Skip to content
Snippets Groups Projects
omap_gpmc.c 28.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • Dirk Behme's avatar
    Dirk Behme committed
    /*
     * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
     * Rohit Choraria <rohitkc@ti.com>
     *
    
     * SPDX-License-Identifier:	GPL-2.0+
    
    Dirk Behme's avatar
    Dirk Behme committed
     */
    
    #include <common.h>
    #include <asm/io.h>
    #include <asm/errno.h>
    #include <asm/arch/mem.h>
    
    #include <asm/arch/cpu.h>
    
    #include <asm/omap_gpmc.h>
    
    Dirk Behme's avatar
    Dirk Behme committed
    #include <linux/mtd/nand_ecc.h>
    
    #include <linux/bch.h>
    
    #include <linux/compiler.h>
    
    Dirk Behme's avatar
    Dirk Behme committed
    #include <nand.h>
    
    
    #define BADBLOCK_MARKER_LENGTH	2
    #define SECTOR_BYTES		512
    
    Dirk Behme's avatar
    Dirk Behme committed
    
    static uint8_t cs;
    
    static __maybe_unused struct nand_ecclayout omap_ecclayout;
    
    Dirk Behme's avatar
    Dirk Behme committed
    
    /*
     * omap_nand_hwcontrol - Set the address pointers corretly for the
     *			following address/data/command operation
     */
    static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
    				uint32_t ctrl)
    {
    	register struct nand_chip *this = mtd->priv;
    
    	/*
    	 * Point the IO_ADDR to DATA and ADDRESS registers instead
    	 * of chip address
    	 */
    	switch (ctrl) {
    	case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
    
    		this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
    
    Dirk Behme's avatar
    Dirk Behme committed
    		break;
    	case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
    
    		this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
    
    Dirk Behme's avatar
    Dirk Behme committed
    		break;
    	case NAND_CTRL_CHANGE | NAND_NCE:
    
    		this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
    
    Dirk Behme's avatar
    Dirk Behme committed
    		break;
    	}
    
    	if (cmd != NAND_CMD_NONE)
    		writeb(cmd, this->IO_ADDR_W);
    }
    
    
    #ifdef CONFIG_SPL_BUILD
    /* Check wait pin as dev ready indicator */
    int omap_spl_dev_ready(struct mtd_info *mtd)
    {
    	return gpmc_cfg->status & (1 << 8);
    }
    #endif
    
    
    Dirk Behme's avatar
    Dirk Behme committed
    /*
     * omap_hwecc_init - Initialize the Hardware ECC for NAND flash in
     *                   GPMC controller
     * @mtd:        MTD device structure
     *
     */
    
    static void __maybe_unused omap_hwecc_init(struct nand_chip *chip)
    
    Dirk Behme's avatar
    Dirk Behme committed
    {
    	/*
    	 * Init ECC Control Register
    	 * Clear all ECC | Enable Reg1
    	 */
    
    	writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
    	writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL, &gpmc_cfg->ecc_size_config);
    
    Dirk Behme's avatar
    Dirk Behme committed
    }
    
    /*
     * gen_true_ecc - This function will generate true ECC value, which
     * can be used when correcting data read from NAND flash memory core
     *
     * @ecc_buf:	buffer to store ecc code
     *
     * @return:	re-formatted ECC value
     */
    static uint32_t gen_true_ecc(uint8_t *ecc_buf)
    {
    	return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
    		((ecc_buf[2] & 0x0F) << 8);
    }
    
    /*
     * omap_correct_data - Compares the ecc read from nand spare area with ECC
     * registers values and corrects one bit error if it has occured
     * Further details can be had from OMAP TRM and the following selected links:
     * http://en.wikipedia.org/wiki/Hamming_code
     * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
     *
     * @mtd:		 MTD device structure
     * @dat:		 page data
     * @read_ecc:		 ecc read from nand flash
     * @calc_ecc:		 ecc read from ECC registers
     *
     * @return 0 if data is OK or corrected, else returns -1
     */
    
    static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
    
    Dirk Behme's avatar
    Dirk Behme committed
    				uint8_t *read_ecc, uint8_t *calc_ecc)
    {
    	uint32_t orig_ecc, new_ecc, res, hm;
    	uint16_t parity_bits, byte;
    	uint8_t bit;
    
