Skip to content
Snippets Groups Projects
asix.c 22.4 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Copyright (c) 2011 The Chromium OS Authors.
     *
    
     * Patched for AX88772B by Antmicro Ltd <www.antmicro.com>
     *
    
     * SPDX-License-Identifier:	GPL-2.0+
    
    #include <linux/mii.h>
    #include "usb_ether.h"
    
    /* ASIX AX8817X based USB 2.0 Ethernet Devices */
    
    #define AX_CMD_SET_SW_MII		0x06
    #define AX_CMD_READ_MII_REG		0x07
    #define AX_CMD_WRITE_MII_REG		0x08
    #define AX_CMD_SET_HW_MII		0x0a
    
    #define AX_CMD_READ_EEPROM		0x0b
    
    #define AX_CMD_READ_RX_CTL		0x0f
    #define AX_CMD_WRITE_RX_CTL		0x10
    #define AX_CMD_WRITE_IPG0		0x12
    #define AX_CMD_READ_NODE_ID		0x13
    
    #define AX_CMD_WRITE_NODE_ID	0x14
    
    #define AX_CMD_READ_PHY_ID		0x19
    #define AX_CMD_WRITE_MEDIUM_MODE	0x1b
    #define AX_CMD_WRITE_GPIOS		0x1f
    #define AX_CMD_SW_RESET			0x20
    #define AX_CMD_SW_PHY_SELECT		0x22
    
    #define AX_SWRESET_CLEAR		0x00
    #define AX_SWRESET_PRTE			0x04
    #define AX_SWRESET_PRL			0x08
    #define AX_SWRESET_IPRL			0x20
    #define AX_SWRESET_IPPD			0x40
    
    #define AX88772_IPG0_DEFAULT		0x15
    #define AX88772_IPG1_DEFAULT		0x0c
    #define AX88772_IPG2_DEFAULT		0x12
    
    /* AX88772 & AX88178 Medium Mode Register */
    #define AX_MEDIUM_PF		0x0080
    #define AX_MEDIUM_JFE		0x0040
    #define AX_MEDIUM_TFC		0x0020
    #define AX_MEDIUM_RFC		0x0010
    #define AX_MEDIUM_ENCK		0x0008
    #define AX_MEDIUM_AC		0x0004
    #define AX_MEDIUM_FD		0x0002
    #define AX_MEDIUM_GM		0x0001
    #define AX_MEDIUM_SM		0x1000
    #define AX_MEDIUM_SBP		0x0800
    #define AX_MEDIUM_PS		0x0200
    #define AX_MEDIUM_RE		0x0100
    
    #define AX88178_MEDIUM_DEFAULT	\
    	(AX_MEDIUM_PS | AX_MEDIUM_FD | AX_MEDIUM_AC | \
    	 AX_MEDIUM_RFC | AX_MEDIUM_TFC | AX_MEDIUM_JFE | \
    	 AX_MEDIUM_RE)
    
    #define AX88772_MEDIUM_DEFAULT	\
    	(AX_MEDIUM_FD | AX_MEDIUM_RFC | \
    	 AX_MEDIUM_TFC | AX_MEDIUM_PS | \
    	 AX_MEDIUM_AC | AX_MEDIUM_RE)
    
    /* AX88772 & AX88178 RX_CTL values */
    
    #define AX_RX_CTL_SO			0x0080
    #define AX_RX_CTL_AB			0x0008
    
    
    #define AX_DEFAULT_RX_CTL	\
    	(AX_RX_CTL_SO | AX_RX_CTL_AB)
    
    /* GPIO 2 toggles */
    #define AX_GPIO_GPO2EN		0x10	/* GPIO2 Output enable */
    #define AX_GPIO_GPO_2		0x20	/* GPIO2 Output value */
    #define AX_GPIO_RSE		0x80	/* Reload serial EEPROM */
    
    /* local defines */
    #define ASIX_BASE_NAME "asx"
    #define USB_CTRL_SET_TIMEOUT 5000
    #define USB_CTRL_GET_TIMEOUT 5000
    #define USB_BULK_SEND_TIMEOUT 5000
    #define USB_BULK_RECV_TIMEOUT 5000
    
    #define AX_RX_URB_SIZE 2048
    #define PHY_CONNECT_TIMEOUT 5000
    
    
    /* asix_flags defines */
    #define FLAG_NONE			0
    #define FLAG_TYPE_AX88172	(1U << 0)
    #define FLAG_TYPE_AX88772	(1U << 1)
    
