Skip to content
Snippets Groups Projects
nand_boot.c 8.38 KiB
Newer Older
  • Learn to ignore specific revisions
  •  * Stefan Roese, DENX Software Engineering, sr@denx.de.
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public License as
     * published by the Free Software Foundation; either version 2 of
     * the License, or (at your option) any later version.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software
     * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
     * MA 02111-1307 USA
     */
    
    #include <common.h>
    #include <nand.h>
    
    static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
    
    #if (CONFIG_SYS_NAND_PAGE_SIZE <= 512)
    
    /*
     * NAND command for small page NAND devices (512)
     */
    
    static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    	struct nand_chip *this = mtd->priv;
    
    	int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
    
    
    	/* Begin command latch cycle */
    
    	this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
    
    	/* Set ALE and clear CLE to start address cycle */
    	/* Column address */
    
    	this->cmd_ctrl(mtd, offs, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
    
    	this->cmd_ctrl(mtd, page_addr & 0xff, NAND_CTRL_ALE); /* A[16:9] */
    	this->cmd_ctrl(mtd, (page_addr >> 8) & 0xff,
    		       NAND_CTRL_ALE); /* A[24:17] */
    
    #ifdef CONFIG_SYS_NAND_4_ADDR_CYCLE
    
    	/* One more address cycle for devices > 32MiB */
    
    	this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f,
    		       NAND_CTRL_ALE); /* A[28:25] */
    
    #endif
    	/* Latch in address */
    
    	this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
    
    
    	/*
    	 * Wait a while for the data to be ready
    	 */
    
    	while (!this->dev_ready(mtd))
    		;
    
    #else
    /*
     * NAND command for large page NAND devices (2k)
     */
    static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
    {
    	struct nand_chip *this = mtd->priv;
    
    	int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
    
    	void (*hwctrl)(struct mtd_info *mtd, int cmd,
    			unsigned int ctrl) = this->cmd_ctrl;
    
    	while (!this->dev_ready(mtd))
    		;
    
    
    	/* Emulate NAND_CMD_READOOB */
    	if (cmd == NAND_CMD_READOOB) {
    
    		offs += CONFIG_SYS_NAND_PAGE_SIZE;
    
    	/* Shift the offset from byte addressing to word addressing. */
    	if (this->options & NAND_BUSWIDTH_16)
    		offs >>= 1;
    
    
    	/* Begin command latch cycle */
    
    	hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
    
    	/* Set ALE and clear CLE to start address cycle */
    	/* Column address */
    
    	hwctrl(mtd, offs & 0xff,
    
    		       NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */
    
    	hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE); /* A[11:9] */
    
    	hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE); /* A[19:12] */
    	hwctrl(mtd, ((page_addr >> 8) & 0xff),
    
    		       NAND_CTRL_ALE); /* A[27:20] */
    
    #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
    
    	/* One more address cycle for devices > 128MiB */
    
    	hwctrl(mtd, (page_addr >> 16) & 0x0f,
    
    		       NAND_CTRL_ALE); /* A[31:28] */
    
    	hwctrl(mtd, NAND_CMD_READSTART,
    
    		       NAND_CTRL_CLE | NAND_CTRL_CHANGE);
    
    	hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
    
    
    	/*
    	 * Wait a while for the data to be ready
    	 */
    
    	while (!this->dev_ready(mtd))
    		;
    
    
    static int nand_is_bad_block(struct mtd_info *mtd, int block)
    {
    	struct nand_chip *this = mtd->priv;
    
    
    	nand_command(mtd, block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
    
    	 * Read one byte (or two if it's a 16 bit chip).
    
    	if (this->options & NAND_BUSWIDTH_16) {
    		if (readw(this->IO_ADDR_R) != 0xffff)
    			return 1;
    	} else {
    		if (readb(this->IO_ADDR_R) != 0xff)
    			return 1;
    	}
    
    #if defined(CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST)
    static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
    {
    	struct nand_chip *this = mtd->priv;
    	u_char *ecc_calc;
    	u_char *ecc_code;
    	u_char *oob_data;
    	int i;
    	int eccsize = CONFIG_SYS_NAND_ECCSIZE;
    	int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
    	int eccsteps = CONFIG_SYS_NAND_ECCSTEPS;
    	uint8_t *p = dst;
    	int stat;
    
    	/*
    	 * No malloc available for now, just use some temporary locations
    	 * in SDRAM
    	 */
    	ecc_calc = (u_char *)(CONFIG_SYS_SDRAM_BASE + 0x10000);
    	ecc_code = ecc_calc + 0x100;
    	oob_data = ecc_calc + 0x200;
    
    	nand_command(mtd, block, page, 0, NAND_CMD_READOOB);
    	this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
    	nand_command(mtd, block, page, 0, NAND_CMD_READ0);
    