    	/* Regenerate the orginal ECC */
    	orig_ecc = gen_true_ecc(read_ecc);
    	new_ecc = gen_true_ecc(calc_ecc);
    	/* Get the XOR of real ecc */
    	res = orig_ecc ^ new_ecc;
    	if (res) {
    		/* Get the hamming width */
    		hm = hweight32(res);
    		/* Single bit errors can be corrected! */
    		if (hm == 12) {
    			/* Correctable data! */
    			parity_bits = res >> 16;
    			bit = (parity_bits & 0x7);
    			byte = (parity_bits >> 3) & 0x1FF;
    			/* Flip the bit to correct */
    			dat[byte] ^= (0x1 << bit);
    		} else if (hm == 1) {
    			printf("Error: Ecc is wrong\n");
    			/* ECC itself is corrupted */
    			return 2;
    		} else {
    			/*
    			 * hm distance != parity pairs OR one, could mean 2 bit
    			 * error OR potentially be on a blank page..
    			 * orig_ecc: contains spare area data from nand flash.
    			 * new_ecc: generated ecc while reading data area.
    			 * Note: if the ecc = 0, all data bits from which it was
    			 * generated are 0xFF.
    			 * The 3 byte(24 bits) ecc is generated per 512byte
    			 * chunk of a page. If orig_ecc(from spare area)
    			 * is 0xFF && new_ecc(computed now from data area)=0x0,
    			 * this means that data area is 0xFF and spare area is
    			 * 0xFF. A sure sign of a erased page!
    			 */
    			if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
    				return 0;
    			printf("Error: Bad compare! failed\n");
    			/* detected 2 bit error */
    			return -1;
    		}
    	}
    	return 0;
    }
    
    /*
     *  omap_calculate_ecc - Generate non-inverted ECC bytes.
     *
     *  Using noninverted ECC can be considered ugly since writing a blank
     *  page ie. padding will clear the ECC bytes. This is no problem as
     *  long nobody is trying to write data on the seemingly unused page.
     *  Reading an erased page will produce an ECC mismatch between
     *  generated and read ECC bytes that has to be dealt with separately.
     *  E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
     *  is used, the result of read will be 0x0 while the ECC offsets of the
     *  spare area will be 0xFF which will result in an ECC mismatch.
     *  @mtd:	MTD structure
     *  @dat:	unused
     *  @ecc_code:	ecc_code buffer
     */
    
    static int __maybe_unused omap_calculate_ecc(struct mtd_info *mtd,
    		const uint8_t *dat, uint8_t *ecc_code)
    
    Dirk Behme's avatar
    Dirk Behme committed
    {
    	u_int32_t val;
    
    	/* Start Reading from HW ECC1_Result = 0x200 */
    
    	val = readl(&gpmc_cfg->ecc1_result);
    
    Dirk Behme's avatar
    Dirk Behme committed
    
    	ecc_code[0] = val & 0xFF;
    	ecc_code[1] = (val >> 16) & 0xFF;
    	ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
    
    	/*
    	 * Stop reading anymore ECC vals and clear old results
    	 * enable will be called if more reads are required
    	 */
    
    	writel(0x000, &gpmc_cfg->ecc_config);
    
    Dirk Behme's avatar
    Dirk Behme committed
    
    	return 0;
    }
    
    /*
     * omap_enable_ecc - This function enables the hardware ecc functionality
     * @mtd:        MTD device structure
     * @mode:       Read/Write mode
     */
    
    static void __maybe_unused omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
    
    Dirk Behme's avatar
    Dirk Behme committed
    {
    	struct nand_chip *chip = mtd->priv;
    	uint32_t val, dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1;
    
    	switch (mode) {
    	case NAND_ECC_READ:
    	case NAND_ECC_WRITE:
    		/* Clear the ecc result registers, select ecc reg as 1 */
    
    		writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
    
    Dirk Behme's avatar
    Dirk Behme committed
    
    		/*
    		 * Size 0 = 0xFF, Size1 is 0xFF - both are 512 bytes
    		 * tell all regs to generate size0 sized regs
    		 * we just have a single ECC engine for all CS
    		 */
    		writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL,
    
    			&gpmc_cfg->ecc_size_config);
    
    Dirk Behme's avatar
    Dirk Behme committed
    		val = (dev_width << 7) | (cs << 1) | (0x1);
    
    		writel(val, &gpmc_cfg->ecc_config);
    
    Dirk Behme's avatar
    Dirk Behme committed
    		break;
    	default:
    		printf("Error: Unrecognized Mode[%d]!\n", mode);
    		break;
    	}
    }
    
    
     * Generic BCH interface
    
     */
    struct nand_bch_priv {
    	uint8_t mode;
    	uint8_t type;
    	uint8_t nibbles;
    
    	struct bch_control *control;
    
    };
    
    /* bch types */
    #define ECC_BCH4	0
    #define ECC_BCH8	1
    #define ECC_BCH16	2
    
    
    /* GPMC ecc engine settings */
    #define BCH_WRAPMODE_1		1	/* BCH wrap mode 1 */
    #define BCH_WRAPMODE_6		6	/* BCH wrap mode 6 */
    
