/* Additive Latency in EMRS1 */
    		 | (mode_odt_enable << 16)	/* ODT Enable in EMRS1 */
    		 | (twr_auto_clk << 9)		/* Write Recovery Autopre */
    		 | (mode_caslat << 4)		/* caslat */
    		 | (burst_len << 0)		/* Burst length */
    		 );
    
    
    	debug("DDR: sdram_mode   = 0x%08x\n", ddr->sdram_mode_1);
    
    
    	/*
    	 * Clear EMRS2 and EMRS3.
    	 */
    
    	ddr->sdram_mode_2 = 0;
    	debug("DDR: sdram_mode_2 = 0x%08x\n", ddr->sdram_mode_2);
    
    	 * Determine Refresh Rate.
    
    	refresh_clk = determine_refresh_rate(spd.refresh & 0x7);
    
    	/*
    	 * Set BSTOPRE to 0x100 for page mode
    	 * If auto-charge is used, set BSTOPRE = 0
    	 */
    	ddr->sdram_interval =
    		(0
    		 | (refresh_clk & 0x3fff) << 16
    		 | 0x100
    		 );
    	debug("DDR: sdram_interval = 0x%08x\n", ddr->sdram_interval);
    
    
    
    	/*
    	 * Is this an ECC DDR chip?
    	 * But don't mess with it if the DDR controller will init mem.
    	 */
    #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
    	if (spd.config == 0x02) {
    
    		ddr->err_disable = 0x0000000d;
    		ddr->err_sbe = 0x00ff0000;
    
    	debug("DDR: err_disable = 0x%08x\n", ddr->err_disable);
    	debug("DDR: err_sbe = 0x%08x\n", ddr->err_sbe);
    
    	asm volatile("sync;isync");
    
    	udelay(500);
    
    	/*
    	 * SDRAM Cfg 2
    	 */
    
    	/*
    	 * When ODT is enabled, Chap 9 suggests asserting ODT to
    	 * internal IOs only during reads.
    	 */
    	odt_cfg = 0;
    	if (odt_rd_cfg | odt_wr_cfg) {
    		odt_cfg = 0x2;		/* ODT to IOs during reads */
    	}
    
    	/*
    	 * Try to use differential DQS with DDR II.
    	 */
    	if (spd.mem_type == SPD_MEMTYPE_DDR) {
    		dqs_cfg = 0;		/* No Differential DQS for DDR I */
    	} else {
    		dqs_cfg = 0x1;		/* Differential DQS for DDR II */
    	}
    
    #if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
    	/*
    	 * Use the DDR controller to auto initialize memory.
    	 */
    	d_init = 1;
    
    	ddr->sdram_data_init = CONFIG_MEM_INIT_VALUE;
    	debug("DDR: ddr_data_init = 0x%08x\n", ddr->sdram_data_init);
    
    #else
    	/*
    	 * Memory will be initialized via DMA, or not at all.
    	 */
    
    	d_init = 0;
    
    	ddr->sdram_cfg_2 = (0
    
    			    | (dqs_cfg << 26)	/* Differential DQS */
    			    | (odt_cfg << 21)	/* ODT */
    			    | (d_init << 4)	/* D_INIT auto init DDR */
    			    );
    
    
    	debug("DDR: sdram_cfg_2  = 0x%08x\n", ddr->sdram_cfg_2);
    
    
    
    #ifdef MPC86xx_DDR_SDRAM_CLK_CNTL
    
    	/*
    	 * Setup the clock control.
    	 * SDRAM_CLK_CNTL[0] = Source synchronous enable == 1
    	 * SDRAM_CLK_CNTL[5-7] = Clock Adjust
    	 *	0110	3/4 cycle late
    	 *	0111	7/8 cycle late
    	 */
    	if (spd.mem_type == SPD_MEMTYPE_DDR)
    		clk_adjust = 0x6;
    	else
    		clk_adjust = 0x7;
    
    	ddr->sdram_clk_cntl = (0
    
    			       | 0x80000000
    			       | (clk_adjust << 23)
    			       );
    
    	debug("DDR: sdram_clk_cntl = 0x%08x\n", ddr->sdram_clk_cntl);
    