    #define FLAG_TYPE_AX88772B	(1U << 2)
    #define FLAG_EEPROM_MAC		(1U << 3) /* initial mac address in eeprom */
    
    /* driver private */
    struct asix_private {
    	int flags;
    
    #ifdef CONFIG_DM_ETH
    	struct ueth_data ueth;
    #endif
    
    #ifndef CONFIG_DM_ETH
    /* local vars */
    static int curr_eth_dev; /* index for name of next device detected */
    #endif
    
    
    /*
     * Asix infrastructure commands
     */
    static int asix_write_cmd(struct ueth_data *dev, u8 cmd, u16 value, u16 index,
    			     u16 size, void *data)
    {
    	int len;
    
    	debug("asix_write_cmd() cmd=0x%02x value=0x%04x index=0x%04x "
    		"size=%d\n", cmd, value, index, size);
    
    	len = usb_control_msg(
    		dev->pusb_dev,
    		usb_sndctrlpipe(dev->pusb_dev, 0),
    		cmd,
    		USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
    		value,
    		index,
    		data,
    		size,
    		USB_CTRL_SET_TIMEOUT);
    
    	return len == size ? 0 : -1;
    }
    
    static int asix_read_cmd(struct ueth_data *dev, u8 cmd, u16 value, u16 index,
    			    u16 size, void *data)
    {
    	int len;
    
    	debug("asix_read_cmd() cmd=0x%02x value=0x%04x index=0x%04x size=%d\n",
    		cmd, value, index, size);
    
    	len = usb_control_msg(
    		dev->pusb_dev,
    		usb_rcvctrlpipe(dev->pusb_dev, 0),
    		cmd,
    		USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
    		value,
    		index,
    		data,
    		size,
    		USB_CTRL_GET_TIMEOUT);
    	return len == size ? 0 : -1;
    }
    
    static inline int asix_set_sw_mii(struct ueth_data *dev)
    {
    	int ret;
    
    	ret = asix_write_cmd(dev, AX_CMD_SET_SW_MII, 0x0000, 0, 0, NULL);
    	if (ret < 0)
    		debug("Failed to enable software MII access\n");
    	return ret;
    }
    
    static inline int asix_set_hw_mii(struct ueth_data *dev)
    {
    	int ret;
    
    	ret = asix_write_cmd(dev, AX_CMD_SET_HW_MII, 0x0000, 0, 0, NULL);
    	if (ret < 0)
    		debug("Failed to enable hardware MII access\n");
    	return ret;
    }
    
    static int asix_mdio_read(struct ueth_data *dev, int phy_id, int loc)
    {
    
    	ALLOC_CACHE_ALIGN_BUFFER(__le16, res, 1);
    
    	asix_read_cmd(dev, AX_CMD_READ_MII_REG, phy_id, (__u16)loc, 2, res);
    
    	asix_set_hw_mii(dev);
    
    	debug("asix_mdio_read() phy_id=0x%02x, loc=0x%02x, returns=0x%04x\n",
    
    			phy_id, loc, le16_to_cpu(*res));
    
    	return le16_to_cpu(*res);
    
    }
    
    static void
    asix_mdio_write(struct ueth_data *dev, int phy_id, int loc, int val)
    {
    
    	ALLOC_CACHE_ALIGN_BUFFER(__le16, res, 1);
    	*res = cpu_to_le16(val);
    
    
    	debug("asix_mdio_write() phy_id=0x%02x, loc=0x%02x, val=0x%04x\n",
    			phy_id, loc, val);
    	asix_set_sw_mii(dev);
    
    	asix_write_cmd(dev, AX_CMD_WRITE_MII_REG, phy_id, (__u16)loc, 2, res);
    
    	asix_set_hw_mii(dev);
    }
    
    /*
     * Asix "high level" commands
     */
    static int asix_sw_reset(struct ueth_data *dev, u8 flags)
    {
    	int ret;
    
    	ret = asix_write_cmd(dev, AX_CMD_SW_RESET, flags, 0, 0, NULL);
    	if (ret < 0)
    		debug("Failed to send software reset: %02x\n", ret);
    	else
    		udelay(150 * 1000);
    
    	return ret;
    }
    
    static inline int asix_get_phy_addr(struct ueth_data *dev)
    {
    
    	ALLOC_CACHE_ALIGN_BUFFER(u8, buf, 2);
    
    
    	int ret = asix_read_cmd(dev, AX_CMD_READ_PHY_ID, 0, 0, 2, buf);
    