    
    /* BCH nibbles for diff bch levels */
    #define NAND_ECC_HW_BCH ((uint8_t)(NAND_ECC_HW_OOB_FIRST) + 1)
    #define ECC_BCH4_NIBBLES	13
    #define ECC_BCH8_NIBBLES	26
    #define ECC_BCH16_NIBBLES	52
    
    
    /*
     * This can be a single instance cause all current users have only one NAND
     * with nearly the same setup (BCH8, some with ELM and others with sw BCH
     * library).
     * When some users with other BCH strength will exists this have to change!
     */
    static __maybe_unused struct nand_bch_priv bch_priv = {
    
    	.mode = NAND_ECC_HW_BCH,
    	.type = ECC_BCH8,
    
    	.nibbles = ECC_BCH8_NIBBLES,
    	.control = NULL
    
    /*
     * omap_hwecc_init_bch - Initialize the BCH Hardware ECC for NAND flash in
     *				GPMC controller
     * @mtd:	MTD device structure
     * @mode:	Read/Write mode
     */
    __maybe_unused
    static void omap_hwecc_init_bch(struct nand_chip *chip, int32_t mode)
    {
    	uint32_t val;
    	uint32_t dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1;
    	uint32_t unused_length = 0;
    	uint32_t wr_mode = BCH_WRAPMODE_6;
    	struct nand_bch_priv *bch = chip->priv;
    
    	/* Clear the ecc result registers, select ecc reg as 1 */
    	writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
    
    
    	if (bch->ecc_scheme == OMAP_ECC_BCH8_CODE_HW) {
    		wr_mode = BCH_WRAPMODE_1;
    
    
    	switch (bch->nibbles) {
    	case ECC_BCH4_NIBBLES:
    		unused_length = 3;
    		break;
    	case ECC_BCH8_NIBBLES:
    		unused_length = 2;
    		break;
    	case ECC_BCH16_NIBBLES:
    		unused_length = 0;
    		break;
    	}
    
    	/*
    	 * This is ecc_size_config for ELM mode.
    	 * Here we are using different settings for read and write access and
    	 * also depending on BCH strength.
    	 */
    	switch (mode) {
    	case NAND_ECC_WRITE:
    		/* write access only setup eccsize1 config */
    		val = ((unused_length + bch->nibbles) << 22);
    		break;
    
    	case NAND_ECC_READ:
    	default:
    		/*
    		 * by default eccsize0 selected for ecc1resultsize
    		 * eccsize0 config.
    		 */
    		val  = (bch->nibbles << 12);
    		/* eccsize1 config */
    		val |= (unused_length << 22);
    		break;
    	}
    
    	/*
    	 * This ecc_size_config setting is for BCH sw library.
    	 *
    	 * Note: we only support BCH8 currently with BCH sw library!
    	 * Should be really easy to adobt to BCH4, however some omap3 have
    	 * flaws with BCH4.
    	 *
    	 * Here we are using wrapping mode 6 both for reading and writing, with:
    	 *  size0 = 0  (no additional protected byte in spare area)
    	 *  size1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
    	 */
    	val = (32 << 22) | (0 << 12);
    
    	/* ecc size configuration */
    	writel(val, &gpmc_cfg->ecc_size_config);
    
    	/*
    	 * Configure the ecc engine in gpmc
    	 * We assume 512 Byte sector pages for access to NAND.
    	 */
    	val  = (1 << 16);		/* enable BCH mode */
    	val |= (bch->type << 12);	/* setup BCH type */
    	val |= (wr_mode << 8);		/* setup wrapping mode */
    	val |= (dev_width << 7);	/* setup device width (16 or 8 bit) */
    	val |= (cs << 1);		/* setup chip select to work on */
    	debug("set ECC_CONFIG=0x%08x\n", val);
    	writel(val, &gpmc_cfg->ecc_config);
    }
    
    /*
     * omap_enable_ecc_bch - This function enables the bch h/w ecc functionality
     * @mtd:	MTD device structure
     * @mode:	Read/Write mode
     */
    __maybe_unused
    static void omap_enable_ecc_bch(struct mtd_info *mtd, int32_t mode)
    {
    	struct nand_chip *chip = mtd->priv;
    
    	omap_hwecc_init_bch(chip, mode);
    	/* enable ecc */
    	writel((readl(&gpmc_cfg->ecc_config) | 0x1), &gpmc_cfg->ecc_config);
    }
    
    /*
     * omap_ecc_disable - Disable H/W ECC calculation
     *
     * @mtd:	MTD device structure
     */
    static void __maybe_unused omap_ecc_disable(struct mtd_info *mtd)
    {
    	writel((readl(&gpmc_cfg->ecc_config) & ~0x1), &gpmc_cfg->ecc_config);
    }
    
