Skip to content
Snippets Groups Projects
kwbimage.c 20.9 KiB
Newer Older
  • Learn to ignore specific revisions
  •  * Image manipulator for Marvell SoCs
     *  supports Kirkwood, Dove, Armada 370, and Armada XP
     *
     * (C) Copyright 2013 Thomas Petazzoni
     * <thomas.petazzoni@free-electrons.com>
    
     * SPDX-License-Identifier:	GPL-2.0+
    
     *
     * Not implemented: support for the register headers and secure
     * headers in v1 images
    
    #include <limits.h>
    
    static struct image_cfg_element *image_cfg;
    static int cfgn;
    
    struct boot_mode {
    	unsigned int id;
    	const char *name;
    };
    
    struct boot_mode boot_modes[] = {
    	{ 0x4D, "i2c"  },
    	{ 0x5A, "spi"  },
    	{ 0x8B, "nand" },
    	{ 0x78, "sata" },
    	{ 0x9C, "pex"  },
    	{ 0x69, "uart" },
    
    struct nand_ecc_mode {
    	unsigned int id;
    	const char *name;
    };
    
    struct nand_ecc_mode nand_ecc_modes[] = {
    	{ 0x00, "default" },
    	{ 0x01, "hamming" },
    	{ 0x02, "rs" },
    	{ 0x03, "disabled" },
    	{},
    };
    
    /* Used to identify an undefined execution or destination address */
    #define ADDR_INVALID ((uint32_t)-1)
    
    #define BINARY_MAX_ARGS 8
    
    /* In-memory representation of a line of the configuration file */
    struct image_cfg_element {
    	enum {
    		IMAGE_CFG_VERSION = 0x1,
    		IMAGE_CFG_BOOT_FROM,
    		IMAGE_CFG_DEST_ADDR,
    		IMAGE_CFG_EXEC_ADDR,
    		IMAGE_CFG_NAND_BLKSZ,
    		IMAGE_CFG_NAND_BADBLK_LOCATION,
    		IMAGE_CFG_NAND_ECC_MODE,
    		IMAGE_CFG_NAND_PAGESZ,
    		IMAGE_CFG_BINARY,
    		IMAGE_CFG_PAYLOAD,
    		IMAGE_CFG_DATA,
    
    		IMAGE_CFG_BAUDRATE,
    
    		IMAGE_CFG_DEBUG,
    
    	} type;
    	union {
    		unsigned int version;
    		unsigned int bootfrom;
    		struct {
    			const char *file;
    			unsigned int args[BINARY_MAX_ARGS];
    			unsigned int nargs;
    		} binary;
    		const char *payload;
    		unsigned int dstaddr;
    		unsigned int execaddr;
    		unsigned int nandblksz;
    		unsigned int nandbadblklocation;
    		unsigned int nandeccmode;
    		unsigned int nandpagesz;
    		struct ext_hdr_v0_reg regdata;
    
    		unsigned int baudrate;
    
    		unsigned int debug;
    
    	};
    };
    
    #define IMAGE_CFG_ELEMENT_MAX 256
    
    /*
     * Utility functions to manipulate boot mode and ecc modes (convert
     * them back and forth between description strings and the
     * corresponding numerical identifiers).
     */
    
    static const char *image_boot_mode_name(unsigned int id)
    {
    	int i;
    
    	for (i = 0; boot_modes[i].name; i++)
    		if (boot_modes[i].id == id)
    			return boot_modes[i].name;
    	return NULL;
    }
    
    int image_boot_mode_id(const char *boot_mode_name)
    {
    	int i;
    
    	for (i = 0; boot_modes[i].name; i++)
    		if (!strcmp(boot_modes[i].name, boot_mode_name))
    			return boot_modes[i].id;
    
    	return -1;
    }
    
    int image_nand_ecc_mode_id(const char *nand_ecc_mode_name)
    {
    	int i;
    
    	for (i = 0; nand_ecc_modes[i].name; i++)
    		if (!strcmp(nand_ecc_modes[i].name, nand_ecc_mode_name))
    			return nand_ecc_modes[i].id;
    	return -1;
    
    static struct image_cfg_element *
    image_find_option(unsigned int optiontype)
    
    	for (i = 0; i < cfgn; i++) {
    		if (image_cfg[i].type == optiontype)
    			return &image_cfg[i];
    
    
    	return NULL;
    }
    
    static unsigned int
    image_count_options(unsigned int optiontype)
    {
    	int i;
    	unsigned int count = 0;
    
    	for (i = 0; i < cfgn; i++)
    		if (image_cfg[i].type == optiontype)
    			count++;
    
    	return count;
    
