Skip to content
Snippets Groups Projects
dlmalloc.c 71 KiB
Newer Older
  • Learn to ignore specific revisions
  • #include <common.h>
    
    
    #if defined(CONFIG_UNIT_TEST)
    
    #define DEBUG
    #endif
    
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    #include <malloc.h>
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    #if __STD_C
    static void malloc_update_mallinfo (void);
    void malloc_stats (void);
    #else
    static void malloc_update_mallinfo ();
    void malloc_stats();
    #endif
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    /*
      Emulation of sbrk for WIN32
      All code within the ifdef WIN32 is untested by me.
    
      Thanks to Martin Fong and others for supplying this.
    */
    
    
    #ifdef WIN32
    
    #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
    ~(malloc_getpagesize-1))
    #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
    
    /* resrve 64MB to insure large contiguous space */
    #define RESERVED_SIZE (1024*1024*64)
    #define NEXT_SIZE (2048*1024)
    #define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
    
    struct GmListElement;
    typedef struct GmListElement GmListElement;
    
    struct GmListElement
    {
    	GmListElement* next;
    	void* base;
    };
    
    static GmListElement* head = 0;
    static unsigned int gNextAddress = 0;
    static unsigned int gAddressBase = 0;
    static unsigned int gAllocatedSize = 0;
    
    static
    GmListElement* makeGmListElement (void* bas)
    {
    	GmListElement* this;
    	this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
    	assert (this);
    	if (this)
    	{
    		this->base = bas;
    		this->next = head;
    		head = this;
    	}
    	return this;
    }
    
    void gcleanup ()
    {
    	BOOL rval;
    	assert ( (head == NULL) || (head->base == (void*)gAddressBase));
    	if (gAddressBase && (gNextAddress - gAddressBase))
    	{
    		rval = VirtualFree ((void*)gAddressBase,
    							gNextAddress - gAddressBase,
    							MEM_DECOMMIT);
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    	assert (rval);
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    	}
    	while (head)
    	{
    		GmListElement* next = head->next;
    		rval = VirtualFree (head->base, 0, MEM_RELEASE);
    		assert (rval);
    		LocalFree (head);
    		head = next;
    	}
    }
    
    static
    void* findRegion (void* start_address, unsigned long size)
    {
    	MEMORY_BASIC_INFORMATION info;
    	if (size >= TOP_MEMORY) return NULL;
    
    	while ((unsigned long)start_address + size < TOP_MEMORY)
    	{
    		VirtualQuery (start_address, &info, sizeof (info));
    		if ((info.State == MEM_FREE) && (info.RegionSize >= size))
    			return start_address;
    		else
    		{
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    			/* Requested region is not available so see if the */
    			/* next region is available.  Set 'start_address' */
    			/* to the next region and call 'VirtualQuery()' */
    			/* again. */
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    
    			start_address = (char*)info.BaseAddress + info.RegionSize;
    
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    			/* Make sure we start looking for the next region */
    			/* on the *next* 64K boundary.  Otherwise, even if */
    			/* the new region is free according to */
    			/* 'VirtualQuery()', the subsequent call to */
    			/* 'VirtualAlloc()' (which follows the call to */
    			/* this routine in 'wsbrk()') will round *down* */
    			/* the requested address to a 64K boundary which */
    			/* we already know is an address in the */
    			/* unavailable region.  Thus, the subsequent call */
    			/* to 'VirtualAlloc()' will fail and bring us back */
    			/* here, causing us to go into an infinite loop. */
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    
    			start_address =
    				(void *) AlignPage64K((unsigned long) start_address);
    		}
    	}
    	return NULL;
    
    }
    
    
    void* wsbrk (long size)
    {
    	void* tmp;
    	if (size > 0)
    	{
    		if (gAddressBase == 0)
    		{
    			gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
    			gNextAddress = gAddressBase =
    				(unsigned int)VirtualAlloc (NULL, gAllocatedSize,
    											MEM_RESERVE, PAGE_NOACCESS);
    		} else if (AlignPage (gNextAddress + size) > (gAddressBase +
    gAllocatedSize))
    		{
    			long new_size = max (NEXT_SIZE, AlignPage (size));
    			void* new_address = (void*)(gAddressBase+gAllocatedSize);
    			do
    			{
    				new_address = findRegion (new_address, new_size);
    
    				if (new_address == 0)
    					return (void*)-1;
    