    /*
    
    /*
     * omap_read_bch8_result - Read BCH result for BCH8 level
     *
     * @mtd:	MTD device structure
     * @big_endian:	When set read register 3 first
     * @ecc_code:	Read syndrome from BCH result registers
     */
    static void omap_read_bch8_result(struct mtd_info *mtd, uint8_t big_endian,
    				uint8_t *ecc_code)
    {
    	uint32_t *ptr;
    	int8_t i = 0, j;
    
    	if (big_endian) {
    		ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
    		ecc_code[i++] = readl(ptr) & 0xFF;
    		ptr--;
    		for (j = 0; j < 3; j++) {
    			ecc_code[i++] = (readl(ptr) >> 24) & 0xFF;
    			ecc_code[i++] = (readl(ptr) >> 16) & 0xFF;
    			ecc_code[i++] = (readl(ptr) >>  8) & 0xFF;
    			ecc_code[i++] = readl(ptr) & 0xFF;
    			ptr--;
    		}
    	} else {
    		ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[0];
    		for (j = 0; j < 3; j++) {
    			ecc_code[i++] = readl(ptr) & 0xFF;
    			ecc_code[i++] = (readl(ptr) >>  8) & 0xFF;
    			ecc_code[i++] = (readl(ptr) >> 16) & 0xFF;
    			ecc_code[i++] = (readl(ptr) >> 24) & 0xFF;
    			ptr++;
    		}
    		ecc_code[i++] = readl(ptr) & 0xFF;
    		ecc_code[i++] = 0;	/* 14th byte is always zero */
    	}
    }
    
    /*
     * omap_rotate_ecc_bch - Rotate the syndrome bytes
     *
     * @mtd:	MTD device structure
     * @calc_ecc:	ECC read from ECC registers
     * @syndrome:	Rotated syndrome will be retuned in this array
     *
     */
    static void omap_rotate_ecc_bch(struct mtd_info *mtd, uint8_t *calc_ecc,
    		uint8_t *syndrome)
    {
    	struct nand_chip *chip = mtd->priv;
    	struct nand_bch_priv *bch = chip->priv;
    	uint8_t n_bytes = 0;
    	int8_t i, j;
    
    	switch (bch->type) {
    	case ECC_BCH4:
    		n_bytes = 8;
    		break;
    
    	case ECC_BCH16:
    		n_bytes = 28;
    		break;
    
    	case ECC_BCH8:
    	default:
    		n_bytes = 13;
    		break;
    	}
    
    	for (i = 0, j = (n_bytes-1); i < n_bytes; i++, j--)
    		syndrome[i] =  calc_ecc[j];
    }
    
    /*
     *  omap_calculate_ecc_bch - Read BCH ECC result
     *
     *  @mtd:	MTD structure
     *  @dat:	unused
     *  @ecc_code:	ecc_code buffer
     */
    static int omap_calculate_ecc_bch(struct mtd_info *mtd, const uint8_t *dat,
    				uint8_t *ecc_code)
    {
    	struct nand_chip *chip = mtd->priv;
    	struct nand_bch_priv *bch = chip->priv;
    	uint8_t big_endian = 1;
    	int8_t ret = 0;
    
    	if (bch->type == ECC_BCH8)
    		omap_read_bch8_result(mtd, big_endian, ecc_code);
    	else /* BCH4 and BCH16 currently not supported */
    		ret = -1;
    
    	/*
    	 * Stop reading anymore ECC vals and clear old results
    	 * enable will be called if more reads are required
    	 */
    	omap_ecc_disable(mtd);
    
    	return ret;
    }
    
    /*
     * omap_fix_errors_bch - Correct bch error in the data
     *
     * @mtd:	MTD device structure
     * @data:	Data read from flash
     * @error_count:Number of errors in data
     * @error_loc:	Locations of errors in the data
     *
     */
    static void omap_fix_errors_bch(struct mtd_info *mtd, uint8_t *data,
    		uint32_t error_count, uint32_t *error_loc)
    {
    	struct nand_chip *chip = mtd->priv;
    	struct nand_bch_priv *bch = chip->priv;
    	uint8_t count = 0;
    	uint32_t error_byte_pos;
    	uint32_t error_bit_mask;
    	uint32_t last_bit = (bch->nibbles * 4) - 1;
    
    	/* Flip all bits as specified by the error location array. */
    	/* FOR( each found error location flip the bit ) */
    	for (count = 0; count < error_count; count++) {
    		if (error_loc[count] > last_bit) {
    			/* Remove the ECC spare bits from correction. */
    			error_loc[count] -= (last_bit + 1);
    			/* Offset bit in data region */
    			error_byte_pos = ((512 * 8) -
    					(error_loc[count]) - 1) / 8;
    			/* Error Bit mask */
    			error_bit_mask = 0x1 << (error_loc[count] % 8);
    			/* Toggle the error bit to make the correction. */
    			data[error_byte_pos] ^= error_bit_mask;
    		}
    	}
    }
    