    	debug("asix_get_phy_addr()\n");
    
    	if (ret < 0) {
    		debug("Error reading PHYID register: %02x\n", ret);
    		goto out;
    	}
    
    	debug("asix_get_phy_addr() returning 0x%02x%02x\n", buf[0], buf[1]);
    
    	ret = buf[1];
    
    out:
    	return ret;
    }
    
    static int asix_write_medium_mode(struct ueth_data *dev, u16 mode)
    {
    	int ret;
    
    	debug("asix_write_medium_mode() - mode = 0x%04x\n", mode);
    	ret = asix_write_cmd(dev, AX_CMD_WRITE_MEDIUM_MODE, mode,
    			0, 0, NULL);
    	if (ret < 0) {
    		debug("Failed to write Medium Mode mode to 0x%04x: %02x\n",
    			mode, ret);
    	}
    	return ret;
    }
    
    static u16 asix_read_rx_ctl(struct ueth_data *dev)
    {
    
    	ALLOC_CACHE_ALIGN_BUFFER(__le16, v, 1);
    
    	int ret = asix_read_cmd(dev, AX_CMD_READ_RX_CTL, 0, 0, 2, v);
    
    
    	if (ret < 0)
    		debug("Error reading RX_CTL register: %02x\n", ret);
    	else
    
    	return ret;
    }
    
    static int asix_write_rx_ctl(struct ueth_data *dev, u16 mode)
    {
    	int ret;
    
    	debug("asix_write_rx_ctl() - mode = 0x%04x\n", mode);
    	ret = asix_write_cmd(dev, AX_CMD_WRITE_RX_CTL, mode, 0, 0, NULL);
    	if (ret < 0) {
    		debug("Failed to write RX_CTL mode to 0x%04x: %02x\n",
    				mode, ret);
    	}
    	return ret;
    }
    
    static int asix_write_gpio(struct ueth_data *dev, u16 value, int sleep)
    {
    	int ret;
    
    	debug("asix_write_gpio() - value = 0x%04x\n", value);
    	ret = asix_write_cmd(dev, AX_CMD_WRITE_GPIOS, value, 0, 0, NULL);
    	if (ret < 0) {
    		debug("Failed to write GPIO value 0x%04x: %02x\n",
    			value, ret);
    	}
    	if (sleep)
    		udelay(sleep * 1000);
    
    	return ret;
    }
    
    
    static int asix_write_hwaddr_common(struct ueth_data *dev, uint8_t *enetaddr)
    
    {
    	int ret;
    	ALLOC_CACHE_ALIGN_BUFFER(unsigned char, buf, ETH_ALEN);
    
    
    	memcpy(buf, enetaddr, ETH_ALEN);
    
    
    	ret = asix_write_cmd(dev, AX_CMD_WRITE_NODE_ID, 0, 0, ETH_ALEN, buf);
    	if (ret < 0)
    		debug("Failed to set MAC address: %02x\n", ret);
    
    	return ret;
    }
    
    
    /*
     * mii commands
     */
    
    /*
     * mii_nway_restart - restart NWay (autonegotiation) for this interface
     *
     * Returns 0 on success, negative on error.
     */
    static int mii_nway_restart(struct ueth_data *dev)
    {
    	int bmcr;
    	int r = -1;
    
    	/* if autoneg is off, it's an error */
    	bmcr = asix_mdio_read(dev, dev->phy_id, MII_BMCR);
    
    	if (bmcr & BMCR_ANENABLE) {
    		bmcr |= BMCR_ANRESTART;
    		asix_mdio_write(dev, dev->phy_id, MII_BMCR, bmcr);
    		r = 0;
    	}
    
    	return r;
    }
    
    
    static int asix_read_mac_common(struct ueth_data *dev,
    				struct asix_private *priv, uint8_t *enetaddr)
    
    {
    	ALLOC_CACHE_ALIGN_BUFFER(unsigned char, buf, ETH_ALEN);
    
    
    	if (priv->flags & FLAG_EEPROM_MAC) {
    		for (i = 0; i < (ETH_ALEN >> 1); i++) {
    			if (asix_read_cmd(dev, AX_CMD_READ_EEPROM,
    					  0x04 + i, 0, 2, buf) < 0) {
    				debug("Failed to read SROM address 04h.\n");
    				return -1;
    			}
    
    			memcpy(enetaddr + i * 2, buf, 2);
    