    	/* Pick the ECC bytes out of the oob data */
    	for (i = 0; i < CONFIG_SYS_NAND_ECCTOTAL; i++)
    		ecc_code[i] = oob_data[nand_ecc_pos[i]];
    
    
    	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
    		this->ecc.hwctl(mtd, NAND_ECC_READ);
    		this->read_buf(mtd, p, eccsize);
    		this->ecc.calculate(mtd, p, &ecc_calc[i]);
    		stat = this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
    	}
    
    	return 0;
    }
    #else
    
    static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
    {
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    	struct nand_chip *this = mtd->priv;
    
    	u_char *ecc_calc;
    	u_char *ecc_code;
    	u_char *oob_data;
    
    	int eccsize = CONFIG_SYS_NAND_ECCSIZE;
    	int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
    	int eccsteps = CONFIG_SYS_NAND_ECCSTEPS;
    
    	nand_command(mtd, block, page, 0, NAND_CMD_READ0);
    
    	/* No malloc available for now, just use some temporary locations
    	 * in SDRAM
    
    	ecc_calc = (u_char *)(CONFIG_SYS_SDRAM_BASE + 0x10000);
    
    	ecc_code = ecc_calc + 0x100;
    	oob_data = ecc_calc + 0x200;
    
    	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
    
    		this->ecc.hwctl(mtd, NAND_ECC_READ);
    
    		this->read_buf(mtd, p, eccsize);
    
    		this->ecc.calculate(mtd, p, &ecc_calc[i]);
    
    	this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
    
    
    	/* Pick the ECC bytes out of the oob data */
    
    	for (i = 0; i < CONFIG_SYS_NAND_ECCTOTAL; i++)
    
    		ecc_code[i] = oob_data[nand_ecc_pos[i]];
    
    
    	eccsteps = CONFIG_SYS_NAND_ECCSTEPS;
    
    	p = dst;
    
    	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
    		/* No chance to do something with the possible error message
    		 * from correct_data(). We just hope that all possible errors
    		 * are corrected by this routine.
    		 */
    
    		stat = this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
    
    #endif /* #if defined(CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST) */
    
    static int nand_load(struct mtd_info *mtd, unsigned int offs,
    
    		     unsigned int uboot_size, uchar *dst)
    
    	unsigned int block, lastblock;
    	unsigned int page;
    
    	 * offs has to be aligned to a page address!
    
    	block = offs / CONFIG_SYS_NAND_BLOCK_SIZE;
    	lastblock = (offs + uboot_size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE;
    	page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE;
    
    		if (!nand_is_bad_block(mtd, block)) {
    			/*
    			 * Skip bad blocks
    			 */
    
    			while (page < CONFIG_SYS_NAND_PAGE_COUNT) {
    
    				nand_read_page(mtd, block, page, dst);
    
    				dst += CONFIG_SYS_NAND_PAGE_SIZE;
    
    /*
     * The main entry for NAND booting. It's necessary that SDRAM is already
     * configured and available since this code loads the main U-Boot image
     * from NAND into SDRAM and starts it from there.
     */
    
    void nand_boot(void)
    {
    	struct nand_chip nand_chip;
    	nand_info_t nand_info;
    	int ret;
    
    	__attribute__((noreturn)) void (*uboot)(void);
    
    
    	/*
    	 * Init board specific nand support
    	 */
    
    	nand_chip.select_chip = NULL;
    
    	nand_info.priv = &nand_chip;
    
    	nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W = (void  __iomem *)CONFIG_SYS_NAND_BASE;
    
    	nand_chip.dev_ready = NULL;	/* preset to NULL */
    
    	nand_chip.options = 0;
    
    	board_nand_init(&nand_chip);
    
    
    	if (nand_chip.select_chip)
    		nand_chip.select_chip(&nand_info, 0);
    
    
    	/*
    	 * Load U-Boot image from NAND into RAM
    	 */
    
    	ret = nand_load(&nand_info, CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE,
    			(uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
    
    #ifdef CONFIG_NAND_ENV_DST
    	nand_load(&nand_info, CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
    		  (uchar *)CONFIG_NAND_ENV_DST);
    
    #ifdef CONFIG_ENV_OFFSET_REDUND
    	nand_load(&nand_info, CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
    		  (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
    #endif
    #endif
    
    
    	if (nand_chip.select_chip)
    		nand_chip.select_chip(&nand_info, -1);
    
    
    	/*
    	 * Jump to U-Boot image
    	 */
    
    	uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;