    				gAddressBase = gNextAddress =
    					(unsigned int)VirtualAlloc (new_address, new_size,
    												MEM_RESERVE, PAGE_NOACCESS);
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    				/* repeat in case of race condition */
    				/* The region that we found has been snagged */
    				/* by another thread */
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    			}
    			while (gAddressBase == 0);
    
    			assert (new_address == (void*)gAddressBase);
    
    			gAllocatedSize = new_size;
    
    			if (!makeGmListElement ((void*)gAddressBase))
    				return (void*)-1;
    		}
    		if ((size + gNextAddress) > AlignPage (gNextAddress))
    		{
    			void* res;
    			res = VirtualAlloc ((void*)AlignPage (gNextAddress),
    								(size + gNextAddress -
    								 AlignPage (gNextAddress)),
    								MEM_COMMIT, PAGE_READWRITE);
    			if (res == 0)
    				return (void*)-1;
    		}
    		tmp = (void*)gNextAddress;
    		gNextAddress = (unsigned int)tmp + size;
    		return tmp;
    	}
    	else if (size < 0)
    	{
    		unsigned int alignedGoal = AlignPage (gNextAddress + size);
    		/* Trim by releasing the virtual memory */
    		if (alignedGoal >= gAddressBase)
    		{
    			VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
    						 MEM_DECOMMIT);
    			gNextAddress = gNextAddress + size;
    			return (void*)gNextAddress;
    		}
    		else
    		{
    			VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
    						 MEM_DECOMMIT);
    			gNextAddress = gAddressBase;
    			return (void*)-1;
    		}
    	}
    	else
    	{
    		return (void*)gNextAddress;
    	}
    }
    
    #endif
    
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    
    /*
      Type declarations
    */
    
    
    struct malloc_chunk
    {
      INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
      INTERNAL_SIZE_T size;      /* Size in bytes, including overhead. */
      struct malloc_chunk* fd;   /* double links -- used only if free. */
      struct malloc_chunk* bk;
    
    } __attribute__((__may_alias__)) ;
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    
    typedef struct malloc_chunk* mchunkptr;
    
    /*
    
       malloc_chunk details:
    
        (The following includes lightly edited explanations by Colin Plumb.)
    
        Chunks of memory are maintained using a `boundary tag' method as
        described in e.g., Knuth or Standish.  (See the paper by Paul
        Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
        survey of such techniques.)  Sizes of free chunks are stored both
        in the front of each chunk and at the end.  This makes
        consolidating fragmented chunks into bigger chunks very fast.  The
        size fields also hold bits representing whether chunks are free or
        in use.
    
        An allocated chunk looks like this:
    
    
        chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    	    |             Size of previous chunk, if allocated            | |
    	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    	    |             Size of chunk, in bytes                         |P|
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
          mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    	    |             User data starts here...                          .
    	    .                                                               .
    	    .             (malloc_usable_space() bytes)                     .
    	    .                                                               |
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    	    |             Size of chunk                                     |
    	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    
    
        Where "chunk" is the front of the chunk for the purpose of most of
        the malloc code, but "mem" is the pointer that is returned to the
        user.  "Nextchunk" is the beginning of the next contiguous chunk.
    
        Chunks always begin on even word boundries, so the mem portion
        (which is returned to the user) is also on an even word boundary, and
        thus double-word aligned.
    
        Free chunks are stored in circular doubly-linked lists, and look like this:
    
        chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    	    |             Size of previous chunk                            |
    	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
        `head:' |             Size of chunk, in bytes                         |P|
          mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    	    |             Forward pointer to next chunk in list             |
    	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    	    |             Back pointer to previous chunk in list            |
    	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    	    |             Unused space (may be 0 bytes long)                .
    	    .                                                               .
    	    .                                                               |
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        `foot:' |             Size of chunk, in bytes                           |
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    
        The P (PREV_INUSE) bit, stored in the unused low-order bit of the
        chunk size (which is always a multiple of two words), is an in-use
        bit for the *previous* chunk.  If that bit is *clear*, then the
        word before the current chunk size contains the previous chunk
        size, and can be used to find the front of the previous chunk.
        (The very first chunk allocated always has this bit set,
        preventing access to non-existent (or non-owned) memory.)
    
        Note that the `foot' of the current chunk is actually represented
        as the prev_size of the NEXT chunk. (This makes it easier to
        deal with alignments etc).
    