     * Compute a 8-bit checksum of a memory area. This algorithm follows
     * the requirements of the Marvell SoC BootROM specifications.
    
    static uint8_t image_checksum8(void *start, uint32_t len)
    
    	uint8_t csum = 0;
    	uint8_t *p = start;
    
    
    	/* check len and return zero checksum if invalid */
    	if (!len)
    		return 0;
    
    	do {
    
    static uint32_t image_checksum32(void *start, uint32_t len)
    
    	uint32_t csum = 0;
    	uint32_t *p = start;
    
    
    	/* check len and return zero checksum if invalid */
    	if (!len)
    		return 0;
    
    	if (len % sizeof(uint32_t)) {
    
    		fprintf(stderr, "Length %d is not in multiple of %zu\n",
    			len, sizeof(uint32_t));
    
    		p++;
    		len -= sizeof(uint32_t);
    	} while (len > 0);
    
    static uint8_t baudrate_to_option(unsigned int baudrate)
    {
    	switch (baudrate) {
    	case 2400:
    		return MAIN_HDR_V1_OPT_BAUD_2400;
    	case 4800:
    		return MAIN_HDR_V1_OPT_BAUD_4800;
    	case 9600:
    		return MAIN_HDR_V1_OPT_BAUD_9600;
    	case 19200:
    		return MAIN_HDR_V1_OPT_BAUD_19200;
    	case 38400:
    		return MAIN_HDR_V1_OPT_BAUD_38400;
    	case 57600:
    		return MAIN_HDR_V1_OPT_BAUD_57600;
    	case 115200:
    		return MAIN_HDR_V1_OPT_BAUD_115200;
    	default:
    		return MAIN_HDR_V1_OPT_BAUD_DEFAULT;
    	}
    }
    
    
    static void *image_create_v0(size_t *imagesz, struct image_tool_params *params,
    			     int payloadsz)
    
    	struct image_cfg_element *e;
    	size_t headersz;
    	struct main_hdr_v0 *main_hdr;
    
    	int has_ext = 0;
    
    	/*
    	 * Calculate the size of the header and the size of the
    	 * payload
    	 */
    	headersz  = sizeof(struct main_hdr_v0);
    
    	if (image_count_options(IMAGE_CFG_DATA) > 0) {
    		has_ext = 1;
    		headersz += sizeof(struct ext_hdr_v0);
    	}
    
    	if (image_count_options(IMAGE_CFG_PAYLOAD) > 1) {
    		fprintf(stderr, "More than one payload, not possible\n");
    		return NULL;
    	}
    
    	image = malloc(headersz);
    	if (!image) {
    		fprintf(stderr, "Cannot allocate memory for image\n");
    		return NULL;
    
    	main_hdr = (struct main_hdr_v0 *)image;
    
    	main_hdr->blocksize =
    		cpu_to_le32(payloadsz + sizeof(uint32_t) - headersz);
    	main_hdr->srcaddr   = cpu_to_le32(headersz);
    
    	main_hdr->destaddr  = cpu_to_le32(params->addr);
    	main_hdr->execaddr  = cpu_to_le32(params->ep);
    
    
    	e = image_find_option(IMAGE_CFG_BOOT_FROM);
    	if (e)
    		main_hdr->blockid = e->bootfrom;
    	e = image_find_option(IMAGE_CFG_NAND_ECC_MODE);
    	if (e)
    		main_hdr->nandeccmode = e->nandeccmode;
    	e = image_find_option(IMAGE_CFG_NAND_PAGESZ);
    	if (e)
    
    		main_hdr->nandpagesize = cpu_to_le16(e->nandpagesz);
    
    	main_hdr->checksum = image_checksum8(image,
    					     sizeof(struct main_hdr_v0));
    