    /*
     * omap_correct_data_bch - Compares the ecc read from nand spare area
     * with ECC registers values and corrects one bit error if it has occured
     *
     * @mtd:	MTD device structure
     * @dat:	page data
     * @read_ecc:	ecc read from nand flash (ignored)
     * @calc_ecc:	ecc read from ECC registers
     *
     * @return 0 if data is OK or corrected, else returns -1
     */
    static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
    				uint8_t *read_ecc, uint8_t *calc_ecc)
    {
    	struct nand_chip *chip = mtd->priv;
    	struct nand_bch_priv *bch = chip->priv;
    	uint8_t syndrome[28];
    	uint32_t error_count = 0;
    	uint32_t error_loc[8];
    	uint32_t i, ecc_flag;
    
    	ecc_flag = 0;
    	for (i = 0; i < chip->ecc.bytes; i++)
    		if (read_ecc[i] != 0xff)
    			ecc_flag = 1;
    
    	if (!ecc_flag)
    		return 0;
    
    	elm_reset();
    	elm_config((enum bch_level)(bch->type));
    
    	/*
    	 * while reading ECC result we read it in big endian.
    	 * Hence while loading to ELM we have rotate to get the right endian.
    	 */
    	omap_rotate_ecc_bch(mtd, calc_ecc, syndrome);
    
    	/* use elm module to check for errors */
    	if (elm_check_error(syndrome, bch->nibbles, &error_count,
    				error_loc) != 0) {
    		printf("ECC: uncorrectable.\n");
    		return -1;
    	}
    
    	/* correct bch error */
    	if (error_count > 0)
    		omap_fix_errors_bch(mtd, dat, error_count, error_loc);
    
    	return 0;
    }
    
    /**
     * omap_read_page_bch - hardware ecc based page read function
     * @mtd:	mtd info structure
     * @chip:	nand chip info structure
     * @buf:	buffer to store read data
    
     * @oob_required: caller expects OOB data read to chip->oob_poi
    
     * @page:	page number to read
     *
     */
    static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
    
    				uint8_t *buf, int oob_required, int page)
    
    {
    	int i, eccsize = chip->ecc.size;
    	int eccbytes = chip->ecc.bytes;
    	int eccsteps = chip->ecc.steps;
    	uint8_t *p = buf;
    	uint8_t *ecc_calc = chip->buffers->ecccalc;
    	uint8_t *ecc_code = chip->buffers->ecccode;
    	uint32_t *eccpos = chip->ecc.layout->eccpos;
    	uint8_t *oob = chip->oob_poi;
    	uint32_t data_pos;
    	uint32_t oob_pos;
    
    	data_pos = 0;
    	/* oob area start */
    	oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
    	oob += chip->ecc.layout->eccpos[0];
    
    	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
    				oob += eccbytes) {
    		chip->ecc.hwctl(mtd, NAND_ECC_READ);
    		/* read data */
    		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, page);
    		chip->read_buf(mtd, p, eccsize);
    
    		/* read respective ecc from oob area */
    		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, page);
    		chip->read_buf(mtd, oob, eccbytes);
    		/* read syndrome */
    		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
    
    		data_pos += eccsize;
    		oob_pos += eccbytes;
    	}
    
    	for (i = 0; i < chip->ecc.total; i++)
    		ecc_code[i] = chip->oob_poi[eccpos[i]];
    
    	eccsteps = chip->ecc.steps;
    	p = buf;
    
    	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
    		int stat;
    
    		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
    		if (stat < 0)
    			mtd->ecc_stats.failed++;
    		else
    			mtd->ecc_stats.corrected += stat;
    	}
    	return 0;
    }
    
    #endif /* CONFIG_NAND_OMAP_ELM */
    
    /*
     * OMAP3 BCH8 support (with BCH library)
     */
    
     *  omap_calculate_ecc_bch_sw - Read BCH ECC result
    
     *
     *  @mtd:	MTD device structure
     *  @dat:	The pointer to data on which ecc is computed (unused here)
     *  @ecc:	The ECC output buffer
     */
    
    static int omap_calculate_ecc_bch_sw(struct mtd_info *mtd, const uint8_t *dat,
    
    				uint8_t *ecc)
    {
    	int ret = 0;
    	size_t i;
    	unsigned long nsectors, val1, val2, val3, val4;
    
    	nsectors = ((readl(&gpmc_cfg->ecc_config) >> 4) & 0x7) + 1;
    
    	for (i = 0; i < nsectors; i++) {
    		/* Read hw-computed remainder */
    		val1 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[0]);
    		val2 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[1]);
    		val3 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[2]);
    		val4 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[3]);
    