        The two exceptions to all this are
    
         1. The special chunk `top', which doesn't bother using the
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    	trailing size field since there is no
    	next contiguous chunk that would have to index off it. (After
    	initialization, `top' is forced to always exist.  If it would
    	become less than MINSIZE bytes long, it is replenished via
    	malloc_extend_top.)
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    
         2. Chunks allocated via mmap, which have the second-lowest-order
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    	bit (IS_MMAPPED) set in their size fields.  Because they are
    	never merged or traversed from any other chunk, they have no
    	foot size or inuse information.
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    
        Available chunks are kept in any of several places (all declared below):
    
        * `av': An array of chunks serving as bin headers for consolidated
           chunks. Each bin is doubly linked.  The bins are approximately
           proportionally (log) spaced.  There are a lot of these bins
           (128). This may look excessive, but works very well in
           practice.  All procedures maintain the invariant that no
           consolidated chunk physically borders another one. Chunks in
           bins are kept in size order, with ties going to the
           approximately least recently used chunk.
    
           The chunks in each bin are maintained in decreasing sorted order by
           size.  This is irrelevant for the small bins, which all contain
           the same-sized chunks, but facilitates best-fit allocation for
           larger chunks. (These lists are just sequential. Keeping them in
           order almost never requires enough traversal to warrant using
           fancier ordered data structures.)  Chunks of the same size are
           linked with the most recently freed at the front, and allocations
           are taken from the back.  This results in LRU or FIFO allocation
           order, which tends to give each chunk an equal opportunity to be
           consolidated with adjacent freed chunks, resulting in larger free
           chunks and less fragmentation.
    
        * `top': The top-most available chunk (i.e., the one bordering the
           end of available memory) is treated specially. It is never
           included in any bin, is used only if no other chunk is
           available, and is released back to the system if it is very
           large (see M_TRIM_THRESHOLD).
    
        * `last_remainder': A bin holding only the remainder of the
           most recently split (non-top) chunk. This bin is checked
           before other non-fitting chunks, so as to provide better
           locality for runs of sequentially allocated chunks.
    
        *  Implicitly, through the host system's memory mapping tables.
           If supported, requests greater than a threshold are usually
           serviced via calls to mmap, and then later released via munmap.
    
    */
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    /*  sizes, alignments */
    
    #define SIZE_SZ                (sizeof(INTERNAL_SIZE_T))
    #define MALLOC_ALIGNMENT       (SIZE_SZ + SIZE_SZ)
    #define MALLOC_ALIGN_MASK      (MALLOC_ALIGNMENT - 1)
    #define MINSIZE                (sizeof(struct malloc_chunk))
    
    /* conversion from malloc headers to user pointers, and back */
    
    #define chunk2mem(p)   ((Void_t*)((char*)(p) + 2*SIZE_SZ))
    #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
    
    /* pad request bytes into a usable size */
    
    #define request2size(req) \
     (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
      (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
       (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
    
    /* Check if m has acceptable alignment */
    
    #define aligned_OK(m)    (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
    
    
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    
    /*
      Physical chunk operations
    */
    
    
    /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
    
    #define PREV_INUSE 0x1
    
    /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
    
    #define IS_MMAPPED 0x2
    
    /* Bits to mask off when extracting size */
    
    #define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
    
    
    /* Ptr to next physical malloc_chunk. */
    
    #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
    
    /* Ptr to previous physical malloc_chunk */
    
    #define prev_chunk(p)\
       ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
    
    
    /* Treat space at ptr + offset as a chunk */
    
    #define chunk_at_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
    
    
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    
    /*
      Dealing with use bits
    */
    
    /* extract p's inuse bit */
    
    #define inuse(p)\
    ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
    
    /* extract inuse bit of previous chunk */
    
    #define prev_inuse(p)  ((p)->size & PREV_INUSE)
    
    /* check for mmap()'ed chunk */
    
    #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
    
    /* set/clear chunk as in use without otherwise disturbing */
    
    #define set_inuse(p)\
    ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
    
    #define clear_inuse(p)\
    ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
    
    /* check/set/clear inuse bits in known places */
    
    #define inuse_bit_at_offset(p, s)\
     (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
    
    #define set_inuse_bit_at_offset(p, s)\
     (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
    
    #define clear_inuse_bit_at_offset(p, s)\
     (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
    
    
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    
    /*
      Dealing with size fields
    */
    
    /* Get size, ignoring use bits */
    
    #define chunksize(p)          ((p)->size & ~(SIZE_BITS))
    