    	/* Generate the ext header */
    	if (has_ext) {
    
    		struct ext_hdr_v0 *ext_hdr;
    
    		ext_hdr = (struct ext_hdr_v0 *)
    				(image + sizeof(struct main_hdr_v0));
    
    		ext_hdr->offset = cpu_to_le32(0x40);
    
    
    		for (cfgi = 0, datai = 0; cfgi < cfgn; cfgi++) {
    			e = &image_cfg[cfgi];
    			if (e->type != IMAGE_CFG_DATA)
    				continue;
    
    
    			ext_hdr->rcfg[datai].raddr =
    				cpu_to_le32(e->regdata.raddr);
    			ext_hdr->rcfg[datai].rdata =
    				cpu_to_le32(e->regdata.rdata);
    
    			datai++;
    		}
    
    		ext_hdr->checksum = image_checksum8(ext_hdr,
    						    sizeof(struct ext_hdr_v0));
    	}
    
    	*imagesz = headersz;
    	return image;
    
    static size_t image_headersz_v1(struct image_tool_params *params,
    				int *hasext)
    {
    	struct image_cfg_element *binarye;
    	size_t headersz;
    
    	/*
    	 * Calculate the size of the header and the size of the
    	 * payload
    	 */
    	headersz = sizeof(struct main_hdr_v1);
    
    	if (image_count_options(IMAGE_CFG_BINARY) > 1) {
    		fprintf(stderr, "More than one binary blob, not supported\n");
    		return 0;
    
    	if (image_count_options(IMAGE_CFG_PAYLOAD) > 1) {
    		fprintf(stderr, "More than one payload, not possible\n");
    		return 0;
    	}
    
    	binarye = image_find_option(IMAGE_CFG_BINARY);
    	if (binarye) {
    
    		struct stat s;
    
    		ret = stat(binarye->binary.file, &s);
    		if (ret < 0) {
    
    			char cwd[PATH_MAX];
    			char *dir = cwd;
    
    			memset(cwd, 0, sizeof(cwd));
    			if (!getcwd(cwd, sizeof(cwd))) {
    				dir = "current working directory";
    				perror("getcwd() failed");
    			}
    
    
    			fprintf(stderr,
    				"Didn't find the file '%s' in '%s' which is mandatory to generate the image\n"
    				"This file generally contains the DDR3 training code, and should be extracted from an existing bootable\n"
    				"image for your board. See 'kwbimage -x' to extract it from an existing image.\n",
    
    				binarye->binary.file, dir);
    
    		headersz += sizeof(struct opt_hdr_v1) +
    			s.st_size +
    			(binarye->binary.nargs + 2) * sizeof(uint32_t);
    
    #if defined(CONFIG_SYS_U_BOOT_OFFS)
    	if (headersz > CONFIG_SYS_U_BOOT_OFFS) {
    
    		fprintf(stderr,
    			"Error: Image header (incl. SPL image) too big!\n");
    
    		fprintf(stderr, "header=0x%x CONFIG_SYS_U_BOOT_OFFS=0x%x!\n",
    			(int)headersz, CONFIG_SYS_U_BOOT_OFFS);
    		fprintf(stderr, "Increase CONFIG_SYS_U_BOOT_OFFS!\n");
    
    	headersz = CONFIG_SYS_U_BOOT_OFFS;
    
    	/*
    	 * The payload should be aligned on some reasonable
    	 * boundary
    	 */
    	return ALIGN_SUP(headersz, 4096);
    }
    
    static void *image_create_v1(size_t *imagesz, struct image_tool_params *params,
    			     int payloadsz)
    {
    	struct image_cfg_element *e, *binarye;
    	struct main_hdr_v1 *main_hdr;
    	size_t headersz;
    
    	uint8_t *image, *cur;
    
    	int hasext = 0;
    
    	/*
    	 * Calculate the size of the header and the size of the
    	 * payload
    	 */
    	headersz = image_headersz_v1(params, &hasext);
    	if (headersz == 0)
    		return NULL;
    
    	image = malloc(headersz);
    	if (!image) {
    		fprintf(stderr, "Cannot allocate memory for image\n");
    		return NULL;
    	}
    
    	main_hdr = (struct main_hdr_v1 *)image;
    	cur = image + sizeof(struct main_hdr_v1);
    
    	main_hdr->blocksize    =
    		cpu_to_le32(payloadsz - headersz + sizeof(uint32_t));
    	main_hdr->headersz_lsb = cpu_to_le16(headersz & 0xFFFF);
    
    	main_hdr->headersz_msb = (headersz & 0xFFFF0000) >> 16;
    
    	main_hdr->destaddr     = cpu_to_le32(params->addr)
    				 - sizeof(image_header_t);
    