    		}
    	} else {
    		if (asix_read_cmd(dev, AX_CMD_READ_NODE_ID, 0, 0, ETH_ALEN, buf)
    		     < 0) {
    			debug("Failed to read MAC address.\n");
    			return -1;
    		}
    
    		memcpy(enetaddr, buf, ETH_ALEN);
    
    static int asix_basic_reset(struct ueth_data *dev)
    
    {
    	int embd_phy;
    	u16 rx_ctl;
    
    	if (asix_write_gpio(dev,
    			AX_GPIO_RSE | AX_GPIO_GPO_2 | AX_GPIO_GPO2EN, 5) < 0)
    
    
    	/* 0x10 is the phy id of the embedded 10/100 ethernet phy */
    	embd_phy = ((asix_get_phy_addr(dev) & 0x1f) == 0x10 ? 1 : 0);
    	if (asix_write_cmd(dev, AX_CMD_SW_PHY_SELECT,
    				embd_phy, 0, 0, NULL) < 0) {
    		debug("Select PHY #1 failed\n");
    
    	}
    
    	if (asix_sw_reset(dev, AX_SWRESET_IPPD | AX_SWRESET_PRL) < 0)
    
    
    	if (asix_sw_reset(dev, AX_SWRESET_CLEAR) < 0)
    
    
    	if (embd_phy) {
    		if (asix_sw_reset(dev, AX_SWRESET_IPRL) < 0)
    
    	} else {
    		if (asix_sw_reset(dev, AX_SWRESET_PRTE) < 0)
    
    	}
    
    	rx_ctl = asix_read_rx_ctl(dev);
    	debug("RX_CTL is 0x%04x after software reset\n", rx_ctl);
    	if (asix_write_rx_ctl(dev, 0x0000) < 0)
    
    
    	rx_ctl = asix_read_rx_ctl(dev);
    	debug("RX_CTL is 0x%04x setting to 0x0000\n", rx_ctl);
    
    	dev->phy_id = asix_get_phy_addr(dev);
    	if (dev->phy_id < 0)
    		debug("Failed to read phy id\n");
    
    	asix_mdio_write(dev, dev->phy_id, MII_BMCR, BMCR_RESET);
    	asix_mdio_write(dev, dev->phy_id, MII_ADVERTISE,
    			ADVERTISE_ALL | ADVERTISE_CSMA);
    	mii_nway_restart(dev);
    
    	if (asix_write_medium_mode(dev, AX88772_MEDIUM_DEFAULT) < 0)
    
    
    	if (asix_write_cmd(dev, AX_CMD_WRITE_IPG0,
    				AX88772_IPG0_DEFAULT | AX88772_IPG1_DEFAULT,
    				AX88772_IPG2_DEFAULT, 0, NULL) < 0) {
    		debug("Write IPG,IPG1,IPG2 failed\n");
    
    static int asix_init_common(struct ueth_data *dev, uint8_t *enetaddr)
    
    {
    	int timeout = 0;
    #define TIMEOUT_RESOLUTION 50	/* ms */
    	int link_detected;
    
    	debug("** %s()\n", __func__);
    
    
    	if (asix_write_rx_ctl(dev, AX_DEFAULT_RX_CTL) < 0)
    
    		goto out_err;
    
    	if (asix_write_hwaddr_common(dev, enetaddr) < 0)
    
    		goto out_err;
    
    	do {
    		link_detected = asix_mdio_read(dev, dev->phy_id, MII_BMSR) &
    			BMSR_LSTATUS;
    		if (!link_detected) {
    			if (timeout == 0)
    				printf("Waiting for Ethernet connection... ");
    			udelay(TIMEOUT_RESOLUTION * 1000);
    			timeout += TIMEOUT_RESOLUTION;
    		}
    	} while (!link_detected && timeout < PHY_CONNECT_TIMEOUT);
    	if (link_detected) {
    		if (timeout != 0)
    			printf("done.\n");
    	} else {
    		printf("unable to connect.\n");
    		goto out_err;
    	}
    
    
    	/*
    	 * Wait some more to avoid timeout on first transfer
    	 * (e.g. EHCI timed out on TD - token=0x8008d80)
    	 */
    	mdelay(25);
    
    
    static int asix_send_common(struct ueth_data *dev, void *packet, int length)
    
    {
    	int err;
    	u32 packet_len;
    	int actual_len;
    