    /* Set size at head, without disturbing its use bit */
    
    #define set_head_size(p, s)   ((p)->size = (((p)->size & PREV_INUSE) | (s)))
    
    /* Set size/use ignoring previous bits in header */
    
    #define set_head(p, s)        ((p)->size = (s))
    
    /* Set size at footer (only when chunk is not in use) */
    
    #define set_foot(p, s)   (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
    
    
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    
    
    /*
       Bins
    
        The bins, `av_' are an array of pairs of pointers serving as the
        heads of (initially empty) doubly-linked lists of chunks, laid out
        in a way so that each pair can be treated as if it were in a
        malloc_chunk. (This way, the fd/bk offsets for linking bin heads
        and chunks are the same).
    
        Bins for sizes < 512 bytes contain chunks of all the same size, spaced
        8 bytes apart. Larger bins are approximately logarithmically
        spaced. (See the table below.) The `av_' array is never mentioned
        directly in the code, but instead via bin access macros.
    
        Bin layout:
    
        64 bins of size       8
        32 bins of size      64
        16 bins of size     512
         8 bins of size    4096
         4 bins of size   32768
         2 bins of size  262144
         1 bin  of size what's left
    
        There is actually a little bit of slop in the numbers in bin_index
        for the sake of speed. This makes no difference elsewhere.
    
        The special chunks `top' and `last_remainder' get their own bins,
        (this is implemented via yet more trickery with the av_ array),
        although `top' is never properly linked to its bin since it is
        always handled specially.
    
    */
    
    #define NAV             128   /* number of bins */
    
    typedef struct malloc_chunk* mbinptr;
    
    /* access macros */
    
    #define bin_at(i)      ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
    #define next_bin(b)    ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
    #define prev_bin(b)    ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
    
    /*
       The first 2 bins are never indexed. The corresponding av_ cells are instead
       used for bookkeeping. This is not to save space, but to simplify
       indexing, maintain locality, and avoid some initialization tests.
    */
    
    
    Stefan Roese's avatar
    Stefan Roese committed
    #define top            (av_[2])          /* The topmost chunk */
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    #define last_remainder (bin_at(1))       /* remainder from last split */
    
    
    /*
       Because top initially points to its own bin with initial
       zero size, thus forcing extension on the first malloc request,
       we avoid having any special code in malloc to check whether
       it even exists yet. But we still need to in malloc_extend_top.
    */
    
    #define initial_top    ((mchunkptr)(bin_at(0)))
    
    /* Helper macro to initialize bins */
    
    #define IAV(i)  bin_at(i), bin_at(i)
    
    static mbinptr av_[NAV * 2 + 2] = {
    
    Kim Phillips's avatar
    Kim Phillips committed
     NULL, NULL,
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
     IAV(0),   IAV(1),   IAV(2),   IAV(3),   IAV(4),   IAV(5),   IAV(6),   IAV(7),
     IAV(8),   IAV(9),   IAV(10),  IAV(11),  IAV(12),  IAV(13),  IAV(14),  IAV(15),
     IAV(16),  IAV(17),  IAV(18),  IAV(19),  IAV(20),  IAV(21),  IAV(22),  IAV(23),
     IAV(24),  IAV(25),  IAV(26),  IAV(27),  IAV(28),  IAV(29),  IAV(30),  IAV(31),
     IAV(32),  IAV(33),  IAV(34),  IAV(35),  IAV(36),  IAV(37),  IAV(38),  IAV(39),
     IAV(40),  IAV(41),  IAV(42),  IAV(43),  IAV(44),  IAV(45),  IAV(46),  IAV(47),
     IAV(48),  IAV(49),  IAV(50),  IAV(51),  IAV(52),  IAV(53),  IAV(54),  IAV(55),
     IAV(56),  IAV(57),  IAV(58),  IAV(59),  IAV(60),  IAV(61),  IAV(62),  IAV(63),
     IAV(64),  IAV(65),  IAV(66),  IAV(67),  IAV(68),  IAV(69),  IAV(70),  IAV(71),
     IAV(72),  IAV(73),  IAV(74),  IAV(75),  IAV(76),  IAV(77),  IAV(78),  IAV(79),
     IAV(80),  IAV(81),  IAV(82),  IAV(83),  IAV(84),  IAV(85),  IAV(86),  IAV(87),
     IAV(88),  IAV(89),  IAV(90),  IAV(91),  IAV(92),  IAV(93),  IAV(94),  IAV(95),
     IAV(96),  IAV(97),  IAV(98),  IAV(99),  IAV(100), IAV(101), IAV(102), IAV(103),
     IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
     IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
     IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
    };
    