    	main_hdr->execaddr     = cpu_to_le32(params->ep);
    	main_hdr->srcaddr      = cpu_to_le32(headersz);
    
    	main_hdr->ext          = hasext;
    	main_hdr->version      = 1;
    	e = image_find_option(IMAGE_CFG_BOOT_FROM);
    	if (e)
    		main_hdr->blockid = e->bootfrom;
    	e = image_find_option(IMAGE_CFG_NAND_BLKSZ);
    	if (e)
    		main_hdr->nandblocksize = e->nandblksz / (64 * 1024);
    	e = image_find_option(IMAGE_CFG_NAND_BADBLK_LOCATION);
    	if (e)
    		main_hdr->nandbadblklocation = e->nandbadblklocation;
    
    	e = image_find_option(IMAGE_CFG_BAUDRATE);
    	if (e)
    		main_hdr->options = baudrate_to_option(e->baudrate);
    
    	e = image_find_option(IMAGE_CFG_DEBUG);
    	if (e)
    		main_hdr->flags = e->debug ? 0x1 : 0;
    
    
    	binarye = image_find_option(IMAGE_CFG_BINARY);
    	if (binarye) {
    
    		struct opt_hdr_v1 *hdr = (struct opt_hdr_v1 *)cur;
    
    		uint32_t *args;
    
    		size_t binhdrsz;
    		struct stat s;
    		int argi;
    		FILE *bin;
    
    
    		hdr->headertype = OPT_HDR_V1_BINARY_TYPE;
    
    		bin = fopen(binarye->binary.file, "r");
    		if (!bin) {
    			fprintf(stderr, "Cannot open binary file %s\n",
    				binarye->binary.file);
    			return NULL;
    		}
    
    		fstat(fileno(bin), &s);
    
    		binhdrsz = sizeof(struct opt_hdr_v1) +
    
    			(binarye->binary.nargs + 2) * sizeof(uint32_t) +
    
    
    		/*
    		 * The size includes the binary image size, rounded
    		 * up to a 4-byte boundary. Plus 4 bytes for the
    		 * next-header byte and 3-byte alignment at the end.
    		 */
    		binhdrsz = ALIGN_SUP(binhdrsz, 4) + 4;
    
    		hdr->headersz_lsb = cpu_to_le16(binhdrsz & 0xFFFF);
    
    		hdr->headersz_msb = (binhdrsz & 0xFFFF0000) >> 16;
    
    		cur += sizeof(struct opt_hdr_v1);
    
    
    		args = (uint32_t *)cur;
    
    		*args = cpu_to_le32(binarye->binary.nargs);
    
    		args++;
    		for (argi = 0; argi < binarye->binary.nargs; argi++)
    
    			args[argi] = cpu_to_le32(binarye->binary.args[argi]);
    
    		cur += (binarye->binary.nargs + 1) * sizeof(uint32_t);
    
    
    		ret = fread(cur, s.st_size, 1, bin);
    		if (ret != 1) {
    			fprintf(stderr,
    				"Could not read binary image %s\n",
    				binarye->binary.file);
    			return NULL;
    		}
    
    		fclose(bin);
    
    		cur += ALIGN_SUP(s.st_size, 4);
    
    
    		/*
    		 * For now, we don't support more than one binary
    		 * header, and no other header types are
    		 * supported. So, the binary header is necessarily the
    		 * last one
    		 */
    
    		*((uint32_t *)cur) = 0x00000000;
    
    
    		cur += sizeof(uint32_t);
    	}
    
    	/* Calculate and set the header checksum */
    	main_hdr->checksum = image_checksum8(main_hdr, headersz);
    
    	*imagesz = headersz;
    	return image;
    }
    
    static int image_create_config_parse_oneline(char *line,
    					     struct image_cfg_element *el)
    {
    	char *keyword, *saveptr;
    	char deliminiters[] = " \t";
    
    	keyword = strtok_r(line, deliminiters, &saveptr);
    	if (!strcmp(keyword, "VERSION")) {
    		char *value = strtok_r(NULL, deliminiters, &saveptr);
    
    		el->type = IMAGE_CFG_VERSION;
    		el->version = atoi(value);
    	} else if (!strcmp(keyword, "BOOT_FROM")) {
    		char *value = strtok_r(NULL, deliminiters, &saveptr);
    
    		int ret = image_boot_mode_id(value);
    
    			fprintf(stderr,
    				"Invalid boot media '%s'\n", value);
    			return -1;
    		}
    
    		el->type = IMAGE_CFG_BOOT_FROM;
    		el->bootfrom = ret;
    