    	ALLOC_CACHE_ALIGN_BUFFER(unsigned char, msg,
    		PKTSIZE + sizeof(packet_len));
    
    
    	debug("** %s(), len %d\n", __func__, length);
    
    	packet_len = (((length) ^ 0x0000ffff) << 16) + (length);
    	cpu_to_le32s(&packet_len);
    
    	memcpy(msg, &packet_len, sizeof(packet_len));
    	memcpy(msg + sizeof(packet_len), (void *)packet, length);
    
    	err = usb_bulk_msg(dev->pusb_dev,
    				usb_sndbulkpipe(dev->pusb_dev, dev->ep_out),
    				(void *)msg,
    				length + sizeof(packet_len),
    				&actual_len,
    				USB_BULK_SEND_TIMEOUT);
    
    	debug("Tx: len = %zu, actual = %u, err = %d\n",
    
    			length + sizeof(packet_len), actual_len, err);
    
    	return err;
    }
    
    
    #ifndef CONFIG_DM_ETH
    /*
     * Asix callbacks
     */
    static int asix_init(struct eth_device *eth, bd_t *bd)
    {
    	struct ueth_data *dev = (struct ueth_data *)eth->priv;
    
    
    	return asix_init_common(dev, eth->enetaddr);
    
    }
    
    static int asix_send(struct eth_device *eth, void *packet, int length)
    {
    	struct ueth_data *dev = (struct ueth_data *)eth->priv;
    
    	return asix_send_common(dev, packet, length);
    }
    
    
    static int asix_recv(struct eth_device *eth)
    {
    	struct ueth_data *dev = (struct ueth_data *)eth->priv;
    
    	ALLOC_CACHE_ALIGN_BUFFER(unsigned char, recv_buf, AX_RX_URB_SIZE);
    
    	unsigned char *buf_ptr;
    	int err;
    	int actual_len;
    	u32 packet_len;
    
    	debug("** %s()\n", __func__);
    
    	err = usb_bulk_msg(dev->pusb_dev,
    				usb_rcvbulkpipe(dev->pusb_dev, dev->ep_in),
    				(void *)recv_buf,
    				AX_RX_URB_SIZE,
    				&actual_len,
    				USB_BULK_RECV_TIMEOUT);
    	debug("Rx: len = %u, actual = %u, err = %d\n", AX_RX_URB_SIZE,
    		actual_len, err);
    	if (err != 0) {
    		debug("Rx: failed to receive\n");
    		return -1;
    	}
    	if (actual_len > AX_RX_URB_SIZE) {
    		debug("Rx: received too many bytes %d\n", actual_len);
    		return -1;
    	}
    
    	buf_ptr = recv_buf;
    	while (actual_len > 0) {
    		/*
    		 * 1st 4 bytes contain the length of the actual data as two
    		 * complementary 16-bit words. Extract the length of the data.
    		 */
    		if (actual_len < sizeof(packet_len)) {
    			debug("Rx: incomplete packet length\n");
    			return -1;
    		}
    		memcpy(&packet_len, buf_ptr, sizeof(packet_len));
    		le32_to_cpus(&packet_len);
    
    		if (((~packet_len >> 16) & 0x7ff) != (packet_len & 0x7ff)) {
    
    			debug("Rx: malformed packet length: %#x (%#x:%#x)\n",
    
    			      packet_len, (~packet_len >> 16) & 0x7ff,
    			      packet_len & 0x7ff);
    
    		packet_len = packet_len & 0x7ff;
    
    		if (packet_len > actual_len - sizeof(packet_len)) {
    			debug("Rx: too large packet: %d\n", packet_len);
    			return -1;
    		}
    
    		/* Notify net stack */
    
    		net_process_received_packet(buf_ptr + sizeof(packet_len),
    					    packet_len);
    
    
    		/* Adjust for next iteration. Packets are padded to 16-bits */
    		if (packet_len & 1)
    			packet_len++;
    		actual_len -= sizeof(packet_len) + packet_len;
    		buf_ptr += sizeof(packet_len) + packet_len;
    	}
    
    	return err;
    }
    
    static void asix_halt(struct eth_device *eth)
    {
    	debug("** %s()\n", __func__);
    }
    
    
    static int asix_write_hwaddr(struct eth_device *eth)
    {
    	struct ueth_data *dev = (struct ueth_data *)eth->priv;
    
    	return asix_write_hwaddr_common(dev, eth->enetaddr);
    }
    
    
    /*
     * Asix probing functions
     */
    void asix_eth_before_probe(void)
    {
    	curr_eth_dev = 0;
    }
    
    struct asix_dongle {
    	unsigned short vendor;
    	unsigned short product;
    
    	int flags;
    
    static const struct asix_dongle asix_dongles[] = {
    
    	{ 0x05ac, 0x1402, FLAG_TYPE_AX88772 },	/* Apple USB Ethernet Adapter */
    	{ 0x07d1, 0x3c05, FLAG_TYPE_AX88772 },	/* D-Link DUB-E100 H/W Ver B1 */
    