    
    #ifdef CONFIG_NEEDS_MANUAL_RELOC
    
    static void malloc_bin_reloc(void)
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    {
    
    	mbinptr *p = &av_[2];
    	size_t i;
    
    	for (i = 2; i < ARRAY_SIZE(av_); ++i, ++p)
    		*p = (mbinptr)((ulong)*p + gd->reloc_off);
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    }
    
    #else
    static inline void malloc_bin_reloc(void) {}
    
    
    ulong mem_malloc_start = 0;
    ulong mem_malloc_end = 0;
    ulong mem_malloc_brk = 0;
    
    void *sbrk(ptrdiff_t increment)
    {
    	ulong old = mem_malloc_brk;
    	ulong new = old + increment;
    
    
    	/*
    	 * if we are giving memory back make sure we clear it out since
    	 * we set MORECORE_CLEARS to 1
    	 */
    	if (increment < 0)
    		memset((void *)new, 0, -increment);
    
    
    	if ((new < mem_malloc_start) || (new > mem_malloc_end))
    
    
    	mem_malloc_brk = new;
    
    	return (void *)old;
    }
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    
    
    void mem_malloc_init(ulong start, ulong size)
    {
    	mem_malloc_start = start;
    	mem_malloc_end = start + size;
    	mem_malloc_brk = start;
    
    
    	debug("using memory %#lx-%#lx for malloc()\n", mem_malloc_start,
    	      mem_malloc_end);
    
    #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
    	memset((void *)mem_malloc_start, 0x0, size);
    #endif
    
    	malloc_bin_reloc();
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    /* field-extraction macros */
    
    #define first(b) ((b)->fd)
    #define last(b)  ((b)->bk)
    
    /*
      Indexing into bins
    */
    
    #define bin_index(sz)                                                          \
    (((((unsigned long)(sz)) >> 9) ==    0) ?       (((unsigned long)(sz)) >>  3): \
     ((((unsigned long)(sz)) >> 9) <=    4) ?  56 + (((unsigned long)(sz)) >>  6): \
     ((((unsigned long)(sz)) >> 9) <=   20) ?  91 + (((unsigned long)(sz)) >>  9): \
     ((((unsigned long)(sz)) >> 9) <=   84) ? 110 + (((unsigned long)(sz)) >> 12): \
     ((((unsigned long)(sz)) >> 9) <=  340) ? 119 + (((unsigned long)(sz)) >> 15): \
     ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    					  126)
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    /*
      bins for chunks < 512 are all spaced 8 bytes apart, and hold
      identically sized chunks. This is exploited in malloc.
    */
    
    #define MAX_SMALLBIN         63
    #define MAX_SMALLBIN_SIZE   512
    #define SMALLBIN_WIDTH        8
    
    #define smallbin_index(sz)  (((unsigned long)(sz)) >> 3)
    
    /*
       Requests are `small' if both the corresponding and the next bin are small
    */
    
    #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
    
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    
    /*
        To help compensate for the large number of bins, a one-level index
        structure is used for bin-by-bin searching.  `binblocks' is a
        one-word bitvector recording whether groups of BINBLOCKWIDTH bins
        have any (possibly) non-empty bins, so they can be skipped over
        all at once during during traversals. The bits are NOT always
        cleared as soon as all bins in a block are empty, but instead only
        when all are noticed to be empty during traversal in malloc.
    */
    
    #define BINBLOCKWIDTH     4   /* bins per block */
    
    
    Stefan Roese's avatar
    Stefan Roese committed
    #define binblocks_r     ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */
    #define binblocks_w     (av_[1])
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    
    /* bin<->block macros */
    
    #define idx2binblock(ix)    ((unsigned)1 << (ix / BINBLOCKWIDTH))
    
    Stefan Roese's avatar
    Stefan Roese committed
    #define mark_binblock(ii)   (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii)))
    #define clear_binblock(ii)  (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii))))
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    
    