    	} else if (!strcmp(keyword, "NAND_BLKSZ")) {
    		char *value = strtok_r(NULL, deliminiters, &saveptr);
    
    		el->type = IMAGE_CFG_NAND_BLKSZ;
    		el->nandblksz = strtoul(value, NULL, 16);
    	} else if (!strcmp(keyword, "NAND_BADBLK_LOCATION")) {
    		char *value = strtok_r(NULL, deliminiters, &saveptr);
    
    		el->type = IMAGE_CFG_NAND_BADBLK_LOCATION;
    		el->nandbadblklocation =
    			strtoul(value, NULL, 16);
    	} else if (!strcmp(keyword, "NAND_ECC_MODE")) {
    		char *value = strtok_r(NULL, deliminiters, &saveptr);
    
    		int ret = image_nand_ecc_mode_id(value);
    
    			fprintf(stderr,
    				"Invalid NAND ECC mode '%s'\n", value);
    			return -1;
    		}
    
    		el->type = IMAGE_CFG_NAND_ECC_MODE;
    		el->nandeccmode = ret;
    
    	} else if (!strcmp(keyword, "NAND_PAGE_SIZE")) {
    		char *value = strtok_r(NULL, deliminiters, &saveptr);
    
    		el->type = IMAGE_CFG_NAND_PAGESZ;
    		el->nandpagesz = strtoul(value, NULL, 16);
    	} else if (!strcmp(keyword, "BINARY")) {
    		char *value = strtok_r(NULL, deliminiters, &saveptr);
    		int argi = 0;
    
    		el->type = IMAGE_CFG_BINARY;
    		el->binary.file = strdup(value);
    		while (1) {
    			value = strtok_r(NULL, deliminiters, &saveptr);
    			if (!value)
    				break;
    			el->binary.args[argi] = strtoul(value, NULL, 16);
    			argi++;
    			if (argi >= BINARY_MAX_ARGS) {
    				fprintf(stderr,
    					"Too many argument for binary\n");
    				return -1;
    
    		el->binary.nargs = argi;
    	} else if (!strcmp(keyword, "DATA")) {
    		char *value1 = strtok_r(NULL, deliminiters, &saveptr);
    		char *value2 = strtok_r(NULL, deliminiters, &saveptr);
    
    		if (!value1 || !value2) {
    			fprintf(stderr,
    				"Invalid number of arguments for DATA\n");
    			return -1;
    		}
    
    		el->type = IMAGE_CFG_DATA;
    		el->regdata.raddr = strtoul(value1, NULL, 16);
    		el->regdata.rdata = strtoul(value2, NULL, 16);
    
    	} else if (!strcmp(keyword, "BAUDRATE")) {
    		char *value = strtok_r(NULL, deliminiters, &saveptr);
    		el->type = IMAGE_CFG_BAUDRATE;
    		el->baudrate = strtoul(value, NULL, 10);
    
    	} else if (!strcmp(keyword, "DEBUG")) {
    		char *value = strtok_r(NULL, deliminiters, &saveptr);
    		el->type = IMAGE_CFG_DEBUG;
    		el->debug = strtoul(value, NULL, 10);
    
    	} else {
    		fprintf(stderr, "Ignoring unknown line '%s'\n", line);
    
     * Parse the configuration file 'fcfg' into the array of configuration
     * elements 'image_cfg', and return the number of configuration
     * elements in 'cfgn'.
    
    static int image_create_config_parse(FILE *fcfg)
    {
    	int ret;
    	int cfgi = 0;
    
    	/* Parse the configuration file */
    	while (!feof(fcfg)) {
    		char *line;
    		char buf[256];
    
    		/* Read the current line */
    		memset(buf, 0, sizeof(buf));
    		line = fgets(buf, sizeof(buf), fcfg);
    		if (!line)
    			break;
    
    		/* Ignore useless lines */
    		if (line[0] == '\n' || line[0] == '#')
    			continue;
    
    		/* Strip final newline */
    		if (line[strlen(line) - 1] == '\n')
    			line[strlen(line) - 1] = 0;
    