    		/*
    		 * Add constant polynomial to remainder, in order to get an ecc
    		 * sequence of 0xFFs for a buffer filled with 0xFFs.
    		 */
    		*ecc++ = 0xef ^ (val4 & 0xFF);
    		*ecc++ = 0x51 ^ ((val3 >> 24) & 0xFF);
    		*ecc++ = 0x2e ^ ((val3 >> 16) & 0xFF);
    		*ecc++ = 0x09 ^ ((val3 >> 8) & 0xFF);
    		*ecc++ = 0xed ^ (val3 & 0xFF);
    		*ecc++ = 0x93 ^ ((val2 >> 24) & 0xFF);
    		*ecc++ = 0x9a ^ ((val2 >> 16) & 0xFF);
    		*ecc++ = 0xc2 ^ ((val2 >> 8) & 0xFF);
    		*ecc++ = 0x97 ^ (val2 & 0xFF);
    		*ecc++ = 0x79 ^ ((val1 >> 24) & 0xFF);
    		*ecc++ = 0xe5 ^ ((val1 >> 16) & 0xFF);
    		*ecc++ = 0x24 ^ ((val1 >> 8) & 0xFF);
    		*ecc++ = 0xb5 ^ (val1 & 0xFF);
    	}
    
    	/*
    	 * Stop reading anymore ECC vals and clear old results
    	 * enable will be called if more reads are required
    	 */
    	omap_ecc_disable(mtd);
    
    	return ret;
    }
    
    /**
    
     * omap_correct_data_bch_sw - Decode received data and correct errors
    
     * @mtd: MTD device structure
     * @data: page data
     * @read_ecc: ecc read from nand flash
     * @calc_ecc: ecc read from HW ECC registers
     */
    
    static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
    
    				 u_char *read_ecc, u_char *calc_ecc)
    {
    	int i, count;
    	/* cannot correct more than 8 errors */
    	unsigned int errloc[8];
    	struct nand_chip *chip = mtd->priv;
    	struct nand_bch_priv *chip_priv = chip->priv;
    	struct bch_control *bch = chip_priv->control;
    
    	count = decode_bch(bch, NULL, 512, read_ecc, calc_ecc, NULL, errloc);
    	if (count > 0) {
    		/* correct errors */
    		for (i = 0; i < count; i++) {
    			/* correct data only, not ecc bytes */
    			if (errloc[i] < 8*512)
    				data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
    			printf("corrected bitflip %u\n", errloc[i]);
    #ifdef DEBUG
    			puts("read_ecc: ");
    			/*
    			 * BCH8 have 13 bytes of ECC; BCH4 needs adoption
    			 * here!
    			 */
    			for (i = 0; i < 13; i++)
    				printf("%02x ", read_ecc[i]);
    			puts("\n");
    			puts("calc_ecc: ");
    			for (i = 0; i < 13; i++)
    				printf("%02x ", calc_ecc[i]);
    			puts("\n");
    #endif
    		}
    	} else if (count < 0) {
    		puts("ecc unrecoverable error\n");
    	}
    	return count;
    }
    
    /**
     * omap_free_bch - Release BCH ecc resources
     * @mtd: MTD device structure
     */
    static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
    {
    	struct nand_chip *chip = mtd->priv;
    	struct nand_bch_priv *chip_priv = chip->priv;
    	struct bch_control *bch = NULL;
    
    	if (chip_priv)
    		bch = chip_priv->control;
    
    	if (bch) {
    		free_bch(bch);
    		chip_priv->control = NULL;
    	}
    }
    
    #endif /* CONFIG_BCH */
    
    /**
     * omap_select_ecc_scheme - configures driver for particular ecc-scheme
     * @nand: NAND chip device structure
     * @ecc_scheme: ecc scheme to configure
     * @pagesize: number of main-area bytes per page of NAND device
     * @oobsize: number of OOB/spare bytes per page of NAND device
     */
    static int omap_select_ecc_scheme(struct nand_chip *nand,
    	enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
    	struct nand_bch_priv	*bch		= nand->priv;
    	struct nand_ecclayout	*ecclayout	= nand->ecc.layout;
    	int eccsteps = pagesize / SECTOR_BYTES;
    	int i;
    