    	{ 0x2001, 0x1a02, FLAG_TYPE_AX88772 },	/* D-Link DUB-E100 H/W Ver C1 */
    
    	/* Cables-to-Go USB Ethernet Adapter */
    	{ 0x0b95, 0x772a, FLAG_TYPE_AX88772 },
    	{ 0x0b95, 0x7720, FLAG_TYPE_AX88772 },	/* Trendnet TU2-ET100 V3.0R */
    	{ 0x0b95, 0x1720, FLAG_TYPE_AX88172 },	/* SMC */
    	{ 0x0db0, 0xa877, FLAG_TYPE_AX88772 },	/* MSI - ASIX 88772a */
    	{ 0x13b1, 0x0018, FLAG_TYPE_AX88172 },	/* Linksys 200M v2.1 */
    	{ 0x1557, 0x7720, FLAG_TYPE_AX88772 },	/* 0Q0 cable ethernet */
    	/* DLink DUB-E100 H/W Ver B1 Alternate */
    	{ 0x2001, 0x3c05, FLAG_TYPE_AX88772 },
    
    	/* ASIX 88772B */
    	{ 0x0b95, 0x772b, FLAG_TYPE_AX88772B | FLAG_EEPROM_MAC },
    
    	{ 0x0b95, 0x7e2b, FLAG_TYPE_AX88772B },
    
    	{ 0x0000, 0x0000, FLAG_NONE }	/* END - Do not remove */
    
    };
    
    /* Probe to see if a new device is actually an asix device */
    int asix_eth_probe(struct usb_device *dev, unsigned int ifnum,
    		      struct ueth_data *ss)
    {
    	struct usb_interface *iface;
    	struct usb_interface_descriptor *iface_desc;
    
    	int ep_in_found = 0, ep_out_found = 0;
    
    	int i;
    
    	/* let's examine the device now */
    	iface = &dev->config.if_desc[ifnum];
    	iface_desc = &dev->config.if_desc[ifnum].desc;
    
    	for (i = 0; asix_dongles[i].vendor != 0; i++) {
    		if (dev->descriptor.idVendor == asix_dongles[i].vendor &&
    		    dev->descriptor.idProduct == asix_dongles[i].product)
    			/* Found a supported dongle */
    			break;
    	}
    
    	if (asix_dongles[i].vendor == 0)
    		return 0;
    
    	memset(ss, 0, sizeof(struct ueth_data));
    
    	/* At this point, we know we've got a live one */
    	debug("\n\nUSB Ethernet device detected: %#04x:%#04x\n",
    	      dev->descriptor.idVendor, dev->descriptor.idProduct);
    
    	/* Initialize the ueth_data structure with some useful info */
    	ss->ifnum = ifnum;
    	ss->pusb_dev = dev;
    	ss->subclass = iface_desc->bInterfaceSubClass;
    	ss->protocol = iface_desc->bInterfaceProtocol;
    
    
    	/* alloc driver private */
    	ss->dev_priv = calloc(1, sizeof(struct asix_private));
    	if (!ss->dev_priv)
    		return 0;
    
    	((struct asix_private *)ss->dev_priv)->flags = asix_dongles[i].flags;
    
    
    	/*
    	 * We are expecting a minimum of 3 endpoints - in, out (bulk), and
    	 * int. We will ignore any others.
    	 */
    	for (i = 0; i < iface_desc->bNumEndpoints; i++) {
    		/* is it an BULK endpoint? */
    		if ((iface->ep_desc[i].bmAttributes &
    		     USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_BULK) {
    
    			u8 ep_addr = iface->ep_desc[i].bEndpointAddress;
    			if (ep_addr & USB_DIR_IN) {
    				if (!ep_in_found) {
    					ss->ep_in = ep_addr &
    						USB_ENDPOINT_NUMBER_MASK;
    					ep_in_found = 1;
    				}
    			} else {
    				if (!ep_out_found) {
    					ss->ep_out = ep_addr &
    						USB_ENDPOINT_NUMBER_MASK;
    					ep_out_found = 1;
    				}
    			}
    