    		/* Parse the current line */
    		ret = image_create_config_parse_oneline(line,
    							&image_cfg[cfgi]);
    		if (ret)
    			return ret;
    
    		cfgi++;
    
    		if (cfgi >= IMAGE_CFG_ELEMENT_MAX) {
    			fprintf(stderr,
    				"Too many configuration elements in .cfg file\n");
    			return -1;
    		}
    	}
    
    	cfgn = cfgi;
    	return 0;
    }
    
    static int image_get_version(void)
    {
    	struct image_cfg_element *e;
    
    	e = image_find_option(IMAGE_CFG_VERSION);
    	if (!e)
    		return -1;
    
    	return e->version;
    }
    
    static int image_version_file(const char *input)
    {
    	FILE *fcfg;
    	int version;
    	int ret;
    
    	fcfg = fopen(input, "r");
    	if (!fcfg) {
    		fprintf(stderr, "Could not open input file %s\n", input);
    		return -1;
    	}
    
    	image_cfg = malloc(IMAGE_CFG_ELEMENT_MAX *
    			   sizeof(struct image_cfg_element));
    	if (!image_cfg) {
    		fprintf(stderr, "Cannot allocate memory\n");
    		fclose(fcfg);
    		return -1;
    	}
    
    	memset(image_cfg, 0,
    	       IMAGE_CFG_ELEMENT_MAX * sizeof(struct image_cfg_element));
    	rewind(fcfg);
    
    	ret = image_create_config_parse(fcfg);
    	fclose(fcfg);
    	if (ret) {
    		free(image_cfg);
    		return -1;
    	}
    
    	version = image_get_version();
    	/* Fallback to version 0 is no version is provided in the cfg file */
    	if (version == -1)
    		version = 0;
    
    	free(image_cfg);
    
    	return version;
    
    static void kwbimage_set_header(void *ptr, struct stat *sbuf, int ifd,
    
    	FILE *fcfg;
    	void *image = NULL;
    	int version;
    
    	fcfg = fopen(params->imagename, "r");
    	if (!fcfg) {
    		fprintf(stderr, "Could not open input file %s\n",
    			params->imagename);
    		exit(EXIT_FAILURE);
    	}
    
    	image_cfg = malloc(IMAGE_CFG_ELEMENT_MAX *
    			   sizeof(struct image_cfg_element));
    	if (!image_cfg) {
    		fprintf(stderr, "Cannot allocate memory\n");
    		fclose(fcfg);
    		exit(EXIT_FAILURE);
    	}
    
    	memset(image_cfg, 0,
    	       IMAGE_CFG_ELEMENT_MAX * sizeof(struct image_cfg_element));
    	rewind(fcfg);
    
    	ret = image_create_config_parse(fcfg);
    	fclose(fcfg);
    	if (ret) {
    		free(image_cfg);
    		exit(EXIT_FAILURE);
    	}
    
    
    	/* The MVEBU BootROM does not allow non word aligned payloads */
    	sbuf->st_size = ALIGN_SUP(sbuf->st_size, 4);
    
    
    	version = image_get_version();
    
    	switch (version) {
    		/*
    		 * Fallback to version 0 if no version is provided in the
    		 * cfg file
    		 */
    	case -1:
    	case 0:
    
    		image = image_create_v0(&headersz, params, sbuf->st_size);
    
    		image = image_create_v1(&headersz, params, sbuf->st_size);
    
    		break;
    
    	default:
    		fprintf(stderr, "Unsupported version %d\n", version);
    		free(image_cfg);
    		exit(EXIT_FAILURE);
    	}
    
    
    	if (!image) {
    		fprintf(stderr, "Could not create image\n");
    		free(image_cfg);
    		exit(EXIT_FAILURE);
    	}
    
    	free(image_cfg);
    
    	/* Build and add image checksum header */
    
    	checksum =
    		cpu_to_le32(image_checksum32((uint32_t *)ptr, sbuf->st_size));
    
    	size = write(ifd, &checksum, sizeof(uint32_t));
    
    	if (size != sizeof(uint32_t)) {
    
    		fprintf(stderr, "Error:%s - Checksum write %d bytes %s\n",
    
    			params->cmdname, size, params->imagefile);
    
    	}
    
    	sbuf->st_size += sizeof(uint32_t);
    