    /*  Other static bookkeeping data */
    
    /* variables holding tunable values */
    
    static unsigned long trim_threshold   = DEFAULT_TRIM_THRESHOLD;
    static unsigned long top_pad          = DEFAULT_TOP_PAD;
    static unsigned int  n_mmaps_max      = DEFAULT_MMAP_MAX;
    static unsigned long mmap_threshold   = DEFAULT_MMAP_THRESHOLD;
    
    /* The first value returned from sbrk */
    static char* sbrk_base = (char*)(-1);
    
    /* The maximum memory obtained from system via sbrk */
    static unsigned long max_sbrked_mem = 0;
    
    /* The maximum via either sbrk or mmap */
    static unsigned long max_total_mem = 0;
    
    /* internal working copy of mallinfo */
    static struct mallinfo current_mallinfo = {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
    
    /* The total memory obtained from system via sbrk */
    #define sbrked_mem  (current_mallinfo.arena)
    
    /* Tracking mmaps */
    
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    static unsigned int n_mmaps = 0;
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    static unsigned long mmapped_mem = 0;
    #if HAVE_MMAP
    static unsigned int max_n_mmaps = 0;
    static unsigned long max_mmapped_mem = 0;
    #endif
    
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    
    /*
      Debugging support
    */
    
    #ifdef DEBUG
    
    
    /*
      These routines make a number of assertions about the states
      of data structures that should be true at all times. If any
      are not true, it's very likely that a user program has somehow
      trashed memory. (It's also possible that there is a coding error
      in malloc. In which case, please report it!)
    */
    
    #if __STD_C
    static void do_check_chunk(mchunkptr p)
    #else
    static void do_check_chunk(p) mchunkptr p;
    #endif
    {
      INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
    
      /* No checkable chunk is mmapped */
      assert(!chunk_is_mmapped(p));
    
      /* Check for legal address ... */
      assert((char*)p >= sbrk_base);
      if (p != top)
        assert((char*)p + sz <= (char*)top);
      else
        assert((char*)p + sz <= sbrk_base + sbrked_mem);
    
    }
    
    
    #if __STD_C
    static void do_check_free_chunk(mchunkptr p)
    #else
    static void do_check_free_chunk(p) mchunkptr p;
    #endif
    {
      INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
      mchunkptr next = chunk_at_offset(p, sz);
    
      do_check_chunk(p);
    
      /* Check whether it claims to be free ... */
      assert(!inuse(p));
    
      /* Unless a special marker, must have OK fields */
      if ((long)sz >= (long)MINSIZE)
      {
        assert((sz & MALLOC_ALIGN_MASK) == 0);
        assert(aligned_OK(chunk2mem(p)));
        /* ... matching footer field */
        assert(next->prev_size == sz);
        /* ... and is fully consolidated */
        assert(prev_inuse(p));
        assert (next == top || inuse(next));
    
        /* ... and has minimally sane links */
        assert(p->fd->bk == p);
        assert(p->bk->fd == p);
      }
      else /* markers are always of size SIZE_SZ */
        assert(sz == SIZE_SZ);
    }
    
    #if __STD_C
    static void do_check_inuse_chunk(mchunkptr p)
    #else
    static void do_check_inuse_chunk(p) mchunkptr p;
    #endif
    {
      mchunkptr next = next_chunk(p);
      do_check_chunk(p);
    
      /* Check whether it claims to be in use ... */
      assert(inuse(p));
    
      /* ... and is surrounded by OK chunks.
        Since more things can be checked with free chunks than inuse ones,
        if an inuse chunk borders them and debug is on, it's worth doing them.
      */
      if (!prev_inuse(p))
      {
        mchunkptr prv = prev_chunk(p);
        assert(next_chunk(prv) == p);
        do_check_free_chunk(prv);
      }
      if (next == top)
      {
        assert(prev_inuse(next));
        assert(chunksize(next) >= MINSIZE);
      }
      else if (!inuse(next))
        do_check_free_chunk(next);
    
    }
    
    #if __STD_C
    static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
    #else
    static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
    #endif
    {
      INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
      long room = sz - s;
    
      do_check_inuse_chunk(p);
    
      /* Legal size ... */
      assert((long)sz >= (long)MINSIZE);
      assert((sz & MALLOC_ALIGN_MASK) == 0);
      assert(room >= 0);
      assert(room < (long)MINSIZE);
    
      /* ... and alignment */
      assert(aligned_OK(chunk2mem(p)));
    
    
      /* ... and was allocated at front of an available chunk */
      assert(prev_inuse(p));
    