    	switch (ecc_scheme) {
    	case OMAP_ECC_HAM1_CODE_SW:
    		debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
    		/* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
    		 * initialized in nand_scan_tail(), so just set ecc.mode */
    		bch_priv.control	= NULL;
    		bch_priv.type		= 0;
    		nand->ecc.mode		= NAND_ECC_SOFT;
    		nand->ecc.layout	= NULL;
    		nand->ecc.size		= pagesize;
    		bch->ecc_scheme		= OMAP_ECC_HAM1_CODE_SW;
    		break;
    
    	case OMAP_ECC_HAM1_CODE_HW:
    		debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
    		/* check ecc-scheme requirements before updating ecc info */
    		if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
    			printf("nand: error: insufficient OOB: require=%d\n", (
    				(3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
    			return -EINVAL;
    		}
    		bch_priv.control	= NULL;
    		bch_priv.type		= 0;
    		/* populate ecc specific fields */
    		nand->ecc.mode		= NAND_ECC_HW;
    		nand->ecc.strength	= 1;
    		nand->ecc.size		= SECTOR_BYTES;
    		nand->ecc.bytes		= 3;
    		nand->ecc.hwctl		= omap_enable_hwecc;
    		nand->ecc.correct	= omap_correct_data;
    		nand->ecc.calculate	= omap_calculate_ecc;
    		/* define ecc-layout */
    		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
    		for (i = 0; i < ecclayout->eccbytes; i++)
    			ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
    		ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
    		ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
    						BADBLOCK_MARKER_LENGTH;
    		bch->ecc_scheme		= OMAP_ECC_HAM1_CODE_HW;
    		break;
    
    	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
    #ifdef CONFIG_BCH
    		debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
    		/* check ecc-scheme requirements before updating ecc info */
    		if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
    			printf("nand: error: insufficient OOB: require=%d\n", (
    				(13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
    			return -EINVAL;
    		}
    		/* check if BCH S/W library can be used for error detection */
    		bch_priv.control = init_bch(13, 8, 0x201b);
    		if (!bch_priv.control) {
    			printf("nand: error: could not init_bch()\n");
    			return -ENODEV;
    		}
    		bch_priv.type = ECC_BCH8;
    		/* populate ecc specific fields */
    		nand->ecc.mode		= NAND_ECC_HW;
    		nand->ecc.strength	= 8;
    		nand->ecc.size		= SECTOR_BYTES;
    		nand->ecc.bytes		= 13;
    		nand->ecc.hwctl		= omap_enable_ecc_bch;
    		nand->ecc.correct	= omap_correct_data_bch_sw;
    		nand->ecc.calculate	= omap_calculate_ecc_bch_sw;
    		/* define ecc-layout */
    		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
    		ecclayout->eccpos[0]	= BADBLOCK_MARKER_LENGTH;
    		for (i = 1; i < ecclayout->eccbytes; i++) {
    			if (i % nand->ecc.bytes)
    				ecclayout->eccpos[i] =
    						ecclayout->eccpos[i - 1] + 1;
    			else
    				ecclayout->eccpos[i] =
    						ecclayout->eccpos[i - 1] + 2;
    		}
    		ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
    		ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
    						BADBLOCK_MARKER_LENGTH;
    		omap_hwecc_init_bch(nand, NAND_ECC_READ);
    		bch->ecc_scheme		= OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
    		break;
    #else
    		printf("nand: error: CONFIG_BCH required for ECC\n");
    		return -EINVAL;
    #endif
    
    	case OMAP_ECC_BCH8_CODE_HW:
    #ifdef CONFIG_NAND_OMAP_ELM
    		debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
    		/* check ecc-scheme requirements before updating ecc info */
    		if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
    			printf("nand: error: insufficient OOB: require=%d\n", (
    				(14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
    			return -EINVAL;
    		}
    		/* intialize ELM for ECC error detection */
    		elm_init();
    		bch_priv.type		= ECC_BCH8;
    		/* populate ecc specific fields */
    		nand->ecc.mode		= NAND_ECC_HW;
    		nand->ecc.strength	= 8;
    		nand->ecc.size		= SECTOR_BYTES;
    		nand->ecc.bytes		= 14;
    		nand->ecc.hwctl		= omap_enable_ecc_bch;
    		nand->ecc.correct	= omap_correct_data_bch;
    		nand->ecc.calculate	= omap_calculate_ecc_bch;
    		nand->ecc.read_page	= omap_read_page_bch;
    		/* define ecc-layout */
    		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
    		for (i = 0; i < ecclayout->eccbytes; i++)
    			ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
    		ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
    		ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
    						BADBLOCK_MARKER_LENGTH;
    		bch->ecc_scheme		= OMAP_ECC_BCH8_CODE_HW;
    		break;
    #else
    		printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
    		return -EINVAL;
    #endif
    
    	default:
    		debug("nand: error: ecc scheme not enabled or supported\n");
    		return -EINVAL;
    	}
    	return 0;
    }
    