    		}
    
    		/* is it an interrupt endpoint? */
    		if ((iface->ep_desc[i].bmAttributes &
    		    USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT) {
    			ss->ep_int = iface->ep_desc[i].bEndpointAddress &
    				USB_ENDPOINT_NUMBER_MASK;
    			ss->irqinterval = iface->ep_desc[i].bInterval;
    		}
    	}
    	debug("Endpoints In %d Out %d Int %d\n",
    		  ss->ep_in, ss->ep_out, ss->ep_int);
    
    	/* Do some basic sanity checks, and bail if we find a problem */
    	if (usb_set_interface(dev, iface_desc->bInterfaceNumber, 0) ||
    	    !ss->ep_in || !ss->ep_out || !ss->ep_int) {
    		debug("Problems with device\n");
    		return 0;
    	}
    	dev->privptr = (void *)ss;
    	return 1;
    }
    
    int asix_eth_get_info(struct usb_device *dev, struct ueth_data *ss,
    				struct eth_device *eth)
    {
    
    	struct asix_private *priv = (struct asix_private *)ss->dev_priv;
    
    
    	if (!eth) {
    		debug("%s: missing parameter.\n", __func__);
    		return 0;
    	}
    	sprintf(eth->name, "%s%d", ASIX_BASE_NAME, curr_eth_dev++);
    	eth->init = asix_init;
    	eth->send = asix_send;
    	eth->recv = asix_recv;
    	eth->halt = asix_halt;
    
    	if (!(priv->flags & FLAG_TYPE_AX88172))
    		eth->write_hwaddr = asix_write_hwaddr;
    
    	if (asix_basic_reset(ss))
    		return 0;
    
    
    	/* Get the MAC address */
    
    	if (asix_read_mac_common(ss, priv, eth->enetaddr))
    
    		return 0;
    	debug("MAC %pM\n", eth->enetaddr);
    
    
    #endif
    
    #ifdef CONFIG_DM_ETH
    static int asix_eth_start(struct udevice *dev)
    {
    
    	struct eth_pdata *pdata = dev_get_platdata(dev);
    
    	struct asix_private *priv = dev_get_priv(dev);
    
    
    	return asix_init_common(&priv->ueth, pdata->enetaddr);
    
    }
    
    void asix_eth_stop(struct udevice *dev)
    {
    	debug("** %s()\n", __func__);
    }
    
    int asix_eth_send(struct udevice *dev, void *packet, int length)
    {
    	struct asix_private *priv = dev_get_priv(dev);
    
    	return asix_send_common(&priv->ueth, packet, length);
    }
    
    int asix_eth_recv(struct udevice *dev, int flags, uchar **packetp)
    {
    	struct asix_private *priv = dev_get_priv(dev);
    	struct ueth_data *ueth = &priv->ueth;
    	uint8_t *ptr;
    	int ret, len;
    	u32 packet_len;
    
    	len = usb_ether_get_rx_bytes(ueth, &ptr);
    	debug("%s: first try, len=%d\n", __func__, len);
    	if (!len) {
    		if (!(flags & ETH_RECV_CHECK_DEVICE))
    			return -EAGAIN;
    		ret = usb_ether_receive(ueth, AX_RX_URB_SIZE);
    		if (ret == -EAGAIN)
    			return ret;
    
    		len = usb_ether_get_rx_bytes(ueth, &ptr);
    		debug("%s: second try, len=%d\n", __func__, len);
    	}
    
    	/*
    	 * 1st 4 bytes contain the length of the actual data as two
    	 * complementary 16-bit words. Extract the length of the data.
    	 */
    	if (len < sizeof(packet_len)) {
    		debug("Rx: incomplete packet length\n");
    		goto err;
    	}
    	memcpy(&packet_len, ptr, sizeof(packet_len));
    	le32_to_cpus(&packet_len);
    	if (((~packet_len >> 16) & 0x7ff) != (packet_len & 0x7ff)) {
    		debug("Rx: malformed packet length: %#x (%#x:%#x)\n",
    		      packet_len, (~packet_len >> 16) & 0x7ff,
    		      packet_len & 0x7ff);
    		goto err;
    	}
    	packet_len = packet_len & 0x7ff;
    	if (packet_len > len - sizeof(packet_len)) {
    		debug("Rx: too large packet: %d\n", packet_len);
    		goto err;
    	}
    