    	 * Figure out memory size in Megabytes.
    
    	debug("# ranks = %d, rank_density = 0x%08lx\n", n_ranks, rank_density);
    	memsize = n_ranks * rank_density / 0x100000;
    	return memsize;
    }
    
    
    unsigned int enable_ddr(unsigned int ddr_num)
    {
    	volatile immap_t *immap = (immap_t *)CFG_IMMR;
    	spd_eeprom_t spd1,spd2;
    	volatile ccsr_ddr_t *ddr;
    	unsigned sdram_cfg_1;
    	unsigned char sdram_type, mem_type, config, mod_attr;
    	unsigned char d_init;
    	unsigned int no_dimm1=0, no_dimm2=0;
    
    	/* Set up pointer to enable the current ddr controller */
    	if (ddr_num == 1)
    		ddr = &immap->im_ddr1;
    	else
    		ddr = &immap->im_ddr2;
    
    	 * Read both dimm slots and decide whether
    	 * or not to enable this controller.
    
    	memset((void *)&spd1,0,sizeof(spd1));
    	memset((void *)&spd2,0,sizeof(spd2));
    
    	if (ddr_num == 1) {
    		CFG_READ_SPD(SPD_EEPROM_ADDRESS1,
    			     0, 1, (uchar *) &spd1, sizeof(spd1));
    		CFG_READ_SPD(SPD_EEPROM_ADDRESS2,
    			     0, 1, (uchar *) &spd2, sizeof(spd2));
    	} else {
    		CFG_READ_SPD(SPD_EEPROM_ADDRESS3,
    			     0, 1, (uchar *) &spd1, sizeof(spd1));
    		CFG_READ_SPD(SPD_EEPROM_ADDRESS4,
    			     0, 1, (uchar *) &spd2, sizeof(spd2));
    
    	 * Check for supported memory module types.
    
    	if (spd1.mem_type != SPD_MEMTYPE_DDR
    	    && spd1.mem_type != SPD_MEMTYPE_DDR2) {
    		no_dimm1 = 1;
    	} else {
    		debug("\nFound memory of type 0x%02lx  ",spd1.mem_type );
    		if (spd1.mem_type == SPD_MEMTYPE_DDR)
    			debug("DDR I\n");
    		else
    			debug("DDR II\n");
    	}
    
    	if (spd2.mem_type != SPD_MEMTYPE_DDR &&
    	    spd2.mem_type != SPD_MEMTYPE_DDR2) {
    		no_dimm2 = 1;
    	} else {
    		debug("\nFound memory of type 0x%02lx  ",spd2.mem_type );
    		if (spd2.mem_type == SPD_MEMTYPE_DDR)
    			debug("DDR I\n");
    		else
    			debug("DDR II\n");
    	}
    
    #ifdef CONFIG_DDR_INTERLEAVE
    	if (no_dimm1) {
    		printf("For interleaved operation memory modules need to be present in CS0 DIMM slots of both DDR controllers!\n");
    		return 0;
    
    	 * Memory is not present in DIMM1 and DIMM2 - so do not enable DDRn
    
    	if (no_dimm1  && no_dimm2) {
    		printf("No memory modules found for DDR controller %d!!\n", ddr_num);
    		return 0;
    	} else {
    		mem_type = no_dimm2 ? spd1.mem_type : spd2.mem_type;
    
    		/*
    		 * Figure out the settings for the sdram_cfg register.
    		 * Build up the entire register in 'sdram_cfg' before
    		 * writing since the write into the register will
    		 * actually enable the memory controller; all settings
    		 * must be done before enabling.