    #ifndef CONFIG_SPL_BUILD
    
    Dirk Behme's avatar
    Dirk Behme committed
    /*
    
     * omap_nand_switch_ecc - switch the ECC operation between different engines
     * (h/w and s/w) and different algorithms (hamming and BCHx)
    
    Dirk Behme's avatar
    Dirk Behme committed
     *
    
     * @hardware		- true if one of the HW engines should be used
     * @eccstrength		- the number of bits that could be corrected
     *			  (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
    
    Dirk Behme's avatar
    Dirk Behme committed
     */
    
    int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
    
    Dirk Behme's avatar
    Dirk Behme committed
    {
    	struct nand_chip *nand;
    	struct mtd_info *mtd;
    
    Dirk Behme's avatar
    Dirk Behme committed
    
    	if (nand_curr_device < 0 ||
    	    nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE ||
    	    !nand_info[nand_curr_device].name) {
    
    		printf("nand: error: no NAND devices found\n");
    		return -ENODEV;
    
    Dirk Behme's avatar
    Dirk Behme committed
    	}
    
    	mtd = &nand_info[nand_curr_device];
    	nand = mtd->priv;
    	nand->options |= NAND_OWN_BUFFERS;
    	/* Setup the ecc configurations again */
    
    	if (hardware) {
    		if (eccstrength == 1) {
    
    			err = omap_select_ecc_scheme(nand,
    					OMAP_ECC_HAM1_CODE_HW,
    					mtd->writesize, mtd->oobsize);
    		} else if (eccstrength == 8) {
    			err = omap_select_ecc_scheme(nand,
    					OMAP_ECC_BCH8_CODE_HW,
    					mtd->writesize, mtd->oobsize);
    		} else {
    			printf("nand: error: unsupported ECC scheme\n");
    			return -EINVAL;
    
    Dirk Behme's avatar
    Dirk Behme committed
    	} else {
    
    		err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
    					mtd->writesize, mtd->oobsize);
    
    Dirk Behme's avatar
    Dirk Behme committed
    	}
    
    	/* Update NAND handling after ECC mode switch */
    
    	if (!err)
    		err = nand_scan_tail(mtd);
    	return err;
    
    Dirk Behme's avatar
    Dirk Behme committed
    }
    
    #endif /* CONFIG_SPL_BUILD */
    
    Dirk Behme's avatar
    Dirk Behme committed
    
    /*
     * Board-specific NAND initialization. The following members of the
     * argument are board-specific:
     * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
     * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
     * - cmd_ctrl: hardwarespecific function for accesing control-lines
     * - waitfunc: hardwarespecific function for accesing device ready/busy line
     * - ecc.hwctl: function to enable (reset) hardware ecc generator
     * - ecc.mode: mode of ecc, see defines
     * - chip_delay: chip dependent delay for transfering data from array to
     *   read regs (tR)
     * - options: various chip options. They can partly be set to inform
     *   nand_scan about special functionality. See the defines for further
     *   explanation
     */
    int board_nand_init(struct nand_chip *nand)
    {
    	int32_t gpmc_config = 0;
    	cs = 0;
    
    Dirk Behme's avatar
    Dirk Behme committed
    	/*
    	 * xloader/Uboot's gpmc configuration would have configured GPMC for
    	 * nand type of memory. The following logic scans and latches on to the
    	 * first CS with NAND type memory.
    	 * TBD: need to make this logic generic to handle multiple CS NAND
    	 * devices.
    	 */
    	while (cs < GPMC_MAX_CS) {
    		/* Check if NAND type is set */
    
    		if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
    
    Dirk Behme's avatar
    Dirk Behme committed
    			/* Found it!! */
    			break;
    		}
    		cs++;
    	}
    	if (cs >= GPMC_MAX_CS) {
    
    		printf("nand: error: Unable to find NAND settings in "
    
    Dirk Behme's avatar
    Dirk Behme committed
    			"GPMC Configuration - quitting\n");
    		return -ENODEV;
    	}
    
    
    	gpmc_config = readl(&gpmc_cfg->config);
    
    Dirk Behme's avatar
    Dirk Behme committed
    	/* Disable Write protect */
    	gpmc_config |= 0x10;
    
    	writel(gpmc_config, &gpmc_cfg->config);
    
    	nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
    	nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
    
    	nand->priv	= &bch_priv;
    	nand->cmd_ctrl	= omap_nand_hwcontrol;
    	nand->options	|= NAND_NO_PADDING | NAND_CACHEPRG;
    
    Dirk Behme's avatar
    Dirk Behme committed
    	/* If we are 16 bit dev, our gpmc config tells us that */
    
    	if ((readl(&gpmc_cfg->cs[cs].config1) & 0x3000) == 0x1000)