    }
    
    
    #define check_free_chunk(P)  do_check_free_chunk(P)
    #define check_inuse_chunk(P) do_check_inuse_chunk(P)
    #define check_chunk(P) do_check_chunk(P)
    #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
    #else
    #define check_free_chunk(P)
    #define check_inuse_chunk(P)
    #define check_chunk(P)
    #define check_malloced_chunk(P,N)
    #endif
    
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    
    /*
      Macro-based internal utilities
    */
    
    
    /*
      Linking chunks in bin lists.
      Call these only with variables, not arbitrary expressions, as arguments.
    */
    
    /*
      Place chunk p of size s in its bin, in size order,
      putting it ahead of others of same size.
    */
    
    
    #define frontlink(P, S, IDX, BK, FD)                                          \
    {                                                                             \
      if (S < MAX_SMALLBIN_SIZE)                                                  \
      {                                                                           \
        IDX = smallbin_index(S);                                                  \
        mark_binblock(IDX);                                                       \
        BK = bin_at(IDX);                                                         \
        FD = BK->fd;                                                              \
        P->bk = BK;                                                               \
        P->fd = FD;                                                               \
        FD->bk = BK->fd = P;                                                      \
      }                                                                           \
      else                                                                        \
      {                                                                           \
        IDX = bin_index(S);                                                       \
        BK = bin_at(IDX);                                                         \
        FD = BK->fd;                                                              \
        if (FD == BK) mark_binblock(IDX);                                         \
        else                                                                      \
        {                                                                         \
          while (FD != BK && S < chunksize(FD)) FD = FD->fd;                      \
          BK = FD->bk;                                                            \
        }                                                                         \
        P->bk = BK;                                                               \
        P->fd = FD;                                                               \
        FD->bk = BK->fd = P;                                                      \
      }                                                                           \
    }
    
    
    /* take a chunk off a list */
    
    #define unlink(P, BK, FD)                                                     \
    {                                                                             \
      BK = P->bk;                                                                 \
      FD = P->fd;                                                                 \
      FD->bk = BK;                                                                \
      BK->fd = FD;                                                                \
    }                                                                             \
    
    /* Place p as the last remainder */
    
    #define link_last_remainder(P)                                                \
    {                                                                             \
      last_remainder->fd = last_remainder->bk =  P;                               \
      P->fd = P->bk = last_remainder;                                             \
    }
    
    /* Clear the last_remainder bin */
    
    #define clear_last_remainder \
      (last_remainder->fd = last_remainder->bk = last_remainder)
    
    
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    
    
    /* Routines dealing with mmap(). */
    
    #if HAVE_MMAP
    
    #if __STD_C
    static mchunkptr mmap_chunk(size_t size)
    #else
    static mchunkptr mmap_chunk(size) size_t size;
    #endif
    {
      size_t page_mask = malloc_getpagesize - 1;
      mchunkptr p;
    
    #ifndef MAP_ANONYMOUS
      static int fd = -1;
    #endif
    
      if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
    
      /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
       * there is no following chunk whose prev_size field could be used.
       */
      size = (size + SIZE_SZ + page_mask) & ~page_mask;
    
    #ifdef MAP_ANONYMOUS
      p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
    		      MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
    #else /* !MAP_ANONYMOUS */
      if (fd < 0)
      {
        fd = open("/dev/zero", O_RDWR);
        if(fd < 0) return 0;
      }
      p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
    #endif
    
      if(p == (mchunkptr)-1) return 0;
    
      n_mmaps++;
      if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
    
      /* We demand that eight bytes into a page must be 8-byte aligned. */
      assert(aligned_OK(chunk2mem(p)));
    
      /* The offset to the start of the mmapped region is stored
       * in the prev_size field of the chunk; normally it is zero,
       * but that can be changed in memalign().
       */
      p->prev_size = 0;
      set_head(p, size|IS_MMAPPED);
    
      mmapped_mem += size;
      if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
        max_mmapped_mem = mmapped_mem;
      if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
        max_total_mem = mmapped_mem + sbrked_mem;
      return p;
    }
    
    #if __STD_C
    static void munmap_chunk(mchunkptr p)
    #else
    static void munmap_chunk(p) mchunkptr p;
    #endif
    {
      INTERNAL_SIZE_T size = chunksize(p);
      int ret;
    
      assert (chunk_is_mmapped(p));
      assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
      assert((n_mmaps > 0));
      assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
    
      n_mmaps--;