    
    	/* Finally copy the header into the image area */
    	memcpy(ptr, image, headersz);
    
    static void kwbimage_print_header(const void *ptr)
    
    	struct main_hdr_v0 *mhdr = (struct main_hdr_v0 *)ptr;
    
    	printf("Image Type:   MVEBU Boot from %s Image\n",
    	       image_boot_mode_name(mhdr->blockid));
    	printf("Image version:%d\n", image_version((void *)ptr));
    
    	printf("Data Size:    ");
    
    	genimg_print_size(mhdr->blocksize - sizeof(uint32_t));
    	printf("Load Address: %08x\n", mhdr->destaddr);
    	printf("Entry Point:  %08x\n", mhdr->execaddr);
    
    static int kwbimage_check_image_types(uint8_t type)
    
    {
    	if (type == IH_TYPE_KWBIMAGE)
    		return EXIT_SUCCESS;
    
    
    	return EXIT_FAILURE;
    
    static int kwbimage_verify_header(unsigned char *ptr, int image_size,
    				  struct image_tool_params *params)
    {
    	struct main_hdr_v0 *main_hdr;
    	uint8_t checksum;
    
    
    	main_hdr = (struct main_hdr_v0 *)ptr;
    
    	checksum = image_checksum8(ptr,
    
    				   sizeof(struct main_hdr_v0)
    				   - sizeof(uint8_t));
    
    	if (checksum != main_hdr->checksum)
    		return -FDT_ERR_BADSTRUCTURE;
    
    	/* Only version 0 extended header has checksum */
    	if (image_version((void *)ptr) == 0) {
    
    		struct ext_hdr_v0 *ext_hdr;
    
    
    		ext_hdr = (struct ext_hdr_v0 *)
    				(ptr + sizeof(struct main_hdr_v0));
    
    		checksum = image_checksum8(ext_hdr,
    
    					   sizeof(struct ext_hdr_v0)
    					   - sizeof(uint8_t));
    
    		if (checksum != ext_hdr->checksum)
    			return -FDT_ERR_BADSTRUCTURE;
    	}
    
    	return 0;
    }
    
    static int kwbimage_generate(struct image_tool_params *params,
    			     struct image_type_params *tparams)
    {
    	int alloc_len;
    	void *hdr;
    	int version = 0;
    
    	version = image_version_file(params->imagename);
    	if (version == 0) {
    		alloc_len = sizeof(struct main_hdr_v0) +
    			sizeof(struct ext_hdr_v0);
    	} else {
    		alloc_len = image_headersz_v1(params, NULL);
    	}
    
    	hdr = malloc(alloc_len);
    	if (!hdr) {
    		fprintf(stderr, "%s: malloc return failure: %s\n",
    			params->cmdname, strerror(errno));
    		exit(EXIT_FAILURE);
    	}
    
    	memset(hdr, 0, alloc_len);
    	tparams->header_size = alloc_len;
    	tparams->hdr = hdr;
    
    
    	/*
    	 * The resulting image needs to be 4-byte aligned. At least
    	 * the Marvell hdrparser tool complains if its unaligned.
    	 * By returning 1 here in this function, called via
    	 * tparams->vrec_header() in mkimage.c, mkimage will
    	 * automatically pad the the resulting image to a 4-byte
    	 * size if necessary.
    	 */
    	return 1;
    
    }
    
    /*
     * Report Error if xflag is set in addition to default
     */
    static int kwbimage_check_params(struct image_tool_params *params)
    {
    	if (!strlen(params->imagename)) {
    
    		char *msg = "Configuration file for kwbimage creation omitted";
    
    		fprintf(stderr, "Error:%s - %s\n", params->cmdname, msg);
    
    		return CFG_INVALID;
    	}
    
    	return (params->dflag && (params->fflag || params->lflag)) ||
    		(params->fflag && (params->dflag || params->lflag)) ||
    		(params->lflag && (params->dflag || params->fflag)) ||
    		(params->xflag) || !(strlen(params->imagename));
    }
    
    
    /*
     * kwbimage type parameters definition
     */
    
    U_BOOT_IMAGE_TYPE(
    	kwbimage,
    	"Marvell MVEBU Boot Image support",
    	0,
    	NULL,
    	kwbimage_check_params,
    	kwbimage_verify_header,
    	kwbimage_print_header,
    	kwbimage_set_header,
    	NULL,
    	kwbimage_check_image_types,
    	NULL,
    	kwbimage_generate
    );