    	*packetp = ptr + sizeof(packet_len);
    	return packet_len;
    
    err:
    	usb_ether_advance_rxbuf(ueth, -1);
    	return -EINVAL;
    }
    
    static int asix_free_pkt(struct udevice *dev, uchar *packet, int packet_len)
    {
    	struct asix_private *priv = dev_get_priv(dev);
    
    	if (packet_len & 1)
    		packet_len++;
    	usb_ether_advance_rxbuf(&priv->ueth, sizeof(u32) + packet_len);
    
    	return 0;
    }
    
    int asix_write_hwaddr(struct udevice *dev)
    {
    	struct eth_pdata *pdata = dev_get_platdata(dev);
    	struct asix_private *priv = dev_get_priv(dev);
    
    	if (priv->flags & FLAG_TYPE_AX88172)
    		return -ENOSYS;
    
    	return asix_write_hwaddr_common(&priv->ueth, pdata->enetaddr);
    }
    
    static int asix_eth_probe(struct udevice *dev)
    {
    	struct eth_pdata *pdata = dev_get_platdata(dev);
    	struct asix_private *priv = dev_get_priv(dev);
    	struct ueth_data *ss = &priv->ueth;
    	int ret;
    
    	priv->flags = dev->driver_data;
    	ret = usb_ether_register(dev, ss, AX_RX_URB_SIZE);
    	if (ret)
    		return ret;
    
    	ret = asix_basic_reset(ss);
    	if (ret)
    		goto err;
    
    	/* Get the MAC address */
    	ret = asix_read_mac_common(ss, priv, pdata->enetaddr);
    	if (ret)
    		goto err;
    	debug("MAC %pM\n", pdata->enetaddr);
    
    	return 0;
    
    err:
    	return usb_ether_deregister(ss);
    }
    
    static const struct eth_ops asix_eth_ops = {
    	.start	= asix_eth_start,
    	.send	= asix_eth_send,
    	.recv	= asix_eth_recv,
    	.free_pkt = asix_free_pkt,
    	.stop	= asix_eth_stop,
    	.write_hwaddr = asix_write_hwaddr,
    };
    
    U_BOOT_DRIVER(asix_eth) = {
    	.name	= "asix_eth",
    	.id	= UCLASS_ETH,
    	.probe = asix_eth_probe,
    	.ops	= &asix_eth_ops,
    	.priv_auto_alloc_size = sizeof(struct asix_private),
    	.platdata_auto_alloc_size = sizeof(struct eth_pdata),
    };
    
    static const struct usb_device_id asix_eth_id_table[] = {
    	/* Apple USB Ethernet Adapter */
    	{ USB_DEVICE(0x05ac, 0x1402), .driver_info = FLAG_TYPE_AX88772 },
    	/* D-Link DUB-E100 H/W Ver B1 */
    	{ USB_DEVICE(0x07d1, 0x3c05), .driver_info = FLAG_TYPE_AX88772 },
    	/* D-Link DUB-E100 H/W Ver C1 */
    	{ USB_DEVICE(0x2001, 0x1a02), .driver_info = FLAG_TYPE_AX88772 },
    	/* Cables-to-Go USB Ethernet Adapter */
    	{ USB_DEVICE(0x0b95, 0x772a), .driver_info = FLAG_TYPE_AX88772 },
    	/* Trendnet TU2-ET100 V3.0R */
    	{ USB_DEVICE(0x0b95, 0x7720), .driver_info = FLAG_TYPE_AX88772 },
    	/* SMC */
    	{ USB_DEVICE(0x0b95, 0x1720), .driver_info = FLAG_TYPE_AX88172 },
    	/* MSI - ASIX 88772a */
    	{ USB_DEVICE(0x0db0, 0xa877), .driver_info = FLAG_TYPE_AX88772 },
    	/* Linksys 200M v2.1 */
    	{ USB_DEVICE(0x13b1, 0x0018), .driver_info = FLAG_TYPE_AX88172 },
    	/* 0Q0 cable ethernet */
    	{ USB_DEVICE(0x1557, 0x7720), .driver_info = FLAG_TYPE_AX88772 },
    	/* DLink DUB-E100 H/W Ver B1 Alternate */
    	{ USB_DEVICE(0x2001, 0x3c05), .driver_info = FLAG_TYPE_AX88772 },
    	/* ASIX 88772B */
    	{ USB_DEVICE(0x0b95, 0x772b),
    		.driver_info = FLAG_TYPE_AX88772B | FLAG_EEPROM_MAC },
    	{ USB_DEVICE(0x0b95, 0x7e2b), .driver_info = FLAG_TYPE_AX88772B },
    	{ }		/* Terminating entry */
    };
    
    U_BOOT_USB_DEVICE(asix_eth, asix_eth_id_table);